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Abstract C3 exoenzyme from C. botulinum is an ADP-
ribosyltransferase that inactivates selectively RhoA, B, and
C by coupling an ADP-ribose moiety. Rho-GTPases are in-
volved in various cellular processes, such as regulation of
actin cytoskeleton, cell proliferation, and apoptosis. Previous
studies of our group with the murine hippocampal cell line
HT22 revealed a C3-mediated inhibition of cell proliferation
after 48 h and a prevention of serum-starved cells from
apoptosis. For both effects, alterations of various signaling
pathways are already known, including also changes on the
transcriptional level. Investigations on the transcriptional ac-
tivity in HT22 cells treated with C3 for 48 h identified five out
of 48 transcription factors namely Sp1, ATF2, E2F-1, CBF,
and Stat6 with a significantly regulated activity. For validation
of identified transcription factors, studies on the protein level
of certain target genes were performed. Western blot analyses
exhibited an enhanced abundance of Sp1 target genes p21 and
COX-2 as well as an increase in phosphorylation of c-Jun. In
contrast, the level of p53 and apoptosis-inducing GADD153,
a target gene of ATF2, was decreased. Our results reveal that
C3 regulates the transcriptional activity of Spl and ATF2
resulting downstream in an altered protein abundance of var-
ious target genes. As the affected proteins are involved in the
regulation of cell proliferation and apoptosis, thus the C3-
mediated anti-proliferative and anti-apoptotic effects are
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consequences of the Rho-dependent alterations of the activity
of certain transcriptional factors.
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Abbreviations
C3 C3 exoenzyme from Clostridium botulinum
C3-E174Q Enzyme-deficient C3-mutant

PMA Phorbol-12-myristate-13-acetate
Spl Specificity protein 1

ATF2 Activating transcription factor 2

E2F-1 E2F transcription factor 1

CBF CCAAT/enhancer binding protein (C/EBP), zeta

Stat6 Signal transducer and activator of transcription 6

COX-2 Cyclooxygenase 2

GADDI153 Growth Arrest and DNA Damage-inducible
protein 153

Introduction

C3 exoenzyme from Clostridium botulinum (C3) belongs to
the group of eight bacterial ADP-ribosyltransferases including
C3lim from Clostridium limosum, C3stau from
Staphylococcus aureus, C3cer from Bacillus cereus, and
C3larvin from Paenibacillus larvae that possess low molecu-
lar weight Rho-GTPases as substrates (Aktories and Frevert
1987; Just et al. 1992a; Just et al. 1992b; Wilde et al. 2001;
Krska et al. 2015). C3 selectively inactivates the Rho-
GTPases RhoA, B, and C by transferring an ADP-ribose moi-
ety from NAD" onto asparagine 41 of Rho (Chardin et al.
1989; Sekine et al. 1989). This resulting loss of functional
Rho causes cellular consequences such as disorganization of
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the actin cytoskeleton, morphological changes, and impaired
formation of contractile ring (Wiegers et al. 1991; Kishi et al.
1993). Because of its specificity, C3 is often applied as a
selective Rho inhibitor in studying cellular RhoA signaling.
Furthermore, the treatment of murine primary hippocampal
neurons with C3 reveals an increased axonal growth as well
as branching independently of the enzyme activity and an
additional dendritotrophic effect of the C3 wild type
(Ahnert-Hilger et al. 2004). Moreover, previous studies dem-
onstrated that Rho inactivation by C3 inhibits cell growth in
various cell types (Nishiki et al. 1990; Yamamoto et al. 1993;
Zuckerbraun et al. 2003; Rohrbeck et al. 2012). RhoA is as-
sociated with the regulation of various proteins involved in the
control of cell cycle progression like cyclin D1 and p21
(Adnane et al. 1998; Watts et al. 2006). Additionally, RhoA
modulates the activity of certain transcription factors known
to play a major role in the regulation of cell proliferation. For
example, the overexpression of constitutively active
RhoAQG63L increases the transcriptional activity of AP-1
and E2F in NIH3T3 cells (Berenjeno et al. 2007).
Interestingly, in murine hippocampal HT22 cells, both C3
and enzyme-deficient C3-E174Q mediate inhibition of prolif-
eration that was accompanied by a reduced level of cyclin D1
and increased expression of negative cell cycle regulator
RhoB (Du and Prendergast 1999; Rohrbeck et al. 2012).

Besides the inhibition of cell proliferation, previous studies
described an influence of C3 on apoptosis in various cell
types. Depending on the cell type, C3 is able to trigger apo-
ptosis in EL4 T lymphoma, HUVEC, and hepatic stellate cells
(Moorman et al. 1996; Li et al. 2002; Ikeda et al. 2003).
Contrary, treatment of astrocytes with C3 after induction of
apoptosis with thrombin increases the amount of surviving
cells (Donovan et al. 1997). Furthermore, the in vivo applica-
tion of C3 protects retinal ganglion cells from apoptosis in-
duced either after optic nerve injury or by injection of NMDA
(Bertrand et al. 2005; Wang et al. 2014). The injection of C3
on the lesion site decreases the number of apoptotic cells after
a spinal cord injury in rodents (Dubreuil et al. 2003).
Rohrbeck et al. reported that the prevention of serum-starved
and staurosporin-treated HT22 cells from apoptosis is accom-
panied by the C3-mediated reduction of pro-apoptotic proteins
and of the activity of various caspases. Indeed, this anti-
apoptotic effect depends on Rho because enzyme-deficient
C3-E174Q is without effect (Rohrbeck et al. 2012).

