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Background: Bladder cancer (BLCA) is one of the most common cancer types

worldwide. The disease is responsible for about 200,000 deaths annually, thus

improved diagnostics and therapy is needed. A large body of evidence reveal

that small RNAs of less than 40 nucleotides may act as tumor suppressors,

oncogenes, and disease biomarkers, with a major focus on microRNAs.

However, the role of other families of small RNAs is not yet deciphered.

Recent results suggest that small RNAs and their modification status, play a

role in BLCA development and are promising biomarkers due to their high

abundance in the exomes and body fluids (including urine). Moreover, free

modified nucleosides have been detected at elevated levels from the urine of

BLCA patients. A genome-wide view of small RNAs, and their modifications, will

help pinpoint the molecules that could be used as biomarker or has important

biology in BLCA development.

Methods: BLCA tumor tissue specimens were obtained from 12 patients

undergoing transurethral resection of non-muscle invasive papillary

urothelial carcinomas. Genome-wide profiling of small RNAs less than

40 bases long was performed by a modified protocol with TGIRT

(thermostable group II reverse transcriptase) to identify novel small RNAs

and their modification status.

Results: Comprehensive analysis identified not only microRNAs. Intriguingly,

57 ± 15% (mean ± S.D.) of sequencing reads mapped to non-microRNA-small

RNAs including tRNA-derived fragments (tRFs), ribosomal RNA-derived

fragments (rRFs) and YRNA-derived fragments (YRFs). Misincorporation

(mismatch) sites identified potential base modification positions on the small

RNAs, especially on tRFs, corresponding to m1A (N1-methyladenosine), m1G

(N1-methylguanosine) and m2
2G (N2, N2-dimethylguanosine). We also detected
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mismatch sites on rRFs corresponding to known modifications on 28 and

18S rRNA.

Conclusion: We found abundant non-microRNA-small RNAs in BLCA tumor

samples. Small RNAs, especially tRFs and rRFs, containmodifications that can be

captured as mismatch by TGIRT sequencing. Both the modifications and the

non-microRNA-small RNAs should be explored as a biomarker for BLCA

detection or follow-up.

KEYWORDS

bladder cancer, non-coding RNA, small RNA, RNA modification, tRNA-derived
fragment, rRNA-derived fragment, YRNA-derived fragment

Introduction

Bladder cancer (BLCA) is the sixth most common cancer

worldwide with high morbidity and mortality rates. With

550,000 annual new incidents and 200,000 deaths, BLCA

poses a significant disease burden globally (Bray et al.,

2018). About 75% of incidents present as non-muscle

invasive (NMIBC), consisting of a heterogeneous

population of tumors (Kirkali et al., 2005; Burger et al.,

2013). Currently there is no routine screening for NMIBC

or BLCA in general. Patients with NMIBC usually display

urinary tract symptoms i.e., hematuria, pain or frequent

urination, and is then subject to cystoscopy as the first step

in the diagnostic process. If the initial workup reveals a tumor,

the affected individual often undergoes surgery. In addition,

patients may receive radiation therapy, chemotherapy,

immunotherapy and targeted therapy. Despite a 70–80%

recurrence rate, NMIBC has a favorable prognosis and a 5-

year survival rate greater than 85% (van Rhijn et al., 2009).

However, up to 30% of NMIBC cases progress into more

advanced stages with less favorable prognosis, and 5-year

survival rate drops to about 5% for metastatic disease

(Schrier et al., 2004; Sanli et al., 2017; Boegemann and

Krabbe, 2020). This lifelong menace necessitates an

exhaustive post-operative control scheme burdening both

patients and healthcare systems. In fact, BLCA is in the top

tier of the most expensive cancer type to treat, both when

considering cost per patient and lifetime cost, in addition to

the invaluable expense of life quality reduction (James and

Gore, 2013). Thus, urgent improvement of diagnostics and

follow-up is required. Despite tremendous effort, the

development of sensitive biomarkers and non-invasive

methods for cost-effective diagnostics and surveillance of

patients remains a challenge. However, the family of small

non-coding RNAs and their modifications, appear as a

promising addition to the future clinical toolbox.

Non-coding RNAs (ncRNAs), including both long non-

coding RNAs (lncRNAs) and small RNAs (sRNAs), have

gained much attention lately for their key role as mediators

of gene expression in cancer (Slack and Chinnaiyan, 2019).

They are considered well-suited as therapeutic targets or

agents due to their small size and chemical properties,

which allow them to cross tissue barriers and reach tumor

cell interior better than macromolecular antibody drugs (Li

et al., 2020). In particular, the primary focus of sRNA research

in BLCA has been directed towards microRNAs (miRNAs).

Extensive RNA sequencing by The Cancer Genome Atlas

reported epigenetic regulation of ncRNA, especially

miRNAs, in BLCA (Yoshino et al., 2013; Cancer Genome

Atlas Research, 2014). In recent years, dysregulated

expression of hundreds of miRNAs have been reported in

BLCA by large-scale analysis from close to 20 research groups

(Lee et al., 2016). Functional studies suggest that miRNAs are

involved in different aspects of BLCA development and

progression (Li et al., 2011; Morais et al., 2014; Wang

et al., 2015). Moreover, miRNAs dysregulated in tumor

tissue can also be detected in biological fluids such as

serum and urine, suggesting their potential usage as non-

invasive diagnostic or prognostic tools (Yun et al., 2012;

Armstrong et al., 2015; Fang et al., 2016; Borkowska et al.,

2019; Yin et al., 2019).

