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Abstract: Many physiotherapy treatments begin with a diagnosis process. The patient describes
symptoms, upon which the physiotherapist decides which tests to perform until a final diagnosis is
reached. The relationships between the anatomical components are too complex to keep in mind and
the possible actions are abundant. A trainee physiotherapist with little experience naively applies
multiple tests to reach the root cause of the symptoms, which is a highly inefficient process. This work
proposes to assist students in this challenge by presenting three main contributions: (1) A compilation
of the neuromuscular system as components of a system in a Model-Based Diagnosis problem;
(2) The PhysIt is an AI-based tool that enables an interactive visualization and diagnosis to assist
trainee physiotherapists; and (3) An empirical evaluation that comprehends performance analysis
and a user study. The performance analysis is based on evaluation of simulated cases and common
scenarios taken from anatomy exams. The user study evaluates the efficacy of the system to assist
students in the beginning of the clinical studies. The results show that our system significantly
decreases the number of candidate diagnoses, without discarding the correct diagnosis, and that
students in their clinical studies find PhysIt helpful in the diagnosis process.

Keywords: model based diagnosis; applications; diagnosis; physiotherapy

1. Introduction

When a patient contacts a physiotherapist (PT) regarding a problem in the peripheral nervous
system or muscular system, the usual cues are either in terms of motion or sensory abilities. The patient
can report some difficulty in performing a specific movement or a sensory problem such as numbness
or tingling. A weakened motion is indicated by an observation on the muscles, while a defected
sensation is indicated by an observation on the dermatomes. These reports are the symptoms of the
patient. Based on the reported symptoms, the PT hypothesizes the possible reasons that could explain
the patient’s complaints. Theses reasons are called diagnoses. To discriminate the root cause among
the possible diagnoses, a troubleshooting process is executed in which the PT performs a series of tests
that are meant to disambiguate between the correct diagnosis and the rest. This approach is usually
time consuming and can be ineffective, especially in the case of trainee PTs with little experience.
For example, some clinicians move back and forth between their original and revised hypotheses to
come up with a final diagnosis [1].

This paper presents an AI-based tool—PhysIt—that enables an interactive visualization and
diagnosis to assist trainee physiotherapists (The system can be viewed using the following link:
http://www.ise.bgu.ac.il/PHYSIOTHERAPY/Homepage.aspx).

The first step to create such a tool is a compilation of the neuromuscular system as components of
a system in a Model-Based Diagnosis problem. Our approach is based on modeling the physiotherapy
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diagnosis process as a model-based diagnosis (MBD) problem [2–5]. MBD relies on a model of
the diagnosed system, which is utilized to simulate the expected behaviour of the system given
the operational context (typically, the system inputs). The resulting simulated behaviour (typically,
the system outputs) are compared to the observed behaviour of the system to detect discrepancies that
indicate failures. The model is then used to pinpoint possible failing components within the system.
In the physiotherapy domain, the observed system behaviour is the patient’s weakened motion or
defected sensation. The system model is a model of the human body, such as the nervous system,
the muscles, the dermatomes etc., as well as the connections between them. A diagnosis is the human
body component(s) that does not function well. Modeling this problem as an MBD enables solving it
by applying off-the-shelf MBD algorithms. This compilation is the first main contribution of this paper.

Second, the Physit system computes the diagnoses based on the observations and then it operates
a troubleshooting algorithm to assist the PT to choose informative tests and finally identify the root
cause of the patient’s complains. This is the second contribution of this paper and it can be decomposed
into the different features of the Physit system:

The first feature of PhysIt is an interactive graphical model of anatomical entities. To this aim, we
used expert knowledge to define the important entities that are required to clinically diagnose patients.
In particular the tool focuses on nerve roots, nerves, muscles and dermatomes. Using this domain
representation, we implemented an interactive inference to visually present the relationships between
the entities.

The second feature of PhysIt is a framework to assist a trainee PT with the diagnosis process.
This framework proposes the next recommended test to perform given the current state and
observations given from the patient and previous tests. This framework utilizes the MBD algorithm
described earlier.

The third feature of PhysIt is a troubleshooting process in which the root cause of the symptom is
recognized. This is done by adapting an iterative probing process from the MBD literature [6], in which
tests are iteratively proposed to the PT in order to eliminate redundant diagnoses.

There is a huge research on diagnosis in medicine. Most of the works propose frameworks and
algorithms utilizing different diagnosis approaches, such as knowledge-based [7], data driven [8] and
model-based [9]. Many of the works even run experiments on specific medical problems. As far as
we know, no previous work presents a comprehensive tool for trainee PTs that includes visualisation,
diagnosis and troubleshooting. Our work does not present new diagnosis or troubleshooting methods,
but it utilizes previous model-based methods to present a tool that helps trainee PTs in the diagnosis
process, by applying anatomical model visualization, diagnosis and troubleshooting.

The third contribution of this paper is a comprehensive performance analysis and a user study
to evaluate PhysIt. The performance analysis was performed on both simulated cases and scenarios
depicted by the domain experts, that are common cases in anatomy exams. We examined the diagnosis
process in terms of accuracy, precision, waste costs and the AUC of the health state [10,11]. Our results
show that the tool always finds the correct diagnosis and that the troubleshooting process can
significantly decrease the number of candidate diagnoses, and thus facilitates trainee PTs. Our user
study included simulations of a physiotherapy diagnosis process performed by physiotherapy students.
The students were given different levels of access to our system, and were then requested to answer a
questionnaire in order to evaluate the experience with the system. The study shows that our system
was perceived as helpful in choosing the tests to perform and in improving the diagnosis process.