In the present study, we investigated the impact of C3 on
the transcriptional level and downstream proteins in HT22
cells. These conditions were selected due to the appearance
of C3-mediated inhibition of cell proliferation after 48 h. We
demonstrated that C3 Rho-dependently modulated the activity
of transcription factors as well as the protein abundance of
certain target genes that were associated with the regulation
of cell proliferation and apoptosis. Thus, these results strongly
indicate that the C3-mediated anti-proliferative and anti-
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apoptotic effects are mediated by alterations of transcriptional
and protein level as a consequence of Rho inactivation by C3.

Materials and methods
Cell culture

The murine hippocampal cell line HT22 was cultivated in
Dulbecco’s modified essential medium ((Gibco, Life
Technologies, Paisley, UK), 10 % fetal bovine serum (PAN
Biotech GmbH, Aidenbach, Germany), 1 % penicillin, 1 %
streptomycin (PAA Laboratories GmbH, Pasching, Austria),
and 1 mM sodium pyruvate (Biochrom AG, Berlin,
Germany)) at 37 °C and 5 % CO,. When the cells reached
confluence, they were passaged.

Growth Kkinetics

For growth kinetics experiments, 30,000 cells mL™" were
seeded onto 3.5-cm plates. After 24 h, the cells were treated
with 500 nM C3, C3-E174Q, or 20 nM skepinone-L. Every
48 h the medium was replaced including C3 or C3-E174Q.
The determination of cell number was performed as described
previously (Rohrbeck et al. 2012).

qRT-PCR

The isolation of RNA, primer design, and determination of
gene expression level of p21 by the use of real-time qRT-
PCR measurements were accomplished as described prior
(Rohrbeck et al. 2012). The following primer pairs were ap-
plied for qRT-PCR: p21/Cdknl (NM_007669.4) forward:
GTACTTCCTCTGCCCTGCTG; reverse:
GGCACTTCAGGGTTTTCTC, B2M (NM_009735.3)
forward: ATTCACCCCCACTGAGACTG; reverse:
GCTATTTCTTTCTGCGTGCAT. PCR primers were ac-
quired by Eurofins (Ebersberg, Germany).

Western blot analysis

The cells were seeded onto 3.5-cm plates with a concentration
of 150,000 cells mL'. The next day, cells were treated with
500 nM C3, C3-E174Q, or indicated concentrations of inhib-
itors NSC23766 and skepinone-L (Calbiochem, Merck
KGaA, Darmstadt, Germany) for various incubation times.
After termination of incubation, the cells were washed with
ice-cold PBS and frozen at —20 °C. Preparation of cell lysates
and Western blot analysis was performed as described previ-
ously (Rohrbeck et al. 2012). For the analysis of phosphory-
lated proteins, | mM sodium-ortho-vanadate (Sigma-Aldrich
Chemie GmbH, Munich, Germany) was applied in lysis buff-
er. The following primary antibodies were applied for
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immunoblotting: «-RhoA, o-p38, a-JNKI1, x-p21, and o-
GADD153 (Santa Cruz Biotechnology, CA, USA); «-3-
Actin (Sigma-Aldrich, St. Louis, MO, USA); and x-pp38
Thr180/182, a-p-c-Jun Ser63, a-COX-2, and x-p53 (Cell
Signaling Technology, Beverly, MA, USA). The chemilumi-
nescence reaction was performed by ECL Femto (Pierce,
Thermo Fisher Scientific Inc., Rockford, IL, USA), and the
signals were detected and analyzed densitometrical by Kodak
1D software (KODAK GmbH, Stuttgart, Germany).

TF activation profiling plate array

For screening the transcriptional activity of 48 different tran-
scription factors after treatment with C3 for 48 h, the TF
Activation Profiling Plate Array I (Signosis Inc., Santa
Clara, CA, USA) was performed. HT22 cells were incubated
with 500 nM C3 or medium for control conditions. After 48 h,
the nuclear extraction (Signosis Inc., Santa Clara, CA, USA)
was performed according to manufacturers’ instructions. The
protein concentration was determined by Bradford assay, and
5 pg of nuclear extracts per condition were applied in TF
Activation Profiling Plate Array I according to manufacturers’
instructions. Both conditions were measured on one 96-well
plate containing two sets for each 48 transcription factors. The
luminescence was detected at Synergy4 microplate reader
(BioTek Instruments Inc., Winooski, VT, USA). For each con-
dition, the relative light units of the transcription factors were
normalized to the value of the non-regulated SATBI as inter-
nal control. The relative regulation was calculated by the ratio
of C3-treatment in comparison to control condition.
Significant regulations were estimated in a twofold increase
or decrease of transcriptional activity. Transcription factors
whose activity was altered in all three experiments significant-
ly in the same direction were defined as regulated.

