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ABSTRACT
DNAmethylation is an epigenetic mechanism important for the regulation of gene expression, which
plays a vital role in the interaction between genetic and environmental factors. Aberrant epigenetic
changes are implicated in the pathogenesis of diabetes and diabetic complications, but the role of
DNA methylation in diabetic peripheral neuropathy (DPN) is not well understood. Therefore, our aim
in this study was to explore the role of DNAmethylation in the progression of DPN in type 2 diabetes.
We compared genome-wide DNA methylation profiles of human sural nerve biopsies from subjects
with stable or improving nerve fibre counts to biopsies from subjects with progressive loss of nerve
fibres. Nerve fibre counts were determined by comparing myelinated nerve fibre densities between
an initial and repeat biopsy separated by 52 weeks. Subjects with significant nerve regeneration
(regenerators) and subjects with significant nerve degeneration (degenerators) represent the two
extreme DPN phenotypes. Using reduced representation bisulfite sequencing, we identified 3,460
differentially methylated CpG dinucleotides between the two groups. The genes associated with
differentially methylated CpGs were highly enriched in biological processes that have previously been
implicated in DPN such as nervous system development, neuron development, and axon guidance, as
well as glycerophospholipid metabolism and mitogen-activated protein kinase (MAPK) signalling.
These findings are the first to provide a comprehensive analysis of DNA methylation profiling in
human sural nerves of subjects with DPN and suggest that epigenetic regulation has an important
role in the progression of this prevalent diabetic complication.
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Introduction

In 2017, it was estimated that 451 million people
worldwide suffer from diabetes, including 30 mil-
lion Americans [1,2], with type 2 diabetes (T2D)
accounting for approximately 90% to 95% of the
diagnosed cases. T2D is primarily characterized by
hyperglycaemia, hyperlipidaemia, and insulin resis-
tance [3]. Both subjects with type 1 (T1D) and T2D
experience diabetes-related microvascular compli-
cations which have a negative impact on the quality
of life and affect multiple tissues including the
nerve (diabetic neuropathy), kidney (diabetic
nephropathy) and eye (diabetic retinopathy) [4].
Diabetic neuropathy is the most common micro-
vascular complication of both T1D and T2D and
can present in multiple ways, including small-fibre
predominant neuropathy or autonomic neuropathy.

However, diabetic peripheral neuropathy (DPN),
a distal symmetric small and large fibre sensory-
predominant neuropathy, is the most common type
of diabetic neuropathy affecting the peripheral ner-
vous system [5,6]. Affecting an estimated 50% of
the patients with diabetes, DPN is a chronic, sym-
metrical, progressive disorder of the peripheral ner-
vous system with early symptoms of pain, allodynia,
and paraesthesias [7]. DPN initially affects the long-
est axons in the extremities and progresses in
a distal to proximal, ‘stocking-glove’ pattern. The
principal pathological abnormalities in DPN are
axonal degeneration and segmental demyelination
[8]. The sural nerve is a sensory nerve in the calf
and quantitation of myelinated fibre density (MFD)
of the sural nerve is considered one of the most
reliable criteria for neuropathy diagnosis [9].
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The pathogenesis of T2D andDPN is largely driven
by lifestyle factors such as limited physical activity and
poor diet [10]. However, there is a clear polygenic risk
to developing T2D and DPN [11,12], and growing
evidence suggests that in response to behavioural
and environmental stressors, epigenetic mechanisms
also contribute significantly to diabetes and its com-
plications [13–15]. Indeed, epigenetic modifications
are hypothesized as a way to bridge the gap between
lifestyle factors and genetics [16]. In contrast to genetic
alterations, epigenetic mechanisms regulate gene
expression without changes in the underlying DNA
sequence [17]. Aberrant epigenetic modifications,
including DNA methylation, post-translational mod-
ifications of histones, chromatin remodelling, and
non-coding RNAs [18], result in the dysregulation of
up to 10% of the genes in humans [18,19].

