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Exploring role of 5hmC as potential marker of chemoresistance
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ABSTRACT
Chemoresistance remains to be a common and significant hurdle with all chemotherapies. Tumors gain 
resistance by acquiring additional mutations. Some of the chemoresistance mechanisms are known and 
can be tackled. However, the majority of chemoresistance mechanisms are unknown. Our recent findings 
shed light on one such unknown mechanism. We identified a novel role for 5-hydroxymethycytosine 
(5hmC), an epigenetic mark on the DNA, in maintaining the integrity of stalled replication forks and its 
impact on genomic stability and chemoresistance.
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Germline mutations in Breast Cancer 1 (BRCA1) and Breast 
Cancer 2 (BRCA2) genes are the major causes of hereditary 
breast cancer.1 The protein encoded by these genes is known to 
play an important role in the repair of double-strand breaks 
(DSB) by homologous recombination (HR). Loss of HR ren-
ders BRCA1 and BRCA2-deficient cancer cells sensitive to Poly 
(ADP-ribose) polymerase inhibitors (PARPi). However, 
tumors eventually acquire mutations to gain chemoresistance. 
PARPi resistance in BRCA-deficient cells has been shown by 
multiple mechanisms. Some of the known mechanisms are 
associated with the restoration of BRCA functions such as 
homologous recombination and replication fork protection.2– 

5 In our recently published study,6 we investigated novel reg-
ulators of PARPi resistance using genome-wide siRNA screen 
in mouse embryonic stem cells (mESC). We found the loss of 
Ten Eleven Translocation 2 (TET2) to contribute to PARPi 
resistance in mESC expressing mutant BRCA2 as well as in 
a Brca2-deficient mouse mammary tumor cell line. Resultant 
chemoresistance was due to stalled replication fork (RF) stabi-
lity, which has been shown to contribute to PARPi resistance.4 

Tet2 knockdown conferred resistance to multiple PARPi and 
also to cisplatin in Brca2-deficient cells. BRCA1-deficient cells 
also exhibited PARPi resistance upon TET2 knockdown by 
abrogating RF degradation.

TET2 is a metabolic enzyme that oxidizes 5-methylcytosine 
(5mC) to 5-hydroxymethycytosine (5hmC), 5-formylcytosine 
(5fC), and 5-carboxylcytosine (5CaC) during DNA 
demethylation.7 Although 5hmC was detected in mammalian 
cells in 1972, its role as an epigenetic marker remains to be fully 
understood.8 Initially, 5hmC was considered to be 
a demethylation intermediate of the cytosine cycle. Recent 
studies have shown its role in regulating gene expression, 
mammalian development.9 In our study, we uncovered 
a novel role for 5hmC in maintaining replication fork stability. 
Using proximity ligation assay (PLA) we detected an increase 
in 5hmC on stalled replication forks. Our mechanistic studies 
revealed that the 5hmC-marked replication forks were 

degraded by base excision repair (BER) associated Apurinic/ 
apyrimidinic endonuclease 1 (APE1). We, therefore, hypothe-
sized that loss of TET2 may reduce 5hmC levels and protect 
stalled RF from APE1-mediated degradation. Conversely, 
treatment with Vitamin C, a known cofactor for TET2 or 
overexpression of TET2 may enhance global 5hmC levels and 
lead to APE1-dependent RF degradation. Indeed, vitamin 
C treatment enhanced fork degradation in BRCA2-deficient 
cells. Notably, TET2 overexpression increased global 5hmC 
levels significantly enough to cause RF degradation even in 
BRCA2-proficient cells. We showed that TET2- 
overexpression can increase genomic instability in U2OS 
cells. We observed an increase in radial structures in metaphase 
spreads of TET2 overexpressing U2OS cells, likely due to 
increased replicative stress.

Since its recognition as an epigenetic mark, the role of 
5hmC has been established in regulating gene expression. 
Although we did not observe any changes in expression of 
genes associated with RF stability in Tet2 knockdown mESC 
and mouse mammary tumor cells, we cannot completely rule 
out the indirect effects of TET2 knockdown on gene expression 
and its impact on RF stability. Mass spectrometric quantitation 
suggested a global increase in 5hmC levels and PLA detected 
higher 5hmC levels on replication fork in BRCA2 deficient 
cells, possibly due to higher intrinsic DNA damage in cells. 
Inhibition of APE1 resulted in partial rescue of RF degradation 
in BRCA2-deficient cells. This provided direct evidence to 
support a physiological role played by APE1 in stalled RF 
degradation when 5hmC levels are high. Surprisingly, when 
BRCA2-deficient cells were treated with Vitamin C, APE1 
inhibition completely protected RF degradation but MRE11 
nuclease inhibition did not. We hypothesize that the affinity 
of MRE11 may be reduced to RF with elevated 5hmC levels. It 
is also possible that BER-associated proteins may prevent 
MRE11 localization to stalled RF in BRCA2-deficient cells. 
Future studies will be focused on assessing the binding affinity 
of MRE11 to DNA substrates with varying 5hmC levels.
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Our recent study clearly demonstrated that APE1 endonu-
clease degrades stalled RF in a 5hmC dependent manner. 
5hmC is further oxidized by TET proteins to 5fC and 5caC 
and these are processed by glycosylases leading to the genera-
tion of abasic sites on the DNA. These abasic sites are sub-
strates for APE1 endonuclease. Since the loss of TET2 reduces 
5hmC levels, we hypothesize that this will also reduce the 
number of abasic sites on the DNA, including stalled forks in 
BRCA-deficient cells. Fewer abasic sites may render stalled 
forks less susceptible to APE1-mediated degradation, which 
can contribute to PARPi resistance. Our findings are supported 
by a recent study that found Thymine DNA glycosylase (TDG) 
loss to confer PARPi resistance. PARP trapping mechanism of 
chemoresistance was ruled out but the exact mechanism was 
not elucidated in this study.10 We speculate that loss of TDG 
prevents the generation of abasic sites thus rendering RF 
immune to degradation by APE1.

In conclusion, our findings suggest that the stability of RF is 
dependent on the levels of 5hmC on nascent strand (Figure 1). 
5hmC production gets stimulated in response to DNA 
damage.11 Thus, any tumor with elevated intrinsic DNA 
damage such as BRCA1/BRCA2 mutated tumors should have 
higher 5hmC levels. Our findings can be exploited for thera-
peutic purposes. We propose that treating PARPi resistant 
BRCA-deficient cells, that are defective in HR but have 
acquired resistance due to RF stability, treatment with 
Vitamin C may enhance RF degradation and re-sensitize the 
cells to PARPi. Also, 5hmC levels are greatly reduced in tumor 
samples in comparison to surrounding tissue, because tumor 
microenvironment exhibits hypoxic conditions which 
diminishes TET activity.12 Thus, low 5hmC levels in the 
tumors can be associated with chemoresistance. If such 
a distinct variation in 5hmC levels exists, then tumors can be 
categorized based on 5hmC levels. 5hmC levels can be tested in 
tumor biopsies from patients and suitable treatment option can 
be made available. If Vitamin C-mediated re-sensitization of 
BRCA-deficient cells to PARPi is successful, it can be used as 
an adjuvant to PARPi therapy in other HR defective tumors.
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