Luciferase reporter experiments

The dual-luciferase reporter experiments were performed with
the Cignal Reporter Assay Kit (Qiagen, Hilden, Germany).
The reporter system consists of a firefly luciferase reporter
under the control of an inducible basal TATA box promotor,
with upstream tandem repeat elements (TRE)-sequences for
Sp1, and as an internal control, a construct that constitutively
expressed Renilla luciferase under the control of a CMV im-
mediate early enhancer/promotor in a ratio of 40:1. For detec-
tion of background signals, a negative control construct that
encodes the firefly luciferase under a non-inducible basal
TATA box promotor and a constitutively expressed Renilla
luciferase (in a ratio of 40:1) were applied. 7500 HT22 cells
per well were seeded into 96-well plates. The cells were
transfected with 1 pg DNA construct of either transcription
factor reporter or negative control by the use of jetPrime
Polyplus transfection system (Polyplus transfection S.A.,

Illkirch, France) according to manufacturers’ instructions.
After 4 h, the cells were treated with 500 nM C3, 500 nM
C3-E174Q, 20 nM skepinone-L, or 50 uM NSC23766 for
48 h. To attain a stimulation of Sp1 activity, cells were incu-
bated with 100 ng/mL PMA (Sigma-Aldrich Chemie GmbH,
Munich, Germany) for 18 h as a positive control. The lucifer-
ase activity was determined by Dual-Glo® Luciferase assay
system (Promega Corporation, Madison, WI, USA) on
Synergy4 microplate reader (BioTek Instruments Inc.,
Winooski, VT, USA). Data were processed by normalizing
the relative light units of firefly to Renilla luciferase,
subtracting background signals and calculating the relative
regulation of transcriptional activity. To determinate the effec-
tivity of transfection, cells were transfected with a positive
control reporter containing a construct that encodes GFP.
The cells were visualized by light and fluorescence microsco-
py (Zeiss Axiovert 200 M; Carl Zeiss GmbH, Gottingen,
Germany).

Expression and purification of recombinant C3 proteins

C3 wild type and C3-E174Q were expressed as recombinant
fusion proteins with a glutathione S-transferase (GST)-tag into
plasmid pGEX-2T (gene of C. botulinum C3, accession no.
X59039) that was transferred into E. coli TG1. The
purification of recombinant protein was performed as
described previously (Rohrbeck et al. 2012).

Reproducibility of the experiments and statistics

All experiments were performed independently at least three
times. The figures display results from representative experi-
ments. For graphical and statistical analysis, Microsoft® Excel
2010 version 14.0 (Microsoft Corporation, Redmond, USA)
was applied. The values (n > 3) are means = SEM. The statis-
tical significance of differences between treated compared to
untreated cells were calculated by the use of a two-sided un-
paired Student’s 7 test (* = p < 0.05, ** = p < 0.01, and
*** = p <0.001). The statistical differences between treated
compared to untreated cells in qRT-PCR experiments were
calculated by the use of a one-sided unpaired Student’s 7 test
(*=p<0.05).

Results

C3 altered the transcriptional activity of ATF2 and Sp1
To get an overview of those transcription factors influenced by
C3, the TF Activation Profiling Plate Array I was carried out
for simultaneously analyzing 48 different transcription factors.

Data analysis of this array exhibited five transcription factors,
namely Spl, ATF2, CBF, E2F-1, and Stat6, that were
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significantly regulated in all three independent experiments as
shown in Table S1. For this study, we focused on the influence
of C3 on Spl and ATF2, as examples for an upregulation and
downregulation, respectively, of transcription factors. Both
transcription factors are essentially involved in the regulation
of numerous cellular processes, such as cell proliferation and
apoptosis (Walton et al. 1998; Deniaud et al. 2009). As sum-
marized in Fig. la, the transcriptional activity of ATF2 was
distinctly reduced, while the activity of Spl increased after
incubation with C3 for 48 h. To verify exemplarily, the results
of the upregulated transcription factor Sp1, a luciferase report-
er assay, was applied. The enhanced transcriptional activity of
Spl after treatment with C3 for 48 h was confirmed by the
luciferase assay, whereas the enzyme-deficient C3-E174Q did
not influence the activity of Spl (Fig. 1b). To get an idea of
further participating signaling pathways, the Rac inhibitor
NSC23766 was applied. NSC23766 is known to selectively
inhibit Racl by impairing the activation of the Rac-specific
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Fig.1 C3-mediated modifications of the activity of various transcription
factors. a The nuclear extracts of HT22 cells incubated with 500 nM C3
or control medium for 48 h were prepared and applied in TF Activation
Profiling Plate Array 1. For data analysis, the relative light units of the
transcription factors were normalized to the value of the non-regulated
transcription factor SATB1 as internal control and the relative regulation
of transcriptional activity were determined by comparison of C3-treated
to untreated cells. A significant change in transcriptional activity was
assumed by twofold upregulation or downregulation. Exemplarily, the
relative regulation of ATF2 and Spl was depicted with the mean values
+ SEM of three independent experiments (n = 3). b HT22 cells were
transfected with luciferase reporter constructs and treated with 500 nM
C3, 500 nM C3-E174Q, 50 uM NSC23766, or 20 nM skepinone-L for
48 h. As a positive control, the cells were incubated with 100 ng/mL PMA
for 18 h. The relative regulation of transcriptional activity of Spl was
determined by the ratio of treated to untreated cells. Mean values = SEM
are illustrated of at least three experiments