Besides microRNAs, other emerging small RNAs are

detected at high abundance thanks to the technological

advances in next-generational sequencing. For example,

tRNA-derived fragments (tRFs) have gained attention as

their diverse biological functions are being discovered

(Magee and Rigoutsos, 2020). These sRNAs have high

promise due to their biological functions in different

diseases and their high abundance in bodily fluids as

recently reviewed (Su et al., 2020b). So far only a few

reports focused on tRFs or other non-microRNA-small

RNAs in BLCA. tRF expression showed context-dependent

association with mRNA expression across 32 cancer types in

TCGA, highlighting differences in tRF-mRNA connection by

sex in bladder cancer (Telonis et al., 2019). Furthermore,

analysis of TCGA data found association between elevated

level of a specific tRF (5′-tRF-LysCTT) and early progression

and poor outcome in BLCA (Papadimitriou et al., 2020),

calling for further investigation of tRF functions in BLCA.

In addition to tRFs, other small RNAs such as ribosomal
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RNA-derived fragments (rRFs) and Y RNA-derived fragments

(YRFs) have also been reported in humans but not

investigated as much. Important to note, TCGA small

RNA-seq data was collected focusing on microRNAs

(~22 nucleotides long) and has a strict size cut-off of

30 nucleotides, losing potential information on RNAs

longer than this size range.

Moreover, sRNAs harbor a range of chemical

modifications providing a second layer of biological

information (Zhang et al., 2016; Li et al., 2021). This

modification information is often missing and even leads to

under-representation of modification-containing sRNAs

during conventional small RNA-seq library preparation (Shi

et al., 2021). Enzyme-assisted library preparation improves the

cloning of modification-containing sRNAs, and suggests that

their abundance was formerly far under-appreciated.

Altogether, there is a great need to understand the relative

abundance of non-microRNA-small RNAs and modification

status on different small RNAs, both of which have not been

comprehensively profiled in BLCA samples.

We aimed to establish a workflow that can profile both

microRNA (miRs) and non-miR small RNAs in a genome-wide

fashion that can be applied to patient samples. Small RNA-seq

has been a powerful method for high-throughput profiling and

sequence-level information that is important for base-level

analysis. However, regular small RNA-seq protocol is known

to suffer from the stalling of the reverse transcriptase at sites

containing modifications that disrupt Watson-Crick base-

pairing, including but not limited to m1A (N1-

methyladenosine), m1G (N1-methylguanosine), and m2
2G

(N2, N2-dimethylguanosine) (Behrens et al., 2021; Shi et al.,

2021). Recently we showed TGIRT (thermostable group II

intron reverse transcriptase) can be used in small RNA-seq

to overcome under-cloning of m1A-containing RNAs during

regular small RNA-seq protocol, and further be used to identify

the modification base position via mismatch (Su et al., 2022).

The under-representation of m1A-containing small RNAs and

loss of quantitative mismatch ratio by a commonly used

M-MuLV reverse transcriptase (ProtoScriptII) indicates the

regular small RNA-seq pipeline is biased against

m1A-modified small RNAs. Intrigued by this result, we

wondered whether TGIRT can also overcome and capture

the other RNA modifications that disrupt Watson-Crick

base-pairing. In addition to A-type mismatch, we noticed

TGIRT also produced more G-type mismatch than

ProtoScriptII from the same HEK293T RNAs

(Supplementary Figure S1A), suggesting TGIRT can

potentially capture modifications on guanosine as well. Here

we report a comprehensive profiling of small RNAs and their

modification status in BLCA patient samples by this modified

small RNA-seq pipeline. From 12 tumor samples, we identified

non-microRNA-small RNA reads that are comparable in

abundance to microRNAs. These non-microRNA-small

RNAs include tRNA-fragments, rRNA-fragments, Y-RNA-

fragments, snoRNA-fragments and more. Their length

distribution and cleavage patterns were distinctly different.

RNA modification as indicated by TGIRT mismatch pattern

was mostly found on tRFs over other small RNA types.

Mismatch sites on specific tRFs correspond to known m1A,

m1G and m2
2G annotations on mature tRNAs, suggest a large

proportion of tRFs harbor these modifications. Furthermore,

mismatch sites were also identified on rRFs at known

modification positions on 28 and 18S rRNAs. This analysis

confirms the high potential of using TGIRT to enable

modification-friendly profiling of small RNAs in clinical

samples.

Materials and methods

Human subject and sample collection

Patients diagnosed and treated for papillary urothelial

NMIBC at the Vestre Viken Hospital Trust hospitals were

enrolled in the study. Cold cup biopsies were harvested prior

to surgical resection of the tumor, and the specimens were kept

on −20°C in RNAlater preservation solution (Ambion #AM7020)

until preparation and further analyses.

Anonymized collective patient information of the 12 samples

used is listed in Table 1.

RNA extraction

Purification of total RNA was done using the RNAzol RT

reagent (MRC Inc. #RN190). Subsequently RNA quality was

determined using RNA ScreenTape on TapeStation (Agilent

Tech. #5067-5576) or Agilent RNA 6000 Pico Kit on

Bioanalyzer (Agilent Tech. #5067-1513).

TABLE1 NMIBC patient information.

Patient # Sex Age range Primary or recidive

Patient #1 Female 40-49 Primary

Patient #2 Male 70-79 Primary

Patient #3 Male 70-79 Primary

Patient #4 Male 60-69 Primary

Patient #5 Male 70-79 Primary

Patient #6 Male >80 Primary

Patient #7 Male 60-69 Primary

Patient #8 Male 50-59 Primary

Patient #9 Male 40-49 Primary

Patient #10 Male 50-59 Primary

Patient #11 Male >80 Primary

Patient #12 Female 70-79 Primary
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Small RNA library preparation by TGIRT
and sequencing

Small RNA-seq library preparation was performed as

previously reported (Su et al., 2019; Su et al., 2020a) using

NEBNext Small RNA Library Prep Set for Illumina (NEB

#7330) with changes to use TGIRT for cDNA synthesis.