To summarize, this paper contains an exploratory research on the application domain of
physiotherapy diagnosis. It consists of a new theoretical representation, based on MBD literature,
to model a PT diagnosis process, and then utilizes this representation to propose an educational tool
for PTs in the beginning of their clinical studies. This research proposes a thorough analysis of the
proposed tool, both by testing its mathematical and theoretical capabilities, and by testing it empirically
on use-cases used in physiotherapy exams and in a user study with PTs in training.
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The flow of the paper is as follows: in the next section we detail the related work, then in Section 3
the architecture and interface of the tool will be presented. Section 4 describes technical details about
the different parts of PhysIt: the model, the diagnosis algorithm and the troubleshooting process.
In Section 5 the diagnosis and the troubleshooting processes will be evaluated and in Section 6 the
user study will presented. Section 7 concludes this work.

2. Related Work

In Section 2.1 we present the main approaches for diagnosis and specifically model-based
diagnosis methods in medicine. Then in Section 2.2 we depict troubleshooting approaches. Finally in
Section 2.3 the contributions of our work are presented in the light of previous work.

2.1. Diagnosis

Diagnosis approaches are typically divided into three categories: data-driven, model-based,
and knowledge-based. Data-driven approaches are model free. The online monitored data is
used to differentiate a potential fault symptom from historically observed expected behaviour,
e.g., via Principle Component Analysis [12]. Model-based approaches [13–15] typically use reasoning
algorithms to detect and diagnose faults. The correct/incorrect behaviour of each component in the
system is modeled as well as the connections between them, and the expected output is compared
to the observed output. A discrepancy between them is exploited to infer the faulty components.
Knowledge-based [16] approaches typically use experts to associate recognized behaviours with
predefined known faults and diagnoses. A similar partition is proposed by Wagholikar et al. [17],
which survey paradigms in medical diagnostic decision support, dividing most works into probabilistic
models (Bayesian models, fuzzy set theory, etc.), data driven (SVM and ANN) and expert-based
(rule-based, heuristic, decision analysis, etc.).

The decision on the best approach is obviously dependent on the domain knowledge. If we
have enough data on past processes of the system then probably we would prefer to use data
driven approaches, on the other hand if the system can be represented by rules, designed by experts,
then a knowledge-based approach is preferred. Finally, if we can formally model the system, then a
model-based approach will be appropriate. Next, we present relevant research and elaborate on MBD
approaches within the context of medical systems.

In this paper we focus on a model-based approach, since we used expert physiotherapists which
helped us to model the upper part of the human body which is innervated by the nerve roots C-3 to
T-1. For a survey of knowledge-based approaches in medicine we refer the reader to [7]. There are
additional surveys that address knowledge-based approaches in specific medical fields as breast cancer
diagnosis [18] and medical expert systems for diabetes diagnosis [19]. Data driven approaches are very
common in medicine, Patel et al. [8] and Tomar et al. [20] survey many of these approaches, specifically
Kourou et al. survey machine learning approaches for cancer prognosis [21]. Data Mining techniques
are used to label specific conditions such as Parkinson Disease [22] or Diabetes [23].

There are several approaches in MBD. All are relevant also to diagnosis in medicine [9,24]. They
differ in the way the domain knowledge is represented. Obviously, in many cases the model is
determined by the type of knowledge we have. Consistency-Based Diagnosis (CBD) assumes a model
of the normal behaviour of the system [2,3]. Causality models describe a cause-effect relationships.
There are two diagnosis approaches to deal with causality models, set-covering theory of diagnosis [25]
and abductive diagnosis [26,27]. A third way to model a system is by a bayesian network [28], where the
relations between the components are represented by conditional probability tables. Given evidence,
an inferring process is run and produces a diagnosis with some probability. We survey each one of
these approaches next.

General Diagnostic Engine (GDE) is an algorithm to solve the CBD problem [2]. This algorithm
proceeds in two steps: (1) First, it finds conflicts in the system by using assumption-based truth
maintenance system (ATMS) [29]. A conflict is a set of components, which when assumed healthy the
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system theory is inconsistent with the observation. (2) Then the GDE computes the hitting sets of the
conflicts, where each hitting set is actually a diagnosis. Downing [30] proposes a system which extends
GDE to deal with the physiological domain. For this, Downing extends the GDE to cope with (1)
dynamic models by dividing the time to slices and solve the diagnosis problem for each slice, and with
(2) continuous variables by representing the variables qualitatively. He gives some examples from the
physiological domain such as diagnosing the stages of acidosis regulation. Also Gamper and Nejdl [31]
cope with the temporal and continuous behaviour of medical domain. They propose to represent the
temporal relationships between qualitative events in first-order logic and then, given observations,
they run CBD algorithm to diagnose the system. They run experiments on a set of real hepatitis B
data samples.

CASNET [32] is one of the pioneer causal models in medicine. It describes pathophysiological
processes of disease in terms of cause and effect relationships. The relationships between the
pathophysiological states are associated also with likelihood to direct the diagnosis. CASENT even
links a therapy recommendation to the diagnostic conclusion. INKBLOT [33] is an automated system
which utilizes neuroanatomical knowledge for diagnosis purposes. The model includes hierarchy
anatomical model of the central nervous system where the cause effect relationships describe the
connections between and damages and manifestations. Also Wainer et al. [34] describe a cause-effect
model where the causes are disorders and effects are the manifestations. They extend the diagnostic
reasoning, using Parsimonious Covering Theory (PCT) [35], to deal with temporal information and
necessary and possible causal relationships between disorders and manifestations. They demonstrate
their new algorithm on diagnosis of food-borne diseases.

The problem of diagnosis, often shown as a classic example of abductive reasoning, is highly
relevant to the medical domain [36]. As shown in previous papers [27,37], abduction with a model of
abnormal behaviour is much better way than consistency-based to deal with medical diagnosis.
However, not always such knowledge is easy to obtain, since it requires experts to model not
only the normal behaviour, but also how a component behaves in each one of its abnormal cases.
Obviously, this knowledge helps to focus on more meaningful diagnoses, but it is difficult to obtain.
Pukancová et al. [38] focus on a practical diagnostic problem from a medical domain, the diagnosis
of diabetes mellitus. They formalize this problem, using information from clinical guidelines,
in description logic in such a way that the expected diagnoses are abductively derived. The importance
of taking into consideration temporal information in medicine has been previously recognized.
Console and Torasso [39] discuss the types of temporal information which can be represented by
causal networks, and they use a hybrid approach to combine abductive and temporal reasoning for
the diagnosis process.