@ Springer

GEFs Tiaml and Trio (Gao et al. 2004). Notably, no effect
was detectable after the incubation of HT22 cells with the Rac
inhibitor under the chosen conditions. Additionally, experi-
ments with the p38 inhibitor skepinone-L. were performed.
Skepinone-L is the first highly selective ATP-competitive
p38 inhibitor that was identified in 2011 by Koeberle et al.
(Koeberle et al. 2012a; Koeberle et al. 2012b). Interestingly,
skepinone-L only enhanced marginally the transcriptional ac-
tivity of Spl (Fig. 1b) in the luciferase assay. As positive
control cells were incubated with 100 ng/mL PMA for 18 h
that increased the Sp1 activity by 1.6-fold. For the determina-
tion of transfection effectivity, cells were transfected with a
supplied positive control reporter that contains an additional
construct encoding for GFP (Fig. S1). A convincing effec-
tivity was detected by fluorescence microscopy of GFP-
transfected cells. These consistent results of both assays
revealed a C3-mediated alteration of the transcriptional
activity of Spl.

For validation of the identified transcription factors, the
downstream target genes of Spl and ATF2 were analyzed.
Western blot analyses of the three different Spl target genes
p21, c-Jun, and cyclooxygenase (COX)-2 harboring at least
one Spl binding site in their gene promotor were performed
(Rozek and Pfeifer 1993; Appleby et al. 1994; Datto et al.
1995; Rozek and Pfeifer 1995; Biggs et al. 1996; Xu et al.
2000). In case of c-Jun, we focused on the activation in terms
of a phosphorylation of c-Jun. The enzyme-deficient C3-
E174Q was carried along as a negative control, as it did not
provoke any alterations in transcriptional activity of Spl.
Additionally, the effects of Rac and p38 inhibitors on the
target proteins were determined.

C3-induced increase of p21 and anti-proliferative effect

C3 increased the protein abundance of p21 significantly after
24 h. After 48 h, the abundance of p21 was still enhanced
compared to the control. From 60 h on C3, the level of p21
is reduced by approximately 25 % (Fig. 2a, b). RT-PCR data
shown in Fig. 2¢ confirmed that C3 also raised gene expres-
sion of p21 by twofold after 24 h and by 3.5-fold after 48 h.
C3-E174Q raised the protein abundance of p21 after 24 h but
did not provoke any detectable effect neither on protein nor on
mRNA level at the other incubation times. The p38 inhibitor
skepinone-L decreased p21 by about 15-20 % after 48 and
60 h.

As p21 is a major regulator of cell cycle progression; the
effect of C3 on cell proliferation was examined by growth
kinetic experiments in a concentration-dependent manner
(Fig. 2d). Incubation with 100 nM of C3 did not impair the
proliferation of HT22 cells. A fivefold raise of the concentra-
tion of C3 caused an inhibition of cell growth from the second
day of treatment. Interestingly, a tenfold increase in concen-
tration to about 5 puM of C3 did not further enhance the
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Fig. 2 Influence of C3 on p21 and C3-mediated effects on cell
proliferation. a HT22 cells were incubated with 500 nM C3, 500 nM
C3-E174Q, 50 uM NSC23766, or 20 nM skepinone-L for indicated
time points. Cells were lysed and applied to Western blot analysis for
p21 and P-actin. Western blots from representing experiments are
shown. b Relative abundance of p21 (mean values + SEM) were
calculated by normalizing the signal intensity of p21 to the
corresponding intensity of (3-actin and comparing treated to untreated
cells of three independent experiments (n = 3). ¢ HT22 cells were
treated with 500 nM C3 and C3-E174Q for 24 and 48 h. The isolated

observed proliferation inhibition shown in Fig. 2d nor resulted
in any signs of cellular toxicity. The temporal delay of 48 h of
the C3-mediated inhibition of cell proliferation was indepen-
dently of the cellular growth phase and only correlated with
the incubation time with C3 (Fig. S2). In contrast, the enzyme-
deficient C3-E174Q induced a Rho-independent, medium in-
hibition of cell proliferation in HT22 cells (Rohrbeck et al.
2012). The p38 inhibitor skepinone-L inhibited the prolifera-
tion of HT22 cells moderately starting from the second day of
incubation (Fig. S3). A combined incubation of C3 and
skepinone-L provoked a minimum increased anti-
proliferative effect compared to the single C3 treatment
confirming the involvement of p38 in the C3-mediated anti-
proliferative effect.