TGIRT condition is based on m1A mapping on polyA-

enriched RNAs by TGIRT-seq (Li et al., 2017) with the

modifications described below. Total RNAs of 0.3–1 μg were

ligated with the corresponding 3′ and 5’ adaptor within the

NEBNext kit. Ligated RNAs were converted to cDNA by 1 μL

TGIRT-III enzyme (InGex #TGIRT50) per reaction at 60°C for

15 min. TGIRT reaction was carried out in buffer (50 mM Tris,

pH 8.3, 75 mM KCl, 3 mM MgCl2, 1 mM dNTP, 10 mM DTT)

with addition of 1 μL RNase Inhibitor. The reaction is stopped by

addition of 250 mM (final concentration) NaOH at 95°C for

3 min and 65°C for 15 min. Same amount of HCl was added to

neutralize the reaction after the reaction cools down. The cDNA

is further purified by QIAquick Nucleotide Removal Kit (Qiagen

#28304) or ZYMO oligo clean and concentrator kit (ZYMO

#D4060) or Dynabeads MyOne Silane (Thermo Fisher

#37002D). cDNA is amplified by 15–16 cycles of PCR with

indexed NEBNext primers (NEB #E6609). The individual

amplified libraries were purified with ZYMO DNA Clean and

Concentrator Kit (ZYMO #D4033) and run on 8% TBE

polyacrylamide Novex gel (Thermo Fisher #EC6215). The

position corresponding to RNA insert of 15–40 nucleotides

long was cut out from the gel and purified via crush-and-soak

method. Care was taken to cut the region longer than primer

dimer and shorter than full-length tRNA. Gel-recovered eluate

was purified and concentrated by ethanol precipitation according

to NEB kit instruction. Final libraries were quantified by Qubit

fluorometer and pooled for sequencing on Illumina sequencer.

HEK293T small RNA-seq data by ProtoScriptII andTGIRT can be

accessed from GEO: GSE171040 (GSM5217188 and GSM5217193 for

ProtoScriptII; GSM5217184 and GSM5217186 for TGIRT).

General mapping strategy for small RNA
TGIRT-seq data analysis

Small RNA-seq data was analyzed similarly as before (Su et al.,

2019; Su et al., 2020a). Briefly, cutadapt v1.15 (Martin, 2011) was used

to trim 3′ adaptor sequence and discard trimmed read length shorter

than 15 nt. To avoidmis-annotation of 5′NEBNext adaptor sequence
to hsa-miR-3168, reads containing 5′ adaptor sequence were

discarded with cutadapt. In general, each library has 2–10 million

mapped reads. Unitas v1.7.3 (Gebert et al., 2017) with SeqMap v1.0.13

(Jiang and Wong, 2008) was used to map small RNAs. Priority of

mapping was given to first map the reads to miRBase Release 22

(Kozomara et al., 2019) human sequence. The remaining reads were

mapped to other small RNA sequences including genomic tRNA

database (Chan and Lowe, 2016) and Ensembl Release 97. Additional

rRNA and YRNA reference sequences were used for rRF and YRF

mapping: 18S (NR_145820.1), 5S (NR_023363.1), 28S (NR_003287.4)

and 5.8S (NR_145821.1); RNY1 (NR_004391.1), RNY3

(NR_004392.1), RNY4 (NR_004393.1) and RNY5 (NR_001571.2).

miRNA mapping was done allowing 2 non-templated 3’ nucleotides

addition and 1 internalmismatch.Other nmsRNAmappingwas done

allowing 1 mismatch and 0 insertion/deletion, unless otherwise

specified (for example Supplementary Figure S1). When a given

read is mapped to multiple reference RNAs (multi-mapping),

fractionated count was calculated assuming even distribution

among all possible references. For all the analysis, reads per

million (RPM) was calculated to adjust for total mapped reads in

each library.

Mismatch calculation for small RNA
TGIRT-seq data analysis

After initial mapping as above, tRF/rRF/YRF reads were re-

mapped to only the corresponding reference RNAs with unitas

v1.7.3 (Gebert et al., 2017) allowing 1 mismatch and 0 insertion/

deletion. The mapping start/end position and mismatch position

were recorded for each read. The reads were aggregated onto the

whole length of reference RNAs into a coverage plot to facilitate

visualization, withX axis representing each nucleotide position of

the reference RNA and Y axis representing the abundance of all

reads that covered that specific position. Mismatch index (on a

scale of 0–100%) was calculated for each position by taking the

reads with mismatch at that position and divided by total reads

that covered that specific position. Mismatch index was

visualized by color on the coverage plot (red means higher

mismatch). For tRFs (Figure 4), coverage was aggregated by

tRNA amino acid groups.

Coverage plot on secondary structure of
YRNA-derived fragments

YRNA secondary structures were retrieved from RNAcentral

v19 based on Rfam (RF00019). The dot-bracket notation was

used to generate secondary structure plot by StructureEditor v6.1.

To color each base based on the relative abundance, coverage of

each base is normalized to the highest coverage for that YRNA.