Bayesian networks (BN) is a probabilistic model using for diagnosis in various domains such as
vehicles [40], electrical power systems [41] and network systems [42,43]. BN describes conditional
probabilities between the components; given evidence (observations), an inference algorithm is used
to compute the probability of each healthy component to propagate the evidence. A classical work
in the medical domain is the Pathfinder, which is designed to diagnose lymphatic diseases using
Bayesian belief networks. It begins with a set of initial histological features and suggests the user
additional features to examine in order to differentiate between diagnoses [44,45]. Velikova et al. [46]
presents a decision support system that can detect breast cancer based on breast images, the patient’s
history and clinical information. To address this goal, they integrate the three approaches to model
the knowledge: consistence-based, causal relationships and Bayesian network. MUNIN is a causal
probabilistic network for diagnosing muscle and nerve diseases through analysis of bioelectrical
signals, with extensions to handle multiple diseases [47,48].

2.2. Troubleshooting

Mcilraith [49] presented the theoretical foundation for sequential diagnosis, where a probe is a
special case of a truth test, which is a test checking if a given grounded fluent is true. This process
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is similar to clinical evaluation, where the PT performs tests to discriminate between diagnoses.
Physiotherapy clinical evaluation is also similar to the active diagnosis problem [50,51], which is the
problem of how to place sensors in a discrete event system to verify that it is diagnosable, given a set
of observations. A very similar problem is the sensor minimization problem [52], where observers are
placed on particular events to make sure the system is diagnosable and the number of observers is
minimized [53]. None of these works reasons about scenarios in which the true state of a component
can be masked by other components to return inconsistent values upon probing. Mirsky at el. [54]
discuss a similar problem, where the presence of a component in the true hypothesis can be inferred
by probes, but they do not reason about a scenario where a specific probe returns one value, while its
true state is the opposite value, as discussed in our work.

To reduce the number of hypotheses, McSherry et al. [55] propose a mechanism for independence
Bayesian framework. The strategy they propose searches for lower and upper bounds for the
probability of the leading hypothesis as the result of each test is obtained. Rather than a myopic
minimum entropy strategy they propose efficient techniques for increasing the efficiency of a search
for the true upper or lower bound for the probability of a diagnostic hypothesis.

Algorithms for minimizing troubleshooting costs have been proposed in the past.
Heckerman et al. [56] proposed the decision theoretic troubleshooting (DTT) algorithm. Probing and
testing are well-studied diagnostic actions that are often part of a troubleshooting process.
Probes enable the output of internal components to be observed, and tests enable further interaction
(e.g., providing additional inputs) with the diagnosed system, providing additional observations
(e.g., observing the system outputs). Placing probes and performing tests can be costly, and thus
the challenge is where to place probes and which tests to fix the system while minimizing these
costs. The intelligent placement of probes and the choice of informative tests have been addressed by
many researchers over the years [6,57–62] using a range of techniques including greedy heuristics and
information gain, which is calculated by comparing the entropy of the hypothesis set before and after a
probe is placed [57]. This approach allows for a clear and straightforward mathematical representation
of complex systems that can be analyzed to provide completeness, soundness and other computational
guarantees. Due to this reason, in this paper we follow the information gain approach and adapting it
to handle hidden fault states of the components in the system.

2.3. Summary and Our Contribution

In the light of previous work we can see that medical diagnosis is a highly researched area.
Most of the previous works can be divided into three approaches: model-based, data-driven and
knowledge-based. The main model-based approaches are consistency-based, causal reasoning and
Bayesian networks. In many cases the diagnosis method depends on the information available to the
researcher. Not always experts exist to help in designing a rule-based system or a model, nor there is
enough historical data which can be exploited to generate a classifier or to learn probabilities.

In this work we used expert PTs to generate a model of the the upper human body which is
innervated by the nerve roots C-3 to T-1. Unfortunately, we did not have historical data to learn the
probabilities of each component to damage nor the conditional probabilities between components.
As far as we know, this knowledge is not modeled for neuro-muscular diagnosis in physiotherapy
for this part of the body. Therefore, our diagnosis and troubleshooting algorithms assume uniform
distribution. Obviously, this can be easily changed given probabilistic knowledge.

The main contribution of this paper is a consistency-based diagnosis and troubleshooting tool,
especially for trainee PTs, that includes: (1) An interactive visual model, which helps a PT to see the
connections between the nerve roots, nerves, muscles and dermatomes. (2) A diagnosis process which
assists the PT to generate hypotheses, given the patient’s symptoms. (3) A troubleshooting process
that proposes the PT a sequence of tests to discriminate the hypotheses and focus on the correct one.
To the best of our knowledge, this is the first tool that combines these components to assist trainee PTs.
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3. Architecture and Interface

The system is constructed of several components in a client-server framework, which is designed
to allow high usability and applicability for PTs in their clinical evaluations. These components are
depicted in Figure 1. A relational database (DB) is implemented using MSSQL to store the connections
between the different entities. The server side is ASP.NET and it connects directly to the DB. After a
connection is established, an Entity Framework is used to map the tables into objects, to allow easier
and faster manipulations on the data. Finally, the client side is implemented using HTML, Javascript
and JSON. The system’s home page is web-based, which allows the user to navigate to one of the
following modules:

Figure 1. Framework description of the system.