DNAmethylation refers to the covalent attachment
of a methyl group to a cytosine adjacent to a guanine
(CpG) by DNA methyltransferases [20]. While most
commonly occurring in the promoter region of a gene,
DNA methylation can also occur in various other
genetic locations, including exons, introns, or even
non-transcribed intergenic regions [21]. DNAmethy-
lation may have different influences on gene expres-
sion dependent uponwheremethylation takes place in
the gene sequence [22,23]. DNA methylation is
involved in the regulation of gene expression, main-
tenance ofDNA structure, and control of transposable
elements [24]; therefore, it plays an important role in
many biological functions, including tissue differen-
tiation and disease susceptibility [25,26]. Differential
DNA methylation is also implicated in T2D develop-
ment, insulin resistance, and obesity and may contri-
bute to an intermediate stage of T2D pathogenesis
[18,27,28]. Altered DNA methylation patterns are
observed in multiple tissues of subjects with T2D
compared to healthy controls [22,29–31].
Additionally, genome-wide and gene-specific studies
support the idea that aberrant DNAmethylation con-
tributes tomacro- andmicrovascular complications in
diabetic subjects [32–34], and changes inDNAmethy-
lation are reported in other diabetic microvascular
complications, such as in the kidneys of subjects with
diabetic nephropathy [33,35] and in the blood of
patients with diabetic retinopathy [34]. Furthermore,
DNAmethylation is associated with DPN in the tran-
scriptional analysis of mouse models [3]. However,

genome-wide DNA methylation patterns in subjects
with DPN remain unexplored.

In this study, our aim was to explore the role of
DNAmethylation in the progression of DPN in T2D.
Using reduced representation bisulfite sequencing
(RRBS), we compared genome-wide DNA methyla-
tion in sural nerve biopsies obtained from subjects
with T2D and either stable or improving DPN to
subjects with progressive and worsening DPN. Our
study provides the first comprehensive analysis of
nerve-specific DNA methylation profiles and identi-
fies a role for epigenetic regulation of previously impli-
cated genes and pathways in nerve degeneration in
T2D and DPN. Additionally, it identifies possible
targets for the development ofmuch-needed therapies
for this common, morbid diabetic complication.

Results

Study population and genome-wide DNA
methylation profiling

To identify pathways that are altered by epigenetic
regulation in DPN, we first established genome-wide
methylation patterns using RRBS in sural nerves sam-
ples from 12 DPN subjects from a larger double-blind
placebo-controlled clinical trial where there was no
effect of treatment [36,37]. Sural nerve samples were
from subjects who had significant nerve degeneration
(degenerators, n = 6) or regeneration (regenerators,
n = 6) over a 52-week period as measured by myeli-
nated fibre density (MFD). Subject characteristics and
neuropathy phenotyping are presented in Tables 1
and 2. In total, an average of 88.2 million aligned
reads were generated for each sample, with read
lengths up to 48 bps, of which about 51.5 million
could be uniquely mapped to the hg19 reference gen-
ome (unique mapping rate ranging from 56% to
60.9%). The overall percentage of methylated CpG
sites ranged between 32.2% and 41.0% across the 12
samples (Supplemental Table S1), with no significant
difference between degenerators and regenerators.

Sample information, alignment, and final
cytosine methylation summary

Sample read coverage distribution per base as deter-
mined by methylKit [38] analysis of sequence
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alignment/map (SAM) data confirmed that the
results had little to no PCR duplication bias, as no
secondary peak was observed near the right side of
the histograms (Supplemental Figure S1). A total of
1,527,600 CpG sites (excluding CpG sites in chromo-
somes X and Y) were identified across all 12 samples.
Methylated CpG sites were classified by methylation
levels into five sets: <5%, <10%, 10–90%, >90%, and
>95% CpGs (Supplemental Table S2). More than
half of the methylated CpG sites in each sample
showed less than 10% methylation, regardless of
the subject groups (P = 0.9). However, there was
a significant difference in CpG sites with >95%
methylation between the two groups (P = 0.0085),
where the degenerators had greater overall hyper-
methylation of CpG sites compared to regenerators
(Figure 1). The DNAmethylation clustering patterns
identified by Ward’s hierarchical clustering methods
illustrate that regenerator samples, and to a lesser
extent degenerator samples, were tightly clustered,
suggesting a distinct methylation footprint in regen-
erators vs. degenerators (Supplemental Figure S2).

Differential CpG methylation in degenerator
versus regenerator sural nerve tissue

UsingmethylKit analysis of SAM data, we next deter-
mined the locations of differential DNA methylation
in sural nerves of subjects with DPN. We identified
a total of 3,460 differentially methylated CpGs
(DMCpGs; 1,913 hypo-methylated and 1,547 hyper-

methylated) using the regenerator group as reference
(Supplemental Table S3). The numbers of DMCpGs
per chromosome ranged between 67 and 293; how-
ever, there was no difference in DMCpG distribution
(per one million base pairs) between chromosomes
(Supplemental Figure S3 and supplemental Table S4).