Results

An updated small RNA-seq workflow for
modification-friendly global analysis

We collected 12 NMIBC tumor samples (patient

information summarized in Table 1) to test the updated
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small RNA-seq workflow (Figure 1A). High-quality total RNAs

were used as input and first ligated with 3′ adaptor and 5’

adaptor. Ligated RNA was converted into cDNA by reverse

transcriptase TGIRT, which has been shown to produce more

mismatch (misincorporation) than hard-stop products at m1A

modification sites than other reverse transcriptases (Li et al.,

2017; Su et al., 2022). When sequencing HEK293T RNAs, we

noticed TGIRT protocol is better at capturing non-microRNA-

small RNAs than the regular ProtoScriptII protocol

(Supplementary Figure S1A). The higher G-type mismatch

from the same HEK293T RNAs by TGIRT (Supplementary

Figure S1B), suggests TGIRTmight detect certain modifications

on guanosine as well. To be noted, base modifications that

disrupt base pairing such as m1A, m1G, m2
2G are more prone to

produce RT-induced mismatch, while other RNAmodifications

including m6A and pseudouridine are less affected. Only the

fully ligated and converted cDNAs can be further amplified by

the next PCR amplification. Lastly, the PCR products are size

selected experimentally to enrich for small RNAs of size less

than 40 nucleotides long. To avoid ambiguous mapping of very

short sequences, we only mapped reads that are at least

15 nucleotides long. Each clean read was first mapped to

human microRNA sequences, and the remaining reads were

then mapped to other reference sequences to identify non-

microRNA-small RNAs (nmsRNA) (Supplementary Figure

S1C). The largest increase in mapping of nmsRNAs (of

25–150%) was seen specifically with tRFs compared to other

nmsRNAs (Supplementary Figure S1D). In contrast allowing

indels of 1 nt did not increase mapping numbers

(Supplementary Figure S1E). Overall we found a very high

percentage of nmsRNA reads in these libraries, constituting

42–72% of all mapped reads (Figure 1B). The most abundant

nmsRNAs include tRNA-derived fragments (tRFs), ribosomal

RNA-derived fragments (rRFs), mitochondrial tRFs,

mitochondrial rRFs, Y-RNA-derived fragments (YRFs), small

nucleolar RNA-derived fragments (snoRFs), small nuclear

RNA-derived fragments (snRFs), lncRNA-derived fragments

(lncRFs) and protein-coding mRNA-derived fragments

(mRFs). Among these, the four most abundant groups are

rRFs, tRFs, snoRFs and lncRFs (Figure 1B). It was striking

FIGURE 1
An updated small RNA-seqworkflow formodification-friendly global analysis. (A) Scheme of collecting tumor samples from 12 NMIBC patients.
Small RNA-sequencing libraries by TGIRT were prepared from total RNAs to profile relative abundance and potential RNA modifications (based on
mismatch/misincorporation) for small RNAs less than 40 bases long. (B) Overall distribution of total mapped reads between microRNAs (dark grey)
and non-microRNA small RNAs (nmsRNAs), including rRFs (yellow), tRFs (red) and more. (C) Distribution of mapped percentage for each sub-
group of small RNAs shown as box-whisker plot. Box plot center represents median value, bounds represent upper and lower quartile, whiskers
represent 1.5* interquartile range from the bounds.
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that in some patients (patients 2, 5, 6, 8 and 12), rRF read counts

were nearly equal to or more than microRNAs. Interestingly,

relative read distribution among different small RNA sub-

groups was quite variable for different patients (Figure 1C).

microRNAs and nmsRNAs
(non-microRNA-small RNAs) show
distinct size distribution

To further understand the characteristics of the nmsRNAs,

we checked the length distribution of each subtype. As expected,

microRNAs have a specific size of 22 nucleotides (average from

12 samples shown in Figure 2A, individual patient samples

shown in Supplementary Figure S2). Meanwhile, the other

small RNAs showed distinct size distributions that were

different from microRNAs. For example, tRFs (Figure 2B),

rRFs (Figure 2C), mitochondrial tRFs (Figure 2D), YRFs

(Figure 2E), mitochondrial rRFs (Figure 2F) and snoRFs

(Figure 2G) all have a longer size range than microRNAs.

snRFs have a peak at 20 nucleotides and additional peaks at

longer size of 37 and 39 nucleotides (Figure 2H). This also

suggests these longer nmsRNAs were missed or under-

represented if a library was size selected around 22 nucleotides.

Similar to what we found before (Kumar et al., 2014), tRFs

display specific peaks in length at 33, 27, 22 and 18 nucleotides

(Figure 2B), which will be further discussed in the next

section. Intriguingly, mitochondrial tRFs display additional

peaks at 38 and 32 nucleotides (Figure 2D). In addition, both

genomic and mitochondrial rRFs are represented by a very

specific peak (39 and 37 nucleotides) (Figure 2C and

Figure 2F). YRFs have peaks of 33, 35 and 31 nucleotides

(Figure 2E), whereas snoRFs have peaks of 35 and

28 nucleotides (Figure 2G). On the other hand, lncRFs and

mRFs have predominantly shorter reads of 15 nucleotides,

(Figures 2I–J) which is the size cut-off for our bioinformatics

analysis (we discarded reads shorter than 15 nucleotides to

avoid ambiguous mapping). This may suggest more non-

specific cleavage on lncRNA and mRNAs than the other

RNAs. In general, the pre-dominant size for each small

RNA subtype was consistently observed across 12 tumor

samples, which shows distinct pattern between different

RNA subtypes (Supplementary Figure S2). Below we

describe specific nmsRNA subtypes in more details.

FIGURE 2
microRNAs and non-microRNA small RNAs show distinct size distribution. Size distribution (X-axis in nucleotides, Y-axis in reads per million
mapped reads) of each subtype of small RNAs including (A)microRNAs, (B) tRFs, (C) rRFs, (D)mitochondrial tRFs, (E) YRFs, (F)mitochondrial rRFs, (G)
snoRFs, (H) snRFs, (I) lncRFs and (J) mRFs. Major peaks in length are labeled for each small RNA subtype. RPM values are averaged from 12 samples
(individual samples plotted in Supplementary Figure S2).
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TGIRT-seq detects tRNA halves and tRFs in
the microRNA-size range at an abundance
comparable to microRNAs

tRFs are grouped by their start and end positions on parental

tRNAs, including 5′ fragments and 3′ fragments from mature

tRNAs and tRF-1s from precursor tRNA trailers (Figure 3A).