C3 induced increase in phosphorylation of c-Jun
and reduced the level of p53

Western blot analysis of phospho-c-Jun was applied to study
the impact of C3 on the activation of c-Jun. The abundance of
phospho-c-Jun was increased significantly by approximately
2.5-fold after treatment with C3 for 24 and decreased to 1.7-
fold over time (Fig. 3a, b). The enzyme-deficient C3-mutant
did not exhibit any effect on the phosphorylation of c-Jun,
whereas skepinone-L enhanced significantly the level of
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RNA was applied in quantitative RT-PCR to determine the gene
expression of p21. The ACt value of p21 was normalized to ACt of
house-keeping gene 32-microglobulin. Results represent mean values +
SEM of three independent experiments (n = 3). d To investigate the
concentration dependence of C3-mediated inhibition of cell
proliferation, growth kinetic experiments were performed. HT22 cells
were treated with 100, 500, and 5000 nM C3 by replacing the medium
including C3 every 48 h. At indicated time points, the cell number was
determined by trypan blue counting assay in triplicate. Growth curves
illustrate mean values + SEM

phospho-c-Jun after 72 h. To determine the functionality of
activated c-Jun, the cell cycle regulator p53, a downstream
target gene of c-Jun, was analyzed. c-Jun is involved in the
regulation of various cellular processes, including the regula-
tion of p53 via an AP-1-like site, namely PF-1 site, in the p53
promotor (Ginsberg et al. 1990; Schreiber et al. 1999). After
24 h, the abundance of p53 was raised insignificantly by C3,
C3-E174Q, and both inhibitors. C3 reduced the level of p53
by 25 % from 48 h on and maintained a reduction of 15 % up
to 72 h (Fig. 3c, d). C3-E174Q slightly increased the abun-
dance of p53 until 48 h, whereas skepinone-L first marginally
increased the level of p53 after 48 h and then reduced the
abundance comparably to C3 after 72 h.

C3 modulated the level of COX-2 biphasically

The level of COX-2 was elevated up to 30 % in cells treated
with C3 and C3-E174Q and by 40 % after treatment with
NSC23766 for 48 h (Fig. 4a, b).

Surprisingly, C3 reduced distinctly and significantly the
abundance of COX-2 by more than 60 % after 60 and 72 h.
Incubation with skepinone-L from 60 h on lowered slightly
the COX-2 level by 20 %, but no effect was detectable after
treatment with C3-E174Q for 60 and 72 h. The decrease in
COX-2 starting from 60 h revealed a biphasic modulation
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Fig. 3 Influence of C3 on the phosphorylation of c-Jun and the
abundance of p53. a HT22 cells were treated with 500 nM C3, 500 nM
C3-E174Q, 50 uM NSC23766, or 20 nM skepinone-L for indicated time
points, lysed, and applied to Western blot analysis for phospho-c-Jun
(p-c-Jun) and c-Jun N-terminal kinase 1 (JNK1). b Densitometric
quantifications were performed by adjusting the signal intensity of
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Fig. 4 C3-induced effects on the abundance of COX-2. a Cells were
incubated with 500 nM C3, 500 nM C3-E174Q, 50 uM NSC23766, or
20 nM skepinone-L for indicated time points. Cell lysates were submitted
to Western blot analysis for COX-2 and (3-actin. Representing blots are
shown. b Data analysis was determined by normalization of the signal
intensity of COX-2 to the corresponding intensity of (3-actin. Mean
values + SEM are illustrated of four independent experiments (n = 3)
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densitometric quantification (d) of p53 and (-actin. Representing
Western blot analyses are illustrated. Results represent mean values +
SEM of independent experiments of p-c-Jun (n = 3) and p53 (n = 3)

mediated by C3. Due to the weak signal intensity at Western
blot analysis, the quantification of COX-2 after 24 h was not
reliable.

Taken collectively, the increased protein abundances of
p21, phospho-c-Jun, and COX-2 after treatment with C3 for
48 h indicated an enhanced activity of Spl.