Effects on gene expression are dependent on the
location of DNA methylation within the gene
sequence [22]. We therefore next determined which
parts of the genome were affected by altered methyla-
tion using genomation [39] tool. Approximately 21.2%
ofDMCpGswere located in promoter regions, 9.9% in
exons, 36.1% in introns, and 32.8% in intergenic
regions (Figure 2(a)). The distribution of the

Table 1. Subject characteristics.
Group Degenerator Regenerator P-value

Age (years) 53 ± 7 57 ± 8 0.385
BMI (kg/m2) 28.9 ± 3.5 29.3 ± 4.2 0.851
Diabetes duration (years) 5.9 ± 5.8 12.1 ± 7.2 0.129
HbA1c (%) 7.6 ± 1.6 8.2 ± 1.7 0.561
Triglyceride (mmol/L) 11.0 ± 21.0 2.9 ± 1.2 0.387
Cholesterol (mmol/L) 7.0 ± 4.3 5.9 ± 0.8 0.559

BMI: body mass index; HbA1c: haemoglobin A1c. All subjects were diagnosed with T2D and were male. P-values were calculated by T-Test.

Table 2. Subject neuropathy phenotyping.
Group Degenerator Regenerator P-value

MFD – baseline (fibres/mm2) 2,954.6 ± 1,936.5 1,738.9 ± 950.7 0.198
MFD – 52 weeks (fibres/mm2) 1,347.9 ± 1,052.6 2,830.4 ± 1,377.7 0.063
MFD change (fibres/mm2) −1,606.8 ± 1,118.3 1,091.5 ± 469.7 0.000
MFD percent change (%) −53.4 ± 13.0 65.6 ± 18.1 0.000
O’Brien neuropathy score – baseline 3048.4 ± 1385.3 2521.4 ± 852.1 0.446
O’Brien neuropathy score – 52 weeks 3086.0 ± 1245.0 2436.8 ± 578.5 0.274

MFD: myelinated fibre density. O’Brien neuropathy score: a composite mean sum score of nerve conduction attributes, where the score is inversely
correlated with the severity of neuropathy [80]. P-values were calculated by T-Test.
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Figure 1. Distribution of percentage methylation within groups.
This histogram illustrates the overall distribution of the percent
methylation of the measured 1,527,600 CpG sites. The boxes
within each panel represent zoomed-in images covering the
percent methylation between 90% and 100%.
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DMCpG sites in relation to CpG islands (regions
along the genome with a high number of CpG sites;
GC fractions >0.5, lengths >200 bp, and a ratio of
observed-to-expected CpG > 0.6) is shown in
Figure 2(b). We found 130 CpG sites (3.8%) in CpG
islands, and 331 CpG (9.6%) sites in CpG shores
(regions within 2 kb of a CpG island). Moreover,
approximately 86.7% of DMCpGswere found in non-
CpG-rich regions, which were >2 kb from a CpG
island (denoted as ‘other’ in the figure).

Annotating differential methylation events

To better understand how DMCpGs may result in
functional changes in the genome, using genomation
analysis DMCpGs were mapped to 2,835 unique
genes on the basis of their genomic location to identify
hypo- or hyper-methylated genes (Supplemental
Table S3). Among the observed DMCpGs, 1,913 cor-
responded to 1,607 unique genes exhibiting hypo-
methylation, while 1,547 DMCpGs corresponded to

1,352 unique genes exhibiting hyper-methylation in
degenerator samples compared to regenerator sam-
ples. The top 15 most differentially methylated CpGs
and their annotated genes (DMGs) are presented in
Table 3 and include multiple non-coding and
microRNAs (miRNAs) as well as coding genes.
Among all differentially methylated genes (DMGs),
102 genes (represented by 102 Ensemble transcript
IDs) did not have valid official gene symbols and were
therefore removed from further analyses. Of the
remaining genes, 516 included two or more
DMCpGs. Moreover, 1,295 out of 2,835 genes had
DMCpGs located within a 5 kb distance from their
transcript start sites (TSSs) (DMCpGs located primar-
ily within promotor and enhancer regions).

Enriched biological functions among DMCpGs

To determine potential biological functions of the
identified DMCpGs and their corresponding DMGs,
enrichment analysis was performed on DMGs using

Figure 2. Distribution of DMCpGs (degenerators compared to regenerators) according to the gene region. (a) Pie chart showing the
percentage of DMCpGs located in promoters, exons, introns, and intergenic regions. (b) Pie chart showing the percentage of
DMCpGs located in CpG islands (CpGi), CpG shores (regions within 2 kb of a CpG island), and others.