Maps The purpose of this module is to provide visualization of the anatomical entities in the human
body, while allowing to focus on different structures. This module contains an inner navigation
bar, to choose between one of several views: root nerves, nerves, muscles, dermatomes and
relations. All maps but the latest focus on different component types and present the names of
the relevant components on an illustration. The relations map is a hierarchical representation
of the connections between the different entities. It is similar to the relationships graph in
the relationships module, but its visualization focuses only on a specific component at a time.
An example of this representation is shown in Figure 2. Clicking on one of the nodes constructs a
graph of the dependencies of this node.

Figure 2. The maps module.
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Relationships The purpose of this module is to allow a thorough investigation of the relations between
the different components of the body. The navigation through the different components can be
performed either by using a drop-down list and choosing a specific item from it, or by clicking
directly on a node in the graph. The complete relationship graph is presented in Figure 3.
This module enables to dynamically navigate from one node to another, a feature which allows
the PT to investigate causal connections.

Figure 3. The relationships module.

Diagnosis The purpose of this module is to diagnose the patient, given a list of symptoms. The initial
screen of this module is shown in Figure 4. This screen contains two lists of possible
symptoms—muscles and dermatomes—which can be added by the PT. When the PT finishes
adding initial symptoms, a click on the “Diagnose” button will trigger a recommendation for the
next component to check, and then the system requests the PT to update whether the test passed
or failed (the component works as expected or not). At any point, the PT can choose to stop this
process and receive a list of the remaining diagnoses.

Figure 4. The diagnosis module.
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4. Technical Description

In this section we will describe technical details about the different parts of PhysIt. Specifically,
we will describe the model we used (Section 4.1), the diagnosis algorithm (Section 4.2) and the
troubleshooting process (Section 4.3).

4.1. Model Description

The first feature of PhysIt is a model of the entities involved in a physiotherapy diagnosis.
We elicited a model of the upper human body which is innervated by the nerve roots C-3 to T-1,
or from head to the upper part of the torso. We acquired the information through interviews with
senior PTs and data gathering from physiotherapy graduate students. The entities we modeled are
Nerve roots, nerves, muscles and dermatomes. The relations between the different entities are described
in Figure 5:

Figure 5. Anatomical entities represented in the diagnosis models.

Nerves are the common pathway for messages to be transmitted to peripheral organs. A damaged
nerve can cause paralysis, pain or numbness in the innervated organs.

Nerve Roots are the initial segments of a nerve affected by the central nervous system. They are
located between the vertebrae and process all signals from the nerves. A damaged nerve root
can cause paralysis, weakened movement, pain or numbness in vast areas of the body.

Muscles are soft tissues that produce force and movement in the body. A damaged muscle can cause
weakness, reduced mobility and pain.

Dermatomes are sensory areas along the skin, which are traditionally divided according the relevant
nerve roots that stimulate them. A damaged dermatome is usually caused by a scar or burn and
can cause pain, numbness or lack of sense.

As can be observed from the list of entities, some of the symptoms overlap each other. Tingling
sensation at the tip of the index finger can be related either to a problem in a nerve root labeled C-7,
to a burn in the relevant dermatome DC-7, or to a problem in a median nerve. Since this work only
focuses on damages to the peripheral nervous system or muscular system, we assume that a symptom
that is expressed in a dermatome is a signal to a damage in either a nerve root or a nerve. Moreover,
the tingling sensation is a cue related to a dermatome, but the dermatome itself is assumed to be
healthy. We will elaborate more on this issue later.

The anatomical data for creating this model was elicited by us using physiotherapy students and
approved by faculty members with clinical experience. We mapped the relations between all pairs of
entities in terms of functionality. A fragment of the elicited relational model is presented in Figure 6.
The nodes represent the different components, the colors indicate their type and an edge indicates that
one node influences or influenced by the other node associated to it.
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Figure 6. The relational underlying model of anatomical entities.

When modeling the human body in the context of the physiotherapy diagnosis process,
the following comments and constraints should be considered:

• The observations are symptoms or cues, reported by the patient or by the PT.
• Each observation is a signal that can be influenced by more than one component in the system.

For example, a tingling sensation in the plantar side of the thumb is a signal from a specific
dermatome called DC-6, which can be influenced by a problem in the respective root nerve C-6,
or from a nerve called radial.

• The health state of a component cannot be directly evaluated, but must be inferred from
observations. Thus, to test the radial nerve described above, the PT will try to cause a tingling
sensation in the thumb or to find weakened movement in the hand extensor.

• The outcome of a test does not always directly implies the health state of a component, but can be
masked by other components in the system. For example, inability to perform shoulder extension
is a signal related to the deltoid muscle, but even when the deltoid is healthy, the extension might
fail due to a problem in the radial nerve or the nerve root C-6.

4.2. The Diagnosis Process

We adapt a model-based diagnosis approach to handle the diagnosis process in PhysIt. Let us
formalize the diagnosis process as a MBD problem [2,3]. Typically, MBD problems arise when the
normal behaviour of a system is violated due to faulty components, indicated by certain observations.

Definition 1 (MBD Problem). An MBD problem is specified by the tuple 〈SD, COMPS, OBS〉 where: SD is
a system description, COMPS is a set of components, and OBS is the observations. SD takes into account that
some components might be abnormal (faulty). This is specified by the unary predicate h(·). h(c) is true when
component c is healthy, while ¬h(c) is true when c is faulty. A diagnosis problem arises when the assumption
that all components are healthy is inconsistent with the system model and the observation. This is expressed
formally as follows

SD ∧
∧

c∈COMPS
h(c) ∧OBS ` ⊥

Diagnosis algorithms try to find diagnoses, which are possible ways to explain the above
inconsistency by assuming that some components are faulty.
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Definition 2 (Diagnosis). A set of components ∆ is a diagnosis if

SD ∧
∧

c∈∆

¬h(c) ∧
∧

c/∈∆

h(c) ∧OBS 6` ⊥

There may be multiple diagnoses for a given problem. A common way to prioritize diagnoses
is to prefer minimal diagnoses, where a diagnosis ∆ is said to be minimal if no proper subset ∆′ ⊂ ∆
is a diagnosis. In this work we will focus on finding minimal diagnoses. Let us formalize the
neuro-muscular diagnosis in physiotherapy in terms of a MBD problem.