C3-induced alterations in p38 activity and reduction
of GADD153

With regard to the C3-mediated anti-apoptotic effect, the sig-
naling cascade of ATF2, which is associated with apoptosis
induction, was analyzed (Walton et al. 1998). The activity of
ATF?2 is regulated via phosphorylation by various kinases in-
cluding p38 MAP kinase (Raingeaud et al. 1996). Therefore,
the influence of C3 on the phosphorylation of p38 was studied
by Western blot analysis (Fig. 5a, b). The level of phospho-
p38 was significantly decreased by more than 25 % after in-
cubation with C3 for 48 h but was not significantly altered in
C3-treated cells after 60 and 72 h. In contrast, C3-E174Q did
not affect phospho-p38 until 60 h but led to a marginal in-
crease of phospho-p38 after 72 h. Skepinone-L reduced con-
tinuously the abundance of phospho-p38 from 24 h on. The
Growth Arrest and DNA Damage-inducible protein 153
(GADDI153) is involved in the induction of apoptosis and is
regulated by ATF2 via the p38 MAP kinase pathway (Bruhat
et al. 2000; Maytin et al. 2001; Oh-Hashi et al. 2001; van der
Sanden et al. 2004). Western blot analysis exhibited a reduced
abundance of GADD153 after treatment with C3 starting from
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Fig. 5 C3-mediated changes of phosphorylation status of p38 and
reduction of GADDI153. a HT22 cells were treated with 500 nM C3,
500 nM C3-E174Q, 50 uM NSC23766, or 20 nM skepinone-L for
indicated time points. Cells were lysed and applied to Western blot
analysis for phospho-p38 and total p38. b For densitometric analysis,
the signal intensity of phosphorylated p38 was adjusted to the

48 h (Fig. 5c, d). The level of GADDI153 was raised by
30-50 % in cells treated with C3-E174Q, NSC23766, and
skepinone-L for 24 and 48 h. However, furthermore, we only
focused on the inhibitory effects of skepinone-L in detail due
to the fact that the p38 signaling pathway was more promising
as described in the literature to be involved in the regulation of
ATF2 (Raingeaud et al. 1996). After treatment with
skepinone-L for 60 and 72 h, the abundance of GADD153
was decreased significantly by 20 %, whereas C3-E174Q
provoked only minimum effects at this time. These results
indicated a C3-mediated effect on p38 MAPK signaling that
might lead downstream via ATF2 to a decreased abundance
of GADD153.

Discussion

Because of'its selective inactivation of Rho-GTPases, C3 is a
biological tool to study the involvement of RhoA, B, and C in
cellular processes. Previous studies have already revealed that
the C3-mediated ADP-ribosylation of RhoA results in an in-
activation and degradation of RhoA in various cell types
(Rohrbeck et al. 2012; Rohrbeck et al. 2015a, b). In HT22
cells treated with C3 for 48 and 72 h, a large percentage of
the cellular RhoA is degraded as detected by a distinct reduc-
tion of RhoA in Western blot analysis (Rohrbeck et al. 2012;
Rohrbeck et al. 2015b). But until now, only less is known
about the impact of C3 on Rho downstream pathways
effecting cell proliferation and apoptosis. In the present study,
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corresponding intensity of p38. The same experimental procedure of (a)
and (b) was applied for Western Blot analysis (¢) and densitometric
quantification (d) of GADD153 and {3-actin. Representing Western blot
analyses are shown. Results depict mean values + SEM of independent
experiments of p38 (n = 3) and GADD153 (n = 3)

we identified five transcription factors that were regulated in
hippocampal HT22 cells in response to C3. With regard to the
described C3-mediated anti-proliferative and anti-apoptotic
effects, it is not surprising that the identified transcription fac-
tors Spl, ATF2, and E2F are major regulators of cell prolifer-
ation and apoptosis (Mudryj et al. 1990; Shirodkar et al. 1992;
Walton et al. 1998; Deniaud et al. 2009). Additionally, also
Stat6 and CCAAT/enhancer binding protein zeta (CBF) are
involved in the regulation of cell cycle-dependent genes
(Milarski and Morimoto 1986; Lum et al. 1990; Kaplan
et al. 1998). However, RhoA is involved in the regulation of
various transcription factors like AP-1 and E2F (Rivard et al.
1999; Berenjeno et al. 2007). Consistent with our results,
overexpression of constitutively active RhoAQ63L increases
the transcriptional activity of E2F, whereas C3 inhibits serum-
stimulated E2F activity (Rivard et al. 1999; Berenjeno et al.
2007). Constitutively active RhoAQ63L also triggers AP-1
activity (Berenjeno et al. 2007). In contrast, C3 does not im-
pair AP-1 activity in cardiac muscle cells after stimulation of
AP-1 promotor activity with phenylephrine (Thorburm et al.
1997). These results are in agreement with our data that AP-1
is not regulated by C3. The present study focused on C3-
induced alterations of the activity of Spl and ATF2, since
E2F, CBEF, and Stat6 are subjects of separate studies because
of'the broad spectrum of regulated downstream pathways. The
missing effect of C3-E174Q on Spl activity strongly indicates
that C3 modulates the activity of Spl via Rho and related
downstream cascades like MAP kinase signaling (Fig. 6). In
this context, the impact of p38 can be neglected because the
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Fig. 6 Proposed signaling pathways involved in C3-mediated
anti-proliferative and anti-apoptotic effects. As a consequence of Rho
inactivation by C3, the transcriptional activities of Spl and ATF2 are
modulated resulting downstream in altered abundances and activities of
the target genes involved in the regulation of proliferation and apoptosis.
The transcription factor Sp1 regulates the abundance of p21, COX-2, and
p-c-Jun. In turn, c-Jun is a regulator of the level of p53, whereas p21 is an
inhibitor of cell cycle progression. RhoA is able to regulate the activity of
MAPK p38 via downstream signaling cascades. However, p38 is an
activator of ATF2 that in turn regulates the abundance of GADDI153.
Both p53 and GADD153 are inducers of apoptosis