Table 3. Top 15 differentially methylated CpGs and their annotated genes.
Gene CpG location Q-Value Methylation difference Type Description

RNU7-88P Chr13:59439918 1.60E-116 −68.47 snRNA RNA, U7 small nuclear 88 pseudogene
CFAP46 Chr10:132914032 8.23E-109 62.75 Protein Coding cilia and flagella associated protein 46
AC114814.4 Chr2:235044515 1.87E-101 62.40 LincRNA
MIR3138 Chr4:10079577 6.57E-97 60.31 microRNA miR3138
CASZ1 Chr1:10768122 1.25E-89 54.57 Protein Coding castor zinc finger 1
SLC38A10 Chr17:81287547 3.64E-88 −47.39 Protein Coding solute carrier family 38 member 10
ACPP Chr3:132302985 3.07E-74 62.19 Protein Coding acid phosphatase, prostate
PTGIS Chr20:49560881 9.13E-74 −52.41 Protein Coding prostaglandin I2 (prostacyclin) synthase
DHX37 Chr12:124970826 2.46E-70 48.09 Protein Coding DEAH-box helicase 37
SHANK2 Chr11:70460640 2.37E-68 53.75 Protein Coding SH3 & mult. ankyrin repeat domains 2
MIR885 Chr3:10379191 5.57E-68 −54.63 microRNA miR885
RP11-302L19.1 Chr6:170134734 6.38E-68 −61.26 ncRNA
AC009531.2 Chr7:35363380 1.03E-67 −59.35 LincRNA
KDM4D Chr11:94998595 1.49E-67 −53.79 Protein Coding lysine demethylase 4D
ASPG Chr14:104101239 1.00E-66 35.84 Protein Coding asparaginase

CpG location corresponds to the coordinate of human genome hg19 assembly. Methylation difference: the difference of methylation (%) between
the two groups.
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Gene Ontology (GO) terms and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways. Using GO
analysis, DMGs in degenerators compared to regen-
erators were primarily involved in biological processes
related to the nervous system, such as ‘nervous system
development’, ‘neuron development’, and ‘neuron dif-
ferentiation’ (Figure 3; Supplemental Table S5).

Within these pathways, top DMGs included genes
highly involved in nerve function and repair, such as
netrin-4 and dihydropyrimidinase like 2.

KEGG analysis showed a significant enrichment of
pathways know to be involved in diabetes and DPN,
such as ‘MAPK signalling’ and ‘glycerophospholipid
metabolism’, as well as nervous system pathways
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including ‘axon guidance’ (Figure 4; Supplemental
Table S6). SignificantDMGs that were highly different
between degenerators and regenerators within these
pathways included genes related to lipid metabolism
and diabetes, such as: phospholipase A2, phosphati-
dylserine decarboxylase, and vascular endothelial
growth factor.

Validation of DMCpGs and DMGs

To perform a targeted validation of the results
obtained by the genome-wide DNAmethylation ana-
lysis, we quantified DNAmethylation by pyrosequen-
cing. Three CpG sites (Supplemental Table S7)
located in promoter regions (< 1kb from TSSs) were
selected based on functional enrichment analysis
(Supplemental Tables S5 and S6) or degree of differ-
ential methylation from a list of the top 30 DMGs
(Supplemental Table 3). Of the three selected,

dihydropyrimidinase like 2 (DPYSL2; a gene impli-
cated in nervous system development) showed a sig-
nificantly higher degree of methylation in the
degenerator group compared to the regenerator
group by pyrosequencing (p = 0.0005), and similar
results were observed for miR3138, the most differen-
tially methylated miRNA in our analysis (p = 0.0130)
(Figure 5(a)). For DPYSL2 and miR3138, the fold
difference between the regenerator mean percent
methylation and the degenerator samples presented
a similar pattern between genome-wide RRBS and
loci-specific pyrosequencing methylation analyses. In
addition, their gene expression as measured by RT-
PCR followed a decreasing trend compared to their
increased methylation (Figure 5(b)). In contrast, sig-
nificant changes in methylation between the two
groups for the nuclear factor of activated T cells 1
(NFATC1) were observed only with RRBS but not
with pyrosequencing (Figure 5(a)).
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Discussion