4.2.1. COMPS

In our model, COMPS is a set of all nerve roots, nerves, muscles and dermatomes.
Each c ∈ COMPS has a health state described by h(c) ∈ {True, False}. However, since the
physiotherapy clinical evaluation only discusses the neuro-muscular systems rather than other
pathologies such as skin burns, the dermatomes are assumed to be healthy components that are
only used for testing other components. This means that for each dermatome d ∈ COMPS, it holds
that h(d) = True.

4.2.2. OBS

The observations, OBS in our model, are the patient’s weakened motions or defected sensations.
Typically, a patient is not connected to sensors that measure the weakened motion or defected
sensation. Instead, the PT stimulates the component, for instance a muscle, and observes whether
it is defected. To formalize the observation, let us define a test of a component. Given a component
c, we define the predicate testOK(c) ∈ {True, False}, where testOK(c) = True indicates that the
test successfully passed, meaning, the motion or the sensation are not defected. Consequently,
OBS ⊆ {testOK(c) | c ∈ COMPS}.

4.2.3. SD

SD represents the behaviour of the components as well as the influence of each component on the
others. Obviously, it is very hard to formalize the behaviour, even for experts. For example, a problem
in the radial nerve might cause pain in the shoulder area, but it can also cause numbness, weakened
movement or none of these symptoms. Nevertheless, it is possible to formalize that once the inputs of
a component are proper and the component is healthy, then we expect to get proper outputs. Let in(c)
and out(c) be the input and output of a component, respectively. We define the predicate ok(in(c)),
where ok(in(c)) = True indicates that the input of component c is proper. In the same way we define
the predicate ok(out(c)). If a component has more than a single input (output) we will add the index to
the input (output), ini(c) (outi(c)). Also, assume cn and cm represent the number of inputs and outputs
of component c, respectively. Then the next formula states the behaviour of a component:

∀c ∈ COMPS : (
∧

i∈{1,...,cn}
ok(ini(c)) ∧ h(j)) →

∧
i∈{1,...,cm}

ok(outi(c))

In addition, we formalize how a proper output influences a test. Intuitively, proper outputs entails
that a test passed successfully. Thus we add the following formula:

∀c ∈ COMPS : (
∧

i∈{1,...,cm}
ok(outi(c))) → testOK(c)
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Finally, to formalize the connections between the components, we use the inputs and outputs of
the components. If, for instance, the first output of component ci is the first input of cj we add a next
equality: out1(ci) = in1(cj).

We would like to draw the attention of the reader to two conclusions arising from this model:

1. Transitivity: for a given component c, if (1) h(c) = True and (2) every component c′ that affects
c (out(c′) = in(c)) is healthy (h(c′) = True) and (3) the inputs of c′ are proper (ok(in(c′)), then it
must hold that testOK(c) = True.

2. Weak Fault Model (WFM): in this model we describe only the healthy behaviour of a component
rather than its faulty modes. Thus, we cannot conclude anything about the success of a test
(testOK(c)) in case the component is faulty (h(c) = False). In addition, in case a test passed
successfully, we cannot conclude that the component checked by this test is healthy. Only in case
that a test failed, we can conclude that the tested component or one of its antecedents is faulty.

Once we formalized the problem in terms of an MBD, we can use any off-the-shelf MBD algorithms.
MBD algorithms can be roughly classified into two classes of algorithms: conflict-directed and
diagnosis-directed [63]. A classical conflict-directed MBD algorithm finds diagnoses in a two-stage
process. First, it identifies conflict sets, each of which includes at least one fault. Then, it applies a hitting
set algorithm to compute sets of multiple faults that explain the observation [2,4,64]. These methods
guarantee sound diagnoses (i.e., they return only valid diagnoses), and some of them are even complete
(i.e., all diagnoses are returned). However, they tend to fail for large systems due to infeasible runtime
or space requirements [5].

Diagnosis-directed MBD algorithms directly search for diagnoses. This can be done by compiling
the system model into some representation that allows fast inference of diagnoses, such as Binary
Decision Diagrams [65] or Decomposable Negation Normal Form [66]. The limitation of this approach
is that there is no guarantee that the size of the compiled representation will not be exponential in the
number of system components. Another approach is SATbD, a compilation-based MBD algorithm
that compiles MBD into Boolean satisfiability problem (SAT) [5,67], and then uses state-of-the-art SAT
solvers to find the possible diagnoses. We follow a similar line of work here, but instead of a classical
SAT solver we use a conflict-directed algorithm, which allows us to find conflicts in polynomial time
in our domain by using a Logic-based Truth Maintaining System [68]. The number of conflicts and
their size, in our domain, are not so big and enable a standard hitting set algorithm to compute the
diagnoses in a reasonable time.

4.3. The Troubleshooting Process

While the diagnoses computation is feasible, the diagnosis process may still produce a large
set of possible diagnoses. To assist the PT to disambiguate between the diagnoses and focus on the
root cause of the pain, the third feature of PhysIt enables a troubleshooting process. The challenge
in troubleshooting is which test(s) to choose. This process iteratively proposes tests that can discard
incorrect diagnoses and focus on the root cause. We adopt the information gain approach to choose
the tests to perform [6,57,60–62].

Algorithm 1 presents this process. After running the diagnosis algorithm, it creates a list of
possible tests (probes) which include all the components in the diagnosis sets (line 2). It then chooses
the probe that gives us the highest information gain (line 6). In practice, we broke ties randomly.