Both 5′ and 3′ fragments can be further divided into longer

fragments (or called tRNA halves, tiRs) and shorter tRFs.

Generally, expression levels for microRNAs are higher than

that of tRFs (Figure 3B, one-sided Kolmogorov-Smirnov test,

p = 1E-5). The most abundant microRNAs detected by TGIRT-

seq include miR-21-5p, let-7-5p, miR-200b-3p, miR-148a-3p

and miR-143-3p (each more than 10,000 reads per million).

When compared with these highly abundant microRNAs,

specific tRFs are also expressed at high levels, including 5′
halves/fragments from tRNAGly, tRNAGlu, tRNALys, tRNAVal, 3’

half from tRNAArg and tRF-1 from tRNASer, all of which exceed

1,000 reads per million averaged from 12 samples (Figure 3B).

The abundance (1,000-10,000 RPM) of these five tRFs is

comparable to that of 29 unique microRNAs (let-7b-5p, let-

7e-5p, miR-100-5p, miR-101-3p, miR-103a-3p, miR-10a-5p,

miR-10b-5p, miR-125a-5p, miR-126-3p, miR-148b-3p, miR-

151a-3p, miR-191-5p, miR-199a-3p, miR-200a-3p, miR-200c-

3p, miR-203a-3p, miR-205-5p, miR-23a-3p, miR-23b-3p, miR-

25-3p, miR-26a-5p, miR-26b-5p, miR-27a-3p, miR-27b-3p,

miR-30d-5p, miR-378a-3p, miR-92a-3p, miR-98-5p, miR-

99b-5p).

Both 5′ and 3′ fragments have a major peak corresponding

to the tRNA halves that are cleaved in the anticodon loop,

FIGURE 3
Abundant tRFs show distinct size distribution. (A) Major subtypes of tRFs. (B) Comparison of relative abundance of microRNAs and tRFs by
histogram (X-axis: log 10 scale of reads permillion). Top expressedmiRs and tRFs (RPM >1,000) are labeled. tRF is grouped by each of the five types in
(A) and further by anticodon. (C) Size distribution (X-axis in nucleotides, Y-axis in reads per million mapped reads) of each tRF subtype. (D) tRF
abundance shown as a heatmap grouped by tRF types and anticodons. RPM values are averaged from 12 samples (individual samples plotted in
Supplementary Figure S3).
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with other minor peaks representing shorter isoforms

(average from 12 samples shown in Figure 3C, individual

patient samples shown in Supplementary Figure S3). 5′
fragments have dominant size of 32–34 nt (5′ halves), 27 nt

(tRF-5c) and 19 nt (tRF-5a). 3′ fragments have dominant size

of 37–38 nt (3’ halves), 22 nt (tRF-3b) and 18 nt (tRF-3a).

tRF-1s are generally shorter than 25 nt with a major peak at

20 nt (Figure 3C). Again, the size distribution pattern is

FIGURE 4
TGIRT-seq captures mismatch at specific positions corresponding to RNA modification sites. (A) A- and G-type mismatch is abundantly
detected in tRFs by TGIRT-seq. In particular, A-type mismatch is enriched in 3′ fragments while G-type mismatch is enriched in 5′ fragments. Each
dot represents one patient sample (n = 12), separated by mismatch types (by color) and tRF types (X-axis). Y axis represents the percentage of reads
that contain specific type of mismatch. (B) Scheme of known common tRNA modifications that are detected on tRFs by TGIRT. (C,D) Example
coverage plot of 5’ (C) and 3’ (D) tRNA fragments with mismatch positions highlighted at each position (patient #1 shown as example). (E–G)
Heatmap of tRF mismatch index (percentage) at specific positions representing m1G/A9 (E), m2

2G26 (F) and m1A58 (G). All tRF reads are combined
and clustered on the length of parental tRNAs. Each column represents one tumor sample (n = 12). Grey squares represent no read coverage at that
site.
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overall consistent among 12 samples (Supplementary

Figure 3).

tRF reads are derived from different tRNA genes (Figure 3D).

tRF-1 expression shows the lowest correlation with the other tRF

types, with the highest tRF-1 expression from tRNA-Ser-TGA

(tRF-1001). The most abundant fragments are tiR-5, tRF-5 and

tiR-3 from tRNA-Glu-C/TTC and tRNA-Gly-C/GCC. tRF-3s

have highest expression from tRNAGln, tRNALeu and tRNAAla.

TGIRT-seq captures mismatch at specific
positions corresponding to RNA m1G,
m2

2G and m1A modification sites

Allowing one nucleotide mismatch increased tRF

mapping (Supplementary Figure S1), suggesting tRFs likely

bear mismatch-inducing RNA modifications. We checked

what type of mismatch was captured in the TGIRT library

and found around 15% of tRF reads contain A- > C/G/T

mismatch and 15% contain G- > A/C/T mismatch, both of

which are much higher than the percentage seen in

microRNA reads (Supplementary Figure S4). This is

consistent with the fact that tRNAs bear an array of RNA

modifications, including modified adenosines and guanosines

(Clark et al., 2016; Behrens et al., 2021). Specifically, the

G-type mismatch mainly happens on the 5′ fragments,

whereas the A-type mismatch is strongly enriched in 3′
fragments (Figure 4A). Common guanosine or adenosine

modification on tRNAs (Figure 4B) include m1G, m2G and

m2
2G on the 5’ half of tRNA or anticodon loop, and m1A on

the T-loop or on the ninth position of specific tRNAs. The

presence and relative abundance of these modifications on

tRFs have not been extensively investigated, especially in

bladder cancer.