reduction of p38 activity by Rho inhibitor C3 and the p38
inhibitor skepinone-L did not affect Spl activity. To further
verify the identified transcription factors and characterize the
extent of C3-mediated effects on protein level, the protein
abundances of certain target genes of Spl were examined.
Especially Sp1 is known for transcriptional regulation of pro-
teins involved in cell cycle control such as c-Jun, p21, and
various cyclins (Harper et al. 1993; Wisdom et al. 1999;
Deniaud et al. 2009). Previous studies reported that the C3-
mediated anti-proliferative effect after 48 h is featured by the
inactivation and degradation of ADP-ribosylated RhoA, an
enhanced expression of RhoB and a decrease in cyclin D1
(Rohrbeck et al. 2012). Now, in this study, we determined an
enhanced activity of Spl accompanied by an altered protein
abundance of its downstream target genes p21, phospho-c-
Jun, and COX-2 at this time. In agreement with previous stud-
ies, C3 increased the level of p21 on RNA and protein level
after 24 and 48 h. After treatment of smooth muscle cells with
C3 for 24 h, the protein level of p21 is raised and the activity
of p21 promotor is enhanced by C3 in various cell lines
(Adnane et al. 1998; Zuckerbraun et al. 2003). Besides p21,
c-Jun is a major player of regulation of cell proliferation that
was phosphorylated distinctly and continuously after
treatment with C3 starting from 24 h in this current work.
A functional connection between overexpression of Spl
and an increased level of c-Jun was first described in murine
IL-3-dependent Baf-3 cells. These cells overexpresses Spl

@ Springer

after induction with doxycycline exhibiting a rise in c-Jun
expression detected by microarray analysis and RT-PCR
(Deniaud et al. 2009). In accordance with our results,
Alberts & Treisman described an increased phosphorylation
of c-Jun after transfection of NIH 3T3 cells with C3 (Alberts
and Treisman 1998). To determine the functionality of this
activation of c-Jun, the abundance of p53 was examined.
The observed decreased abundance of p53 after incubation
with C3 for 48 until 72 h is consistent with previous data of
serum-starved HT22 cells that showed a reduced level of p53
under similar conditions (Rohrbeck et al. 2012). Ginsberg
et al. first described a binding of c-Jun to a PF1-site in the
p53 promotor causing an uncommon repression of gene ex-
pression (Ginsberg et al. 1990). In accordance with our results,
Schreiber et al. reported that the level of p53 is increased in
c-Jun-deficient 3T3-fibroblasts in comparison to wild-type
cells. Moreover, stable overexpression of c-Jun in those cells
reduces the pS3 expression. Interestingly, concurrently, the
abundance of p21 is increased in the c-Jun-deficient cells
and is reduced after overexpression of c-Jun (Schreiber et al.
1999). In contrast to that, Kardassis et al. demonstrated that a
simultaneous overexpression of c-Jun and Spl transactivates
the p21 promotor in Drosophila Schneider’s SL2 and HepG2
cells (Kardassis et al. 1999). In this context, it is possible that
the simultaneous overexpression of c-Jun and Spl exceeded
the c-Jun-mediated repression of p21. Taken together, we
identified a C3-mediated enhanced Spl activity resulting in
an increased level of p21 and phosphorylated c-Jun that in turn
reduced the level of p53. This is further supported by the
missing effects of enzyme-deficient C3-E174Q and the insig-
nificant impact of the Rac and p38 inhibitors on Sp1 and the
studied target proteins. Thus, C3 regulated specifically the
Spl activity via Rho inactivation, whereas the influence of
Rac and p38 is negligible. Certainly, the moderate effect of
skepinone-L on cell proliferation, the slight enhancement of
C3-mediated anti-proliferative effect in combination with C3
in growth kinetic experiments, and the modified levels of
phospho-c-Jun after 72 h indicated an influence of p38 on cell
proliferation. Due to the missing alterations of Sp1 and target
proteins after treatment with skepinone-L until 60 h, this effect
plays indeed a minor role in the proposed Spl signaling.
However, also C3-E174Q exhibits a moderate anti-
proliferative effect in HT22 cells indicating an additional
Rho-independent impact on cell proliferation (Rohrbeck
et al. 2012). Overall, this observed combination of altered
signaling pathways is able to cause an inhibition of cell pro-
liferation, mainly based on an increased activity of Spl and
enhanced abundance of p21 that are highly associated with
cell cycle arrest (Harper et al. 1993; Deniaud et al. 2009).
The impact of c-Jun on cell proliferation is cell type-depen-
dent, because the growth of c-Jun-deficient embryonic stem
cells is not influenced, but c-Jun-deficient fibroblasts are
arrested in the G; phase of the cell cycle (Hilberg and
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Wagner 1992; Wisdom et al. 1999). Our results demonstrated
that the interactions of altered levels of Spl, p21, and
phospho-c-Jun play a crucial role in C3-mediated inhibition
of cell proliferation. The influence of the other identified tran-
scription factors such as E2F, another major regulator of cell
proliferation, is still unclear. Further studies are ongoing to
clarify the role.