We have previously reported changes in gene
expression in nerves from mouse models
[3,40,41] as well as from human subjects with
DPN [42]. In the current study, we examined
the epigenetic modifications of human sural
nerves from subjects with varying degrees of
DPN. RRBS was used to determine differential
methylation in DPN subjects who had significant
sural nerve degeneration over a one-year period
compared to subjects who had stable disease or
significant regeneration [4]. Using this technique,
we identified 3,460 DMCpGs mapped to 2,835
unique genes. Among the DMCpGs, 1,913 (with
1,607 unique genes) were hypo-methylated and
1,547 (with 1,352 unique genes) were hyper-
methylated. Functional analysis indicated that
epigenes were enriched in biological pathways
related to nervous system development, axon gui-
dance, glycerophospholipid metabolism, and
MAPK signalling; several of which have pre-
viously been shown to be involved in DPN [42–
44]. Further, we validated our results using pyr-
osequencing and RT-PCR, confirming changes in
methylation as well as a trend for a change in
gene expression of DPYSL2 and miR3138. Our
results suggest that gene expression and asso-
ciated pathophysiological pathways implicated in
DPN progression may be under epigenetic
control.

DNA methylation occurs in various regions along
the gene [45]. The sites of DNAmethylation can effect
gene transcription, for example, gene transcription
can be halted bymethylation within promoter regions
and activity can be increasedwhenmethylation occurs
within intragenic regions [23]. However, while aber-
rant promoter methylation is a hallmark of diseases
such as cancer and is associated with gene silencing
[46], changes in DNA methylation commonly occur
in regulatory regions rather than in promoter regions
in diabetes and diabetic kidney disease [35,47]. These
findings are consistent with the high percentage of
DMCpGs in intergenic and intronic regions observed
in our study. Changes in DNA methylation within
regulatory regions may also affect the expression of
long non-coding RNAs or miRNAs. MiRNAs them-
selves play an important role in health and disease
[48]. Moreover, epigenetic regulation of miRNAs,

including regulation via methylation, is involved in
neurodegenerative disorders [49]. In the current
study, we observed multiple DMCpGs mapped to
annotated miRNAs and long non-coding RNAs.

To better understand the potential biological
implications of changes in DNA methylation with
progressive DPN, we performed pathway enrich-
ment of significant DMCpGs using GO and KEGG
analysis. Given that subject groups were stratified
based on sural nerve degeneration vs. regeneration,
it is not surprising that pathway analysis revealed
multiple significantly enriched pathways related to
nervous system development and axon guidance.
Within these enriched pathways, a significant
DMG in the current study was netrin-4 (NTN4),
a gene which promotes neurite elongation and out-
growth [50,51]. In a report comparing methylation
profiles in subjects with diabetic nephropathy, differ-
ential methylation of saliva netrin-4 was associated
with end-stage renal disease [33]. In the nervous
system, netrin-4 plays a key role in thermal and
mechanical sensitivity during neuropathic pain
[52], and we have previously reported an association
between peripheral nerve Ntn4 gene expression and
DPN phenotype in the db/db mouse model of T2D
and DPN [40,41,44]. Taken together, our data sug-
gest that differential DNA methylation of NTN4
regulates its gene expression, which in turn plays
an important role in nerve regeneration and repair
in DPN.

Glycerophospholipid metabolism was another sig-
nificantly enriched pathway identified between degen-
erators and regenerators. Glycerophospholipids are
major components of neural membranes and changes
in their levels are linked to neurological disorders [53].
Our findings suggest that differential DNA methyla-
tion of glycerophospholipid metabolism pathway
genes contributes to DPN pathogenesis and disease
progression. Importantly, particular DMGs of interest
within the glycerophospholipid metabolism pathway
were those previously associated with nerve injury,
including phospholipase A2 and phosphatidylserine
decarboxylase. Phospholipase A2 is involved
in inflammation-mediated metabolic disorders,
including diabetes and obesity [54]. Phospholipase
A2 is also required for neurite growth in the peripheral
nervous system [55] and is involved in myelin break-
down during Wallerian degeneration [56].
Phosphatidylserine decarboxylase, an enzyme that
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catalyses the reaction from phosphatidylserine to
phosphatidylethanolamine, is associated with neuro-
degeneration [57,58]. Further, phosphatidylethanola-
mine supplementation prevents myelination deficits
and restores nerve function in aCharcot-Marie-Tooth
disease 1A animalmodel [59]. Collectively, our results
coupled with the established roles of glycerophospho-
lipids in nerve function highlight important roles for
phospholipase A2 and phosphatidylserine decarboxy-
lase that require further investigation [57,60].