High mismatch rate was detected by TGIRT-seq at specific

positions on specific tRFs (patient #1 shown as example in

Figures 4C,D). For example, G-type mismatch was detected at

the ninth position on the highly abundant 5′ fragment from

tRNAGlu (Figure 4C), consistent with the known m1G site on the

parental tRNAs. Interestingly, another highly abundant 5’

fragment, from tRNAGly, does not have high mismatch rate

detected, despite having guanosine at its ninth position.

Across 12 tumor samples, the mismatch pattern at ninth

position (Figure 4E) corresponds very well with previous

measurements of mismatch on mature tRNAs: high mismatch

rate on tRFAsn, tRFArg, tRFGln, tRFPro and tRFiMet, moderate

mismatch rate on tRFGlu and tRFThr.

A-type mismatch at the ninth position was also detected

on tRFAsp (Figure 4C), corresponding to the reported m1A

modification on tRNAAsp. Similarly, we detected G-type

mismatch frequently at the 26th position on specific 5′
fragments across 12 samples (Figure 4F): high mismatch

rate on tRFIle, tRFLeu, tRFMet, tRFPhe, tRFSer and tRFTrp,

moderate mismatch rate on tRFAla, tRFAsn, tRFArg and

tRFTyr. Lastly, TGIRT detects overall high mismatch rate at

m1A58 position on 3’ tRNA fragments across 12 samples with

slightly lower rate on tRFAla, tRFCys, tRFGlu, tRFLeu and tRFThr

(Figure 4G) and very low mismatch on tRFAsp (Figures 4D, G).

Overall TGIRT-seq captures mismatch at specific positions on

tRFs, with a mismatch pattern similar to that expected from

the mismatch pattern of the corresponding tRNAs. This

suggests modifications like m1G, m2
2G and m1A are highly

prevalent on tRFs.

TGIRT-seq detects abundant rRFs with
overall low mismatch rate but high
mismatch at specific positions

Another group of abundant nmsRNAs is rRFs (Figure 1).

The rRF reads are mapped to all four mature rRNA sequences,

18, 28, 5.8 and 5S. rRFs are highly abundant with comparable

RPMs to abundant miRs or tRFs. The rRF coverage along the

length of rRNAs is not evenly distributed, as would be

expected if they were random degradation products, but

interestingly concentrated at discrete regions (Figure 5A,

patient #2 shown as an example, all 12 samples shown in

Supplementary Figure S5). Consistent with the dominant peak

at 39 nt of all rRFs (Figure 2C), these discrete regions show up

as peaks of around 39 nt at various sites on the rRNAs

(Figure 5A). The rRFs from 18S RNA have the two highest

peaks at 0, 1200 bases along the length or the RNA, and this

general pattern is seen across 12 patients, with new rRF source

sites towards 3’ end seen in patient #6 (Supplementary Figure

S5). We do not know the explanation for the different pattern

in individuals, but there may be interesting biological

differences in the tumor accounting for the difference.

Similar analysis was done for rRFs from 5.8S

(Supplementary Figure S6), 5S (Supplementary Figure S7)

and 28S (Supplementary Figure S8), which shows generally

conserved patterns across 12 patients.

Unlike tRFs, rRFs are not associated with high mismatch

reads on an overall view (Figure 5). However, mismatch is

observed at specific position, for example position 1322 on

fragments from 28S rRNA (Figure 5B). This position is

known to bear m1A but has not been reported on the rRFs.

We were able to detect highmismatch at position 4530 of 28S rRF

(Figure 5C) corresponding to known m3U modification and

position 1248 of 18S rRF (Figure 5D) corresponding to

m1acp3Ψ. All these modifications are known to disrupt base

pairing therefore induce mismatch during reverse transcription.

We didn’t observe high mismatch (>10%) at positions consistent

in multiple patients from 5.8S to 5S rRFs (Supplementary Figures

S6, 7). Lastly, these three rRF mismatch sites are consistently

detected among 12 patients with overall very high mismatch rate

(Figure 5E). This suggests specific rRFs could harbor
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modifications from the parental rRNAs, which will require

further future investigation.

Specific and abundant YRNA fragments
with overall low mismatch rate

In addition to tRFs and rRFs, we also detected abundant

YRNA fragments (YRF) from all four YRNAs, RNY1, RNY3,

RNY4 and RNY5 (Figure 6A, patient #1 shown as an example, all

12 patient samples shown in Supplementary Figure S9). Themost

abundant YRF is 3′ fragment from RNY5 (~10,000 RPM), which

is close to the most abundant microRNA level (Figure 3B).

Interestingly, the fragmentation pattern is very specific and

generates 5′ and 3′ molecules similar in length to the tRNA

halves, although they are not themselves exactly half of a YRNA

(Figure 6B). YRNAs share conserved secondary structure with a

~20 bp stem formed by annealing of the 5′ and 3’ ends, which is

adjacent to a loop (preterminal loop) (Figure 6B). The YRF

cleavage occurs at single-stranded region of YRNAs, especially

within the preterminal loop of RNY1, 4 and 5 (Figure 6B). This

cleavage pattern is highly consistent among 12 patient samples

FIGURE 5
TGIRT-seq detects abundant rRFs with overall low mismatch rate and high mismatch at specific positions. (A) Example coverage plot of rRFs
mapped on each rRNA sequences with mismatch highlighted at each position (patient #2 shown as example). Coverage plots for all 12 samples are
shown in Supplementary Figures S5–8. Squared boxes are further zoomed in panel (B) to show highmismatch positions. (B–D)Highmismatch at (B)
position 1322 on 28S rRNA (C) position 4530 on 28SrRNA and (D) position 1248 on 18S rRNA are highlighted. (E) Patient-to-Patient variation of
the mismatch% at the three high mismatch positions on rRFs (B–D).
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with some patient-to-patient variation in abundance

(Supplementary Figure S9), suggesting specific cleavage.