After querying about the best probe, the algorithm updates the diagnosis set: if the test successfully
passed (probe’s output was true), there is nothing to update (since the model is a weak fault model).
Otherwise, it means that either the probed component or one of its affecting components is faulty.
Hence, the algorithm removes all the diagnoses that do not contain the tested component or one of its
inputs. Lastly, it updates the list of the remaining probes accordingly. This process continues until the
diagnosis set D is not shrunk by the probes anymore. At the end of the process, the algorithm returns
a list of the remaining diagnoses.
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Algorithm 1: Probing Process

Input: 〈COMPS, OBS, SD〉
Output: D: a set of diagnoses.

1 D ← DIAGNOSER(〈COMPS, OBS, SD〉)
2 probesnew ←

⋃
D

3 probes← ∅
4 while probs 6= probesnew do
5 probes← probesnew
6 argmaxc∈probes IG(c, D)

7 if !testOK(c) then
8 D ← remove(D, c)
9 probesnew ←

⋃
D

10 return (D)

The information gain calculation is a standard metric for quantifying the amount of information
gained by testing a component [69]. This can be achieved by comparing between the entropy of the
diagnosis set before and after the test. The entropy of the diagnosis set D is defined as

Ent(D) = − ∑
∆∈D

P(∆) · log(P(∆)) (1)

where P(∆) is the probability of the diagnosis ∆. If the components fail independently of each other,
then P(∆) = ∏c∈∆ P(c), where P(c) is the probability of component c to fail. Without prior information,
a common assumption is a uniform distribution of the components to fail [10,11]. The information
gain from a probe is the difference between the entropy of the set D before the test of c and the entropy
of the set D′ remains after the test: IG(D|c) = Ent(D)− Ent(D′).

5. Performance Analysis

We evaluated the diagnosis correctness and the troubleshooting performance in PhysIt using
empirical analysis of the outputted diagnoses, based on metrics from information retrieval and
diagnostics. These metrics were evaluated both on simulated scenarios, and on case studies
representing common scenarios we received from PTs. We first present the methodology of the
scenario generation (Section 5.1) and the results on these scenarios (Section 5.2). Then we present the
results on scenarios based on real-world clinical experience (Section 5.3).

5.1. Scenario Simulator

In order to evaluate the system, we built a simulator that checks the system’s accuracy and
efficiency using different metrics. The simulator has several steps in the fault injection and observation
process. At first, the simulator chooses 1 to 5 faulty components, randomly. These components are used,
at the end of the diagnosis process, as a ground truth to check the correctness of the diagnoses outputted
by our diagnosis algorithm. We name these injected faulty components as “the real diagnosis”.

Next, the simulator collects all components that can be relevant to the real diagnosis: This set
includes all the components that were injected as faulty, and the set of components that can be affected
by them. For example, nerve root C-6 is connected directly to Radial, Median and other nerves and
connected indirectly to Brachialis, Extensor Carpi Ulnaris and other muscles. In this case, the root
nerve C-6 is above all in the hierarchy, meaning that any of the components found below it can be
affected by it.

Then, the simulator labels these potentially affected components with a value of !testOK with a
probability of 0.5. This labeling simulates the answer of a real TP, if the component will be tested in
the troubleshooting process. All other components automatically get the value testOK for their test.
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The simulator makes sure that every component in the real diagnosis has at least one symptom that
explains its presence and sets the value of this symptom to !testOK. This step is designed to make sure
the completeness of the diagnosis process and that it will not miss the real diagnosis.

At last, out of the set of the symptoms labeled with !testOK, the simulator chooses symptoms that
will form the observation set of the real diagnosis. We set the number of observations to be blocked
from above by the cardinality of the number of faulty components. For example, in case of four faulty
components, the range of the observation set size is between 1 to 4.

5.2. Results

We modeled 75 components in the system. We ran the simulator on all possible faults with a single
component, and randomly created additional 150 instances per fault cardinality for cases with 2–6
components. In total, we got 825 instances. Out of these instances, 270 diagnoses contained two of more
faulty components with a shared affecting component. We discarded these cases, since they cannot be
considered under the assumption of minimal cardinality. Thus, the simulator finally outputted 555
different cases. We analyzed the results with several metrics:

5.2.1. Diagnosis Set Size

This metric measures the outputted set of diagnoses before and after the troubleshooting process.
As seen in Figure 7, the number of diagnoses grows exponentially with the number of reported faulty
components. Blue and green bars refer to the diagnosis set before and after the troubleshooting process,
thus it can be seen that the troubleshooting process succeeds in decreasing the number of diagnoses
even by a half. The more faulty components the more effective the troubleshooting algorithm is in
reducing the number of diagnoses.

Figure 7. Number of diagnoses before and after the troubleshooting process.

5.2.2. False Positive Rate (FPR)

This metric measures the FPR of the outputted set of diagnoses before and after the
troubleshooting process. FPR is measured for each diagnosis separately. The formula of this metric
is: FPR = FP/N = FP/(FP + TN), where FP is the number of components in the diagnosis that are
not really faulty and TN is the number of components that are not in the diagnosis and are healthy.
To compute the FPR of the whole set of diagnoses, we computed the weighted FPR, by multiplying
the FPR of each diagnosis by its probability. Since the probabilities of the diagnoses are normalized
the computation of the weighted FPR is correct.

The x-axis in Figure 8 refers to the number of faulty components while the y-axis refers to the
FPR value. Blue and green bars refer to the diagnosis set before and after the troubleshooting process,
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correspondingly. The lower FPR the better. There is a positive correlation between the number of
faulty components and the FPR value, since the more faulty components the more diagnoses contain
false positive components. Nevertheless, we can see two positive results: (1) the FPR is low even when
the faulty components number increases, (2) the troubleshooting process reduces the FPR.

Figure 8. False positive rate of the simulated scenarios.