Another significantly enriched pathway in the
degenerator group compared to regenerators was
‘MAPK signalling’. The MAPK signalling pathway
responds to a variety of signals and has roles in
regulating cell death, differentiation, growth, and
inflammation [61]. In addition, it modulates cen-
tral and peripheral nociceptive information in ani-
mal models of neuropathic pain [62], and is well
recognized in many neurodegenerative disorders
[63], including DPN [64]. Furthermore, the three
arms of the MAPK signalling family, ERK (extra-
cellular signal-regulated kinases), JNK (c-Jun
N-terminal kinases), and p38 are altered in multi-
ple DPN models as well as in humans with DPN
[65,66]. Additionally, ERK, JNK, and p38 are cri-
tical for myelination of the axons and are involved
in nervous system degeneration and regeneration
[64]. In the current study, the enrichment of
MAPK DMGs in the regenerator group supports
a role for MAPK signalling in DPN progression
and suggests that MAPK enzymes may be poten-
tial disease-modifying therapeutic targets.

We performed pyrosequencing and RT-PCR vali-
dation ofDPYSL2 (Dihydropyrimidinase Like 2; also
known as CRMP2), NFATC1 (Nuclear Factor Of
Activated T Cells 1), and miR3138. DPYSL2 was
one of the genes chosen for pyrosequencing as it
was highly significantly different between groups
within both GO and KEGG pathway analyses.
Studies have implicated DPYSL2 in the regulation
of neuron guidance, growth, polarity [67], and
synaptic signalling [68,69]. Additionally, altered
DPYSL2 levels are associated with neurodegenerative
diseases, as well as with neuropathic pain [69–71].
We previously reported a significant decrease in the
gene expression of Dpysl2 in the sciatic nerves of db/
db neuropathic mice compared to normal controls
[43]. As expected, differential methylation of
DPYSL2 was confirmed with pyrosequencing and

was associated with a change in gene expression as
measured by RT-PCR. Our results indicate that dif-
ferential DNAmethylation is a potential regulator of
DPYSL2, a gene with a known role in nervous system
function and neuropathy.

Also chosen for validation was the most highly
differentially methylatedmiRNA between the degen-
erators and regenerators, miR3138, a miRNA
involved in tumour suppression [72]. While little is
known about its role in diabetes and diabetic com-
plications, its predicted targets (according to the
target prediction database, miRDB [73]) include
DMGs or gene families observed in our results,
including the immune system related nuclear factor
of activated T-cells and neurexin 2, a gene encoding
for cell adhesion molecules. Additionally, we cross-
referenced predicted and known targets of this
miR3138 from miRDB and DIANA-TarBase (data-
base of experimentally validated microRNA target)
[74] against the differentially expressed genes
between progressive (similar to degenerator) and
non-progressive (similar to regenerator) DPN from
our previous microarray-based gene expression
study in human sural nerves [42]. Using this
approach, we identified erb-b2 receptor tyrosine
kinase 4 (ERBB4) as a target of miR3138 and
a significant gene involved in the progression of
DPN [42]. ERBB4 has also previously been asso-
ciated with sensory nerve loss and nerve regenera-
tion [75,76], providing evidence for a potential
regulatory role of miR3138 in nerve degeneration
and regeneration in DPN. We confirmed that this
differential methylation seen by RRBS and pyrose-
quencing was associated with a trending decrease in
miR3138 gene expression in degenerator sural
nerves. These data suggest that epigenetic downre-
gulation of miR3138 expression may play a role in
DPN progression. Further studies are needed to fully
understand its role in DPN.

Our results suggest that DNA methylation is
altered in sural nerves from subjects with DPN,
and that the state of methylation may contribute to
the regenerative ability of the nerve. Limitations of
this study include sample size, and the limited
scope of RRBS (as it interrogates only about 10%
CpGs of the human genome [77]). Additionally,
while two of the three chosen sites were confirmed
using pyrosequencing, one (NFATC1) failed. This
may be due to the number of CpG sites, as more
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heavily populated CpG regions did not pass pyr-
osequencing quality control or validation. In par-
ticular, the amplicon analysed for NFATC1
contained up to six potential CpG sites, and
homopolymeric sequences limit accurate sequence
resolution with genome-wide methylation profil-
ing [78], and therefore may have introduced ambi-
guity in the RRBS measurements. Lastly, the
current analysis did not account for cell-type het-
erogeneity of sural nerves that may be altered
between the two study groups. Adjusting for
changes in cell-type composition would provide
new insights into the cell-specific processes that
drive neuropathy pathogenesis. Future experi-
ments are warranted to investigate functional and
cell-specific changes due to differences in methyla-
tion in highly methylated regions and connection
to gene expression at corresponding loci in a larger
cohort of patients.