Overall, YRFs are not associated with high mismatch reads

(Figure 6A).

NmsRNAs in the 18–24 base range, that
may enter argonaute complexes

Given the emerging reports of tRF involvement in

Argonaute-mediated gene silencing activity (Maute et al.,

2013; Kuscu et al., 2018; Ren et al., 2019), it is important to

determine how many and which nmsRNAs are likely to enter

Argonaute and potentially affect gene expression. We used the

following criteria: 1) 18–24 base long and so expected to enter

Argonaute complexes, 2) consistently detected in at least 10 out

of the 12 samples, 3) present at an abundance comparable to that

of microRNAs. As listed in Supplementary Table S1, 12 unique

nmsRNA sequences in this size range were seen at an abundance

of 500–15,000 RPM, an abundance at which we see 96 unique

microRNA sequences (isomiRs were not combined due to

sequence variations). These include tRF-1001, tRF-3001a, tRF-

5027b and tRF-5004a (3 nt shorter than annotated sequence). All

have been detected in AGO PAR-CLIP (photoactivatable

ribonucleoside-enhanced crosslinking and

immunoprecipitation) except tRF-1001 (Kumar et al., 2014;

FIGURE 6
Specific Y-RNA fragments with overall lowmismatch rate. (A) Example coverage plot of YRFsmapped on each Y-RNA sequences withmismatch
highlighted at each position (patient #1 shown as example). Coverage plots for all 12 samples are shown in Supplementary Figure S9. (B) YRF base
coverage shown with Y-RNA secondary structures. Base coverage is color coded with red showing highest coverage and black showing lowest
coverage. YRF cleavage site as indicated by the coverage drop is indicated by arrow.
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Kumar et al., 2015). The identities of nmsRNAs that have the

potential to enter productively into Argonaute complexes by

virtue of their length, and are present at an abundance

comparable to that of microRNAs, is listed in Supplementary

Table S1. Various rRFs have been detected associated with AGO

(Guan and Grigoriev, 2021). However, the abundant rRFs that we

have identified in this paper have not been reported in

association with AGO, but this could either be because these

rRFs are not sufficiently abundant in the cell lines where the AGO

PAR-CLIP experiments were done, or because there is a

mechanism that keeps these fragments away from being

loaded into AGO. This analysis suggests that tRF-3001a, tRF-

5027b and tRF-5004a should be studied further in BLCA for their

microRNA-like activity, and the other nmsRNAs in

Supplementary Table S1 may also emerge as being important

for BLCA biology through mechanisms waiting to be elucidated.

Discussion

We utilized TGIRT-seq of small RNAs that were size-selected

to include RNAs that are usually discarded during microRNA

profiling. The results identified a large array of non-microRNA-

small RNAs (nmsRNAs) and associated modifications in bladder

cancer tumor samples. nmsRNAs are as abundant as the well-

studied microRNAs (Figure 1). nmsRNAs display different size

distribution thanmicroRNAs of 22 nucleotides, with a significant

portion with a longer length (Figure 2). General abundance,

cleavage patterns and potential modification sites were reported

for nmsRNAs, including tRNA-derived fragments (tRFs), rRNA-

derived fragments (rRFs) and YRNA-derived fragments (YRFs)

(Figures 3–6). Overall, this highlights the usefulness of TGIRT-

seq to profile both abundance and RNA modifications on small

RNAs from clinical samples.

Emerging evidence suggests technical biases in small RNA-

seq leads to under-representation of certain RNAs. The great

abundance of nmsRNAs of length greater than 22 nucleotides

(Figure 2) indicates they are often excluded by the size selection

that is used during microRNA profiling. Furthermore, both

internal RNA modifications that interfere with reverse

transcription and terminal modifications that interfere with

ligation could lead to under-cloning (Shi et al., 2021). Here

we utilized TGIRT, a thermostable group-II intron reverse

transcriptase based on bacterial retrotransposons, that has

been developed into a powerful research tool (Belfort and

Lambowitz, 2019). TGIRT can mitigate the RT-stalling

problem caused by certain internal modifications, but RNAs

with other modifications may still be under-cloned. Newer

techniques to tackle this gap in true short RNA representation

are needed (Alfonzo et al., 2021).

The most abundant nmsRNAs are tRFs and rRFs (Figures

3–5), both with sequences present at similar abundance as the

most abundant microRNAs (500-15,000 RPM). Diverse

biological functions of tRFs have been reported in cancers (Su

et al., 2020b). The highly abundant tRFs detected in BLCA

samples by this study include 19-nt tRF-1001 from tRNASer

(Figure 3 and Supplementary Table S1) that was initially

reported in cancer cell lines and associated with cell

proliferation (Lee et al., 2009). Another abundant tRF

reported here is 18-nt tRF-3001a from tRNALeu, which has

been shown to enter Argonaute complexes (Kumar et al.,

2014) and is capable of repressing target gene expression in a

seed sequence match manner (Kuscu et al., 2018). In addition,

both 5′ and 3′ tRNA halves from tRNAGlu, tRNAGly, tRNALys and

tRNAVal appear to be very abundant in BLCA samples (Figure 3).