In a rat spinal cord injury model, the expression of Spl
target gene COX-2, a marker protein of inflammation, is in-
creased up to 48 h (Appleby et al. 1994; Resnick et al. 1998;
Xu et al. 2000). Indeed, the expression of COX-2 is not only
induced by inflammation and after injuries but COX-2 is also
constitutively expressed on a basal level in neuronal cells of
the spinal cord and certain areas of the brain (Yamagata et al.
1993; Resnick et al. 1998). Nevertheless, the enhanced
expression after 48 h was mediated enzyme-independently,
because both C3 and C3-E174Q induced this effect. The
C3-mediated decreased COX-2 abundance after 60 and 72 h
is in agreement with previous studies demonstrating that the
induction of COX-2 promotor by a constitutively active
Ga13-subunit of heteromeric G proteins is blocked in NIH
3T3 cells after transfection with a C3 expression vector for
72 h (Slice et al. 1999). Due to the fact that also the p38
inhibitor skepinone-L slightly reduced COX-2 by 20 %, after
72 h, the p38 signaling seems to play a minor but Spl-
independent role in the regulation of COX-2.

Besides the inhibition of cell proliferation, C3 prevents
serum-starved HT22 cells from apoptosis by downregulation
of the pro-apoptotic proteins Bax, Bid, p53, and certain
caspases at an mRNA and protein level. Moreover, the
enzyme activity of caspase-3 and caspase-7 is reduced by
C3 treatment for 48 h (Rohrbeck et al. 2012). Among the
identified transcriptional factors, especially ATF2 is involved
in the transcription of apoptosis-inducing proteins like
GADD153, whose increased expression is strongly associated
with induction of apoptosis in various cell types (Walton et al.
1998; Bruhat et al. 2000; Maytin et al. 2001; Oh-Hashi et al.
2001; van der Sanden et al. 2004). However, the C3-mediated
protection from apoptosis in HT22 cells is in agreement with
our findings of a reduced GADD153 abundance. The activa-
tion of ATF2 is mediated via phosphorylation by certain
kinases such as p38 and JNK (Gupta et al. 1995; Raingeaud
et al. 1996). The observed decreased level of phosphorylated
p38 supports a connection between ATF2 and p38. The find-
ings are endorsed by a study of Pausawasdi et al. identifying a
C3-induced decrease in carbachol-stimulated p38 activity
(Pausawasdi et al. 2000). These results imply that the reduced
level of phosphorylated p38 may lead downstream to a de-
creased activity of ATF2. The proposed correlation between
p38, ATF2, and GADD153 is further strengthened by the C3-
like effects of the p38 inhibitor reducing moderately the level
of GADD153 by 20 % after incubation with skepinone-L for
60 and 72 h. In agreement with these findings, prior studies

reported that GADDI153 transcription is highly associated
with p38 in the context of apoptosis induction in various cell
types (Oh-Hashi et al. 2001, Wang and Ron 1996). Moreover,
GADD153 can also be activated directly by p38 via phosphor-
ylation at serine 78 and 81 (Maytin et al. 2001). Additionally,
the missing inhibiting effects of C3-E174Q on phospho-p38
and GADD153 strongly indicate a Rho-dependent reduction
of ATF2 activity as a result of the decreased activity of p38
downstream inhibiting the GADD153 abundance (Fig. 6).
With regard to the impact of p53 and c-Jun on the C3-
mediated anti-apoptotic effect, a prior study in primary hepa-
tocytes demonstrated that c-Jun not only represses the p53
expression via the PF-1 site but also antagonizes p53 activity
after apoptosis induction by TNFa (Ginsberg et al. 1990;
Schreiber et al. 1999; Eferl et al. 2003). Accordingly, as
already mentioned for the C3-induced growth inhibition,
also the C3-mediated prevention of apoptosis represents a
consequence of the several alterations on the transcriptional
and downstream protein level interfering to the anti-
apoptotic impact.

In conclusion, we demonstrated that C3-mediated inac-
tivation of Rho-GTPases also influenced transcriptional
regulation involved in distinct cellular functions in addition
to reorganization of the actin cytoskeleton. We identified a
Rho-dependent effect of C3 on transcription factors such as
Spl and ATF2 and their downstream target genes that were
strongly involved in cell proliferation and apoptosis. Thus,
these alterations in cell signaling after 48 h result in the
C3-mediated anti-proliferative and anti-apoptotic effects.
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