5.2.3. Area Under the Curve (AUC)

To explain this metric we should define first the term Health State, which has recently proposed
by Stern et al. [10,11]. The health state indicates the probability of each component to be faulty, given a
set of diagnoses D and a probability function over them p:

H(c) = ∑
∆∈D

p(∆) · 1c∈∆ (2)

where 1c∈∆ is the indicator function defined as:

1c∈∆ =

{
1 c ∈ ∆
0 otherwise

Based on the health state, Stern et al. propose the AUC metric. The AUC is usually used in
classification analysis to determine if the model predicts the classes well. In order to calculate the AUC
value, we calculate the FPR and TPR of 11 thresholds values, 0 to 1 in hops of 0.1. Each threshold value
creates a pair of values (FPR and TPR) which eventually becomes a point on the Receiver Operating
Characteristic curve (ROC). The AUC is the area under the ROC curve. The higher the AUC the more
accurate health state. Each threshold determines the set of components for which the FPR and TPR are
calculated. All components have a higher health state than the threshold are taken into consideration.

As seen in Figure 9, the x-axis refers to the number of the faulty components while y-axis refers to
AUC value. Blue and green bars refer to the diagnosis set before and after the troubleshooting process,
correspondingly. There is a negative correlation between the number of faulty components and the
AUC, since the number of diagnoses grows with the number of faulty components and thus the health
state is less accurate. Furthermore, the AUC of the health state computed for the set of diagnoses
before the troubleshooting process is lower than the AUC calculated after the troubleshooting process.
This shows the benefit of the troubleshooting process.
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Figure 9. Area under the curve of the simulated scenarios.

5.2.4. Top-K

This metric is known in the information retrieval literature. It checks whether the real diagnosis
exists in the top-K diagnoses returned by the algorithm, where K is a number between 1 to 5.
The diagnoses are ranked in a decreasing order of their probability. As seen in Figure 10, the x-axis
refers to the K value while the y-axis refers to the ratio of instances that had the faulty components in
the top-K diagnoses. Blue bars refer to initial diagnosis, while final diagnosis are presented by green
bars. As the value of K increases, the chance to be in the top K increases too. It is clear that the final set
of diagnoses shows better results than the initial set which means that the troubleshooting algorithm is
indeed a helpful tool to reduce the size of the diagnosis set while improving the localization of the
real diagnosis.

Figure 10. Top-K of the simulated scenarios.

All of the above experiments were conducted under the strict assumption that a faulty component
may be assigned !testOK with a probability of 0.5. In practice, this probability is expected to be closer to
1 than to 0.5. Therefore, all experiments were repeated such that the simulator always assigns !testOK
to a faulty components and the components it affects. Table 1 summarizes the results of the evaluated
metrics so far, using this relaxed assumption, in order to show the real potential improvement of
using this system. The rows represent the metrics and the columns represent the number of faulty
components. For each metric and cardinality, we compared the initial and final values and present
the improvement in the metric in percentage. This table emphasizes that the bigger the cardinality,
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the more difficult the problem is to solve. However, the benefit of using the troubleshooting process
is clear: the process manages to remove irrelevant diagnoses (according to the improvement in the
wasted cost and top-5 metrics), without hindering the correctness of the results (since the FPR only
improves). Moreover, the improvement of the troubleshooting becomes greater as the number of faulty
components increases.

Table 1. Improvements in metrics per number of faulty components. *—initial value was 0. **—initial
and final values were both 0.

Metric 1 2 3 4 5

FPR 0.11 0.08 0.06 0.03 0.04
AUC 0.01 0.05 0.05 0.01 0.03

Wasted Effort 0.15 0.25 0.42 0.44 0.54
Top-5 0.05 0.24 0.67 1.00 ∗ 0.00 ∗∗

5.2.5. Comparing to Random

Finally, we show the benefit of the troubleshooting algorithm comparing to a random approach.
The random approach chooses randomly the next component to test from a set which includes the
union of all the diagnoses. Obviously, both the information gain algorithm as well as the random
algorithm will finally invoke the same set of tests and the final set of diagnoses will be the same.
However, the order of invoking the tests is different between the two algorithms, and might affect how
fast the diagnosis set is reduced. Figure 11 shows the influence of the order of the tests (x-axis represents
the number of tests) on the number of diagnoses. As shown, the troubleshooting algorithm which
uses the information gain reduces the size of the diagnosis set faster than random. Even after using a
single probe, the random algorithm reduces the number of diagnoses by 38%, and the information
gain algorithm manages to reduce it by 47%. This is a significant difference across the examined cases
(p < 0.01). We repeated this experiment for different cardinalities (number of faulty components),
and the reduction trends remain the same for all cardinalities (1 to 5).

Figure 11. Reduction of the diagnosis set.

5.3. Real-World Scenarios

With the help of experts from the Physiotherapy Department in Ben-Gurion University of the
Negev, we modeled 17 representative scenarios of common cases, which are in use in physiotherapy
anatomy exams. As these are written scenarios and not clinical evaluation performed on real patients,
the value of some of the components is unknown, and the results of any test performed in order
to reduce the possible diagnosis set will have to be simulated. Simulating test results for this
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lack of values will not benefit new insights beyond the ones already received from the simulated
cases. Instead, we focus this evaluation on the correctness of the outputted diagnosis set before the
troubleshooting process.

In 16 out of the 17 cases investigated, the outputted diagnosis set contained the real diagnosis as
reported by the PTs. In a single case, the real diagnosis was not a minimal one - but a combination of
two nerve roots C-5 and C-6. According to the constructed model, all the symptoms could be explained
exclusively by C-6, so the diagnosis {C-5, C-6} is redundant. Since our diagnosis algorithm searches
for minimal subset diagnoses it missed this diagnosis.

Due to the completeness property of our troubleshooting process, in 16 out of the 17 cases the
system managed to decrease the size of the diagnosis set without removing the correct diagnosis.
These results show that even in realistic scenarios conducted by experts PhysIt found sound diagnoses
and succeeded to reduce the diagnosis set without missing the real diagnosis.