Despite their high abundance, the functions of these tRNA halves

have not been extensively studied in cancers. tRNA halves can be

induced by various stress conditions but can also be detected at

endogenous non-stress condition. While 5′ tRNA halves have

been associated with translational repression (Ivanov et al.,

2011), non-coding RNA levels and histone levels (Boskovic

et al., 2020) and more recently tRNA transcription (Chen

et al., 2021), much less work has been done on 3’ tRNA

halves. So far, correlational studies based on tRF expression in

BLCA patients suggests tRFs very likely play a role in BLCA gene

regulation (Telonis et al., 2019; Papadimitriou et al., 2020),

however future investigation in a refined experimental system

is required to establish a direct association.

In addition to tRFs, we also detected abundant rRFs and

YRFs in BLCA samples (Figures 5, 6). Biological significance and

functions are still awaiting investigation for rRFs and YRFs, as

recent evidence suggests they are not random degradation

products. Profiling of rRFs (<34 nt) in 1000 Genome Project

revealed sex- and population-dependent patterns (Cherlin et al.,

2020). Furthermore, rRFs ~20 nt are identified associated with

Argonaute and paired with cellular transcripts with enriched

motifs that are different from microRNA rules (Guan and

Grigoriev, 2021). Intriguingly, the abundant rRFs detected in

this study were not identified in the Argonaute association

studies. Similarly, YRFs ~31 nt could be regulated by stress

and were not found associated with Ago, as recently reviewed

(Guglas et al., 2020). This could be either because these

nmsRNAs are not abundant in the cell lines where the

association studies were performed or have been under-cloned

due to RT-stalling modifications, or more intriguingly, have

other Ago-independent functions. Further investigation is

needed to shed light on these abundant nmsRNAs, both the

Ago-compatible species and the longer species. Interestingly,

relative distribution among different RNA sub-groups is quite

variable from sample to sample, with some samples having

higher percentage of nmsRNAs than others (Figure 1). In the

future, it will be worthwhile to survey potential causes for such

difference in a more systematic analysis. Such causes could be

technical (sample handling or contamination) or biological

(dysregulation of small RNA homeostasis or correlation with

certain clinical features).
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We also tested whether TGIRT-mediated mismatches

identify known modification sites (m1G, m1A and m2
2G) on

tRFs and rRFs (Figure 4 and Figure 5). In general, the mismatch

pattern on tRFs corresponds very well with the sites of

modification detected previously on mature tRNAs (Clark

et al., 2016; Behrens et al., 2021). The very low m1A

mismatch on tRFAsp (Figures 4D,G) is consistent with the very

low m1A58 on tRNAAsp. Similarly, the A1322 position is known

to bear m1A on large ribosomal subunit RNA across species and

is catalyzed by nucleomethylin (also known as RRP8) in humans

(Waku et al., 2016; Sharma et al., 2018). The U1248 position of

18S is known to be m1acp3Ψ modified and is located within the

ribosome decoding region (Meyer et al., 2011). The

U4530 position of 28S is known to be m3U modified (Tan

et al., 2021). These three rRF modification sites were detected

with high mismatch by TGIRT (Figure 5). Interestingly, 18S:1248

(m1acp3Ψ) was suggested to have a lower modification level based

on mismatch pattern from long RNA-seq in TCGA tumors,

especially READ, UCEC and COAD (Tan et al., 2021).

Surprisingly, although rRNA modifications on human

ribosomes have very recently been visualized by Cryo-EM

(Natchiar et al., 2017), a lot of the rRNA modification

enzymatic processes are not well elucidated in humans. The

mismatch profile may also be used to identify unannotated

modification sites in the parental RNAs in the future but will

need to be verified with orthogonal methods. How could these

modifications alter in disease conditions and whether they have

any impact on ncRNA functions will be an interesting

prospective research topic. Recently we reported m1A impedes

tRF-3 gene-silencing activity and is over-expressed in BLCA

tumor, coinciding with over-expression of the writer enzyme

proteins TRMT6/61A and dysregulation of the tRF-3 targetome

(Su et al., 2022). In addition to bladder cancer, TRMT6/61A is

also over-expressed in liver cancer and glioma. This is

particularly important for cancer since disruption of many

RNA modification enzymes has been linked to cancer (Janin

et al., 2020; Chujo and Tomizawa, 2021).

Alterations in urinary RNA modification levels hold

potential to serve as a non-invasive way to diagnose

patients with BLCA and moreover as a monitoring tool to

detect disease recurrence. Several studies have reported

elevated levels of modified nucleosides detected in urine

from BLCA patients, including m1A (Kvist et al., 1993;

Zhang et al., 2014; Sun et al., 2015). The significance of

miRNA in BLCA carcinogenesis and as urine cancer

biomarkers has been well studied (Yoshino et al., 2013;

Hammouz et al., 2021). However, the role of nmsRNAs in

BLCA pathogenesis, or as clinically relevant biomarkers, is

only beginning to emerge. Interestingly, urine was one of the

biofluids with the highest proportion of tRFs detected in

healthy donors (Yeri et al., 2017; El-Mogy et al., 2018;

Godoy et al., 2018). Both YRNAs and YRFs are recognized

as biomarkers in various malignancies as reviewed (Guglas

et al., 2020). They are generally downregulated in BLCA and a

low expression of RNY1, 3 and 4 is associated with muscle

invasiveness, lymph node metastases, advanced stage, and an

unfavorable prognosis (Tolkach et al., 2017). Our observed

specific YRNA cleavage pattern taken together with the

previous knowledge of YRNA in BLCA suggests a potential

regulatory role in the pathogenesis. Yet, whether YRNAs or

YRFs are useful urine biomarkers require further

investigation.
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