In summary, our study is the first to examine
changes in DNA methylation in human sural nerves
of subjects with DPN, and links specific DNA
methylation profiles with DPN pathogenesis, speci-
fically disease progression. In particular, DNA
methylation contributes to the regulation of func-
tional pathways, such as nervous system develop-
ment, axon guidance, glycerophospholipid
metabolism, and MAPK signalling. As such, it pro-
vides novel and important insights into epigenetic
regulation of critical disease-modifying pathways
that can be targeted to understand DPN pathogen-
esis and develop mechanism-based therapies.

Materials and methods

Subject selection and characteristics

Biopsies from human sural nerves were obtained
during a previous 52-week double-blind placebo-
controlled clinical trial of acetyl-L-carnitine treatment
for DPN [36,37]. Criteria for enrolment in the larger
cohort from which the samples for this manuscript
were selected is detailed in a previously published
study [36]. Briefly, adult male and female subjects
diagnosed with T1D or T2D for a minimum of 1 yr
and a HbA1c > 5.9% were included. Additionally, all
subjects were phenotyped for neuropathy by
a minimum of two neurological findings, including
clinical symptoms or abnormal electrophysiological

tests (nerve conduction velocity or vibration percep-
tion threshold) [79,80]. Subjects with complicating
diseases (such as HIV or significant cardiac or hepatic
disorders), alcohol or drug abuse, or other causes of
neuropathy were excluded. MFD of the sural nerve is
considered the most reliable morphological criteria
for DPN diagnosis [9]. Within this cohort, acetyl-
L-carnitine treatment did not affect MFD, and we
previously reported that there were separate groups
of subjects with DPN who demonstrated either sig-
nificant peripheral nerve degeneration or significant
regeneration (denoted as degenerators and regenera-
tors, respectively), as measured by MFD percent
changes over 52 weeks [4]. Degenerators (n = 6) and
regenerators (n = 6) with the largest changes in MFD
were selected for the current methylation profiling
study. All selected subjects were diagnosed with T2D
andweremale; subject characteristics are summarized
in Table 1, and neuropathy phenotyping is presented
in Table 2 (See Supplemental Tables S8 and S9 for the
individual subject-level data). The use of human sural
nerve samples was approved by the University of
Michigan Institutional Review Board for Human
Subject Research.

DNA extraction and RRBS

DNA was extracted from sural nerve tissue and
prepared for RRBS by the University of Michigan
Epigenomics Core. Briefly, DNA extraction fol-
lowed the protocol published by Garrett-Bakelman
et al. [81]. Sample quantity was measured using
a Qubit fluorometer, and the quality of the genomic
DNA (gDNA) was evaluated using the gDNA assay
on Agilent’s TapeStation. High-quality gDNA was
digested with the MspI restriction enzyme and pur-
ified using phenol:chloroform extraction and etha-
nol precipitation, before blunt-end digestion,
phosphorylation, and ligation of an adapter duplex
with methylated cytosines. The ligated fragments
were cleaned and processed for size selection on
an agarose gel. Selected fragments were bisulfite
converted, followed by PCR amplification and
cleanup with AMPure XP beads. The libraries
were quantified using the Qubit assay and
Agilent’s High Sensitivity D1000 assay, and then
sequenced on the Illumina Hi-Seq 4000 platform
to generate raw sequence RRBS reads.
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DNA sequence processing and alignment

The raw sequence reads were evaluated and pro-
cessed using software and methods as outlined
previously [82]. Briefly, the reads were first
assessed for quality using FastQC (version 0.11.5,
Babraham Bioinformatics, UK), and then low-
quality reads were trimmed off using Trim
Galore (version 0.4.2, Babraham Bioinformatics,
UK). Only the bases with a Phred > 30 were kept
for downstream analysis and Illumina adaptors
were also removed. A special setting designed for
trimming RRBS data (–rrbs) in Trim Galore was
also used. Specifically, Trim Galore trimmed the
first two bases from the 3′ end of the reads so the
cytosine (C) base closest to the second enzyme-cut
site was not included in methylation calling, since
the RRBS approach introduces artificial CpG sites
at the end. Trimmed reads were then aligned and
mapped with Bismark version 0.16.3 [83]/Bowtie2
version 2.2.9 [84] to an in silico bisulfite converted
human reference genome (GRCh38). The unique
alignment was then identified and used to make
a methylation call after discarding reads with mul-
tiple mapping.