6. User Study

The promising results of the diagnosis system both on simulated and real scenarios, encouraged us
to test the system in a human study, in order to show its ability to assist students in their physiotherapy
studies. There is a variety of books and atlases that teach students anatomy [70–72]. However, to the
best of our knowledge, no system is in use to assist physiotherapy students in the beginning of their
clinical studies. For this reason, we devised a user study to evaluate the usefulness of PhysIt specifically
for students in an advanced stage of their physiotherapy studies.

Experimental Setup

The experiment consists of simulations of clinical diagnoses with and without the various modules
of the PhysIt system (maps, relationships and diagnosis), following by a questionnaire to evaluate the
students’ experience with the system. We constructed a wrapper to our system with a landing page
that can direct the user to the three different modules of PhysIt and to a simulator that imitates the
diagnosis process.

The simulator begins with a list of symptoms that represent the patient’s complaints at the
beginning of a diagnosis process. Then, the participant (the experimenter) could choose a test from a
list of dermatomes, muscles, nerves and nerve roots. The simulator simulates the test of the selected
component by the physiotherapist and returns whether the test passed successfully (the selected
component is healthy) or unsuccessfully. This process is done as long as the experimenter wishes to
perform tests. The cases that were chosen for the simulator are based on the 17 expert case studies.
As these cases do not elaborate the results of all possible tests, the results of unknown tests were chosen
as follows. For a component that is clearly unrelated to the patient’s symptoms, the relevant test
returns that the component is healthy; for a component that is clearly related to the patient’s symptoms,
the test returns that the component is not healthy; and for a component that might be connected to
one of the symptoms, the test result will be chosen at random. The simulated scenario ends when the
participant decides on a diagnosis. The participants were not informed with the correctness of their
responses, so it will not affect their answers about their experience with the system. A screenshot of
the simulator is presented in Figure 12.

The three modules of PhysIt that were evaluated are: maps, relationships and diagnosis (see
Section 3 for details). The participants were divided into three groups, such that each one of them
had an access to a different subset of the system modules. The first group could only use the maps
module; the second could use the maps and the relationships modules; and the third could use all of
the three modules.
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Figure 12. A snapshot of the user study simulator.

In addition to the simulations and recorded test sequences and diagnoses, the participants were
requested to answer a questionnaire about their experience with the system. The questionnaire
consists of the following questions:

1. Improve: Did the system improve your choice of tests to perform?
(yes/no)

2. Clear: Was the system easy to understand?
(5-point scale)

3. Use: Was the system easy to use?
(5-point scale)

4. Preference: Which of the components did you use the most?
(choice between available components)

5. Open: In your opinion, was there something that was missing in the system?
(open question)

Thirty one participants in the third year of their physiotherapy studies were divided into three
groups: The first group consisted of 10 student and received access to the maps module of the PhysIt
system (the Maps group); the second consisted of 10 students and received access to both the maps
and the relationships module (the Relationships group); and the third group consisted of 11 students
and received access to all components of the PhysIt system (the Diagnosis group).

Figure 13 shows the results of the first question (Improve) and the fourth question (Preference).
As seen on the left side of the figure, the Relationships and the Diagnosis modules are considered by the
subjects to improve their diagnosis process significantly more than the Maps module (p = 0.027 and
p = 0.012 respectively). The Fleiss’ Kappa agreement between the subjects is 81% in the Relationships
group and 66.3% in the Diagnosis group. As seen on the right side of the figure, out of the participants
in the Diagnosis group, 55% preferred the diagnosis module over the other modules of the system.
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Out of the students in the Relationships group, all students preferred the Relationships module over
the Maps module. The results of the other general questions (Clear and Use) seem to be a slight
preference to the diagnosis module over the other modules but they this preference is statistically
insignificant. We have also calculated precision and recall for the diagnoses returned by the students
compared to the root problem, but these results were insignificant as well.

Figure 13. Results for Improve and Preference questions from the user study.

For the Open question about what is missing in the system, the most common answer was that
the system is missing a preliminary layer where patients can describe their symptoms (e.g., “The
patient will complain on a tingling sensation, numbness, pain or weakness, not on a NOT-OK deltoid").
The patient’s complaints from this preliminary layer might later be connected to other components.
Another reoccurring answer complements that the system lacks more detailed diagnoses (“e.g., the root
cause of a problem is Tennis elbow rather than a NOT-OK Extensor Carpi Radialis Brevis" and “It would
be nice to add to the diagnosis whether this is a chronic or acute condition"). Overall, it seems like the
participants felt that the system over-simplified the diagnosis process, but was still considered useful
as an educational tool.

7. Conclusions and Future Work

In this work, we presented PhysIt, a tool for diagnosis and troubleshooting for physiotherapists.
We managed to apply an MBD approach in the real world, using a physiotherapy-related domain.
We applied a classical MBD algorithm to compute diagnoses given some symptoms and showed
that a troubleshooting process can significantly decrease the number of candidate diagnoses,
without discarding the correct diagnosis. Experiments on synthetic scenarios show the benefit of the
troubleshooting algorithm. Additional experiments on real scenarios show the potential benefit of
PhysIt to reduce the set of diagnoses without hindering completeness. A user study conducted with
students shows that the system could potentially be in use for physiotherapy studies in the beginnig
of clinical training.

From discussing this work with many PTs who are familiar with clinical evaluation and diagnosis,
it seems that several desired properties are necessary in the future:

1. A malfunction in the muscle is usually reported by the patient as a mobility issue. Identifying the
relevant muscle based on motion disability or pain is part of the clinical evaluation, which is not
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presented in our model. We intend to extend the system to include “movement” entities and their
relations to muscles and nerves.

2. In practice, most tests do not output a binary result and a component can have more states rather
than testOK and !testOK. We wish to augment probabilities in our model - both to represent a
degree of “faultiness” and to be able to evaluate the impact of batches of tests.

3. As shown in previous papers, abduction with a model of abnormal behaviour is a much better
way to deal with medical diagnosis. To this aim we plan to achieve more information about the
abnormal behaviour of components and integrate it in our model in order to discard redundant
diagnoses.
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