Methylome characterization and differential
methylation calculation

Generated sequence alignment/map (SAM) format
files were sorted and then directly read in R using
the methylKit package version 1.2.4 [38]. Read
coverage per base and percent methylation per
base as the basic information were calculated and
displayed, and the methylation level at each cyto-
sine was estimated by #C/(#C+#T), where #C is
the number of methylated reads and #T is the
number of unmethylated reads. CpG sites with
minimum read coverage of >10 and minimum
Phred quality scores >20 were selected for further
analysis. Genome-wide methylation patterns were
compared using Pearson’s correlation test.
Clustering analysis was carried out using Ward’s
minimum variance method to determine methyla-
tion levels and patterns [85].

DMCpGs were defined as a > 25% difference in
cytosine methylation level between regenerators
and degenerators, with a q-value from MethylKit,
equivalent to false discovery rate (FDR) adjusted

p-value, <0.01. Briefly, p-values of DMCpGs were
calculated using logistic regression by comparing
the number of methylated reads (Cs) and
unmethylated reads (Ts) between degenerators
and regenerators, and then corrected for multiple
testing using FDR. For DMR analysis, a sliding
windows approach with 1 kb width was used to
summarize the methylation information on those
tiles. Then, the same significance criteria were
used to determine DMRs (>25% change with
a q-value < 0.01).

Filtered DMCpGs and DMRs were annotated
based on genes and CpG island features, including
gene bodies and 2, 5, and 10 kb regions upstream
from TSSs using genomation [39] R package. CpG
islands were identified by three criteria; GC fractions
> 0.5, lengths > 200 bp, and a ratio of observed-to-
expected CpG > 0.6. CpG shores were identified by
length (2 kb) and adjacent positions to CpG islands.
Annotation of human CpG islands was obtained
from the University of California, Santa Cruz
(http://genome.ucsc.edu/; hg38), and annotation of
the human genes was obtained from Ensembl
(http://www.ensembl.org/; protein-coding genes).

Functional enrichment analysis

To identify common biological functions among the
nearest genes of DMCpGs, deemed as DMGs, and
their promotor regions (1 kb upstream of TSSs), gene
set enrichment analysis was performed to identify
significantly over-represented biological functions
in terms of GO (http://www.geneontology.org) bio-
logical process terms and KEGG (http://www.gen
ome.jp/kegg/) pathways. Hypergeometric test was
used to examine the statistical significance of over-
representation, with an adjusted p-value of < 0.05 as
cutoff.

Pyrosequencing

Design of primers for DPYSL2, NFATC1, and
miR3138 and preparation of the pyrosequencing
amplicons were done at the University of
Michigan Epigenomics Core using a published pro-
tocol [86]. Briefly, 20 ng of bisulfite-treated DNA
was used for PCR amplification (45 cycles) using
HotStarTaq Master Mix Kit (203443; Qiagen) and
200 pM of amplicon-specific primers (Supplemental
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Table S7). For DYSPL2, 5% DMSO was added to the
PCR reaction. To verify the expected size of the
amplicons, 5 μl of each PCR reaction was run on
an ethidium bromide-agarose gel. The amplicons
were submitted to the University of Michigan
Sequencing Core for sample preparation and pyro-
sequencing on the PyroMark Q96 MD [87].

Gene expression

Sural nerve RNA was isolated using a RNeasy fibrous
tissue mini kit (74704; Qiagen). cDNA template was
generated using 200 ng of total RNA and iScript
Supermix (1708840; BioRad) in a 40 μl reaction. The
reaction was diluted 1:1 with dH2O. qPCR reactions
were performed in triplicate using TaqMan™ 2X gene
expression Master Mix (4369016; ThermoFisher/
Applied Biosystems), 2 μl of template, and sequence-
specific TaqMan™ probes (ThermoFisher/Applied
Biosystems; Supplemental Table S7) in an Applied
Biosystems StepOneTM RT-PCR system. The condi-
tions used were: 40x cycles of 30 s at 95º C, 60 s at
55–60º C, and 30 s at 72º C. This was followed by a 5
min final phase at 72º C. CT values were used to
calculate ΔCT and ΔΔCT (with YHWAZ as
a housekeeping control and regenerators as the rela-
tive control group; Supplemental Table S7). Data are
expressed as the mean of the relative quantity of gene
expression (2−ΔΔCT) [88]. Statistically significant dif-
ferences were calculated using a t-test with GraphPad
Prism 7 software (GraphPad software Inc.).
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