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a b s t r a c t

The divalent zinc ion is a cation that plays an indispensable role as a structural constituent

of numerous proteins, including enzymes and transcription factors. Recently, it has been

suggested that zinc also plays a dynamic role in extracellular and intracellular signaling as

well. Ion channels are pore-forming proteins that control the flow of specific ions across

the membrane, which is important to maintain ion gradients. In this review, we outline the

modulatory effect of zinc on the activities of several ion channels through direct binding

of zinc into histidine, cysteine, aspartate, and glutamate moieties of channel proteins. The

binding of zinc to ion channels results in the activation or inhibition of the channel due to
zinc

zinc binding

conformational changes. These novel aspects of ion-channel activity modulation by zinc

provide new insights into the physiological regulation of ion channels.

© 2015 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access

of genes involved in zinc trafficking: transporters regulating
the influx and efflux of zinc (solute-linked carriers SLC39/ZIPs
1. Introduction

Zinc is the 24th most abundant element in the Earth’s crust
and is considered an essential biometal.1 Apart from zinc’s
role as a building block for proteins or enzymes, recent stud-
ies highlight its dynamic activity as an intracellular signaling
molecule. Zinc plays a role in cell–cell communication, signal
transduction from extracellular stimuli to intracellular sig-
nals, and control of intracellular events.2–9 Moreover, many

human diseases including cancer, diabetes, osteoporosis, der-
matitis, and autoimmune and neurodegenerative disorders
are associated with dysregulation of zinc homeostasis. Zinc

∗ Corresponding author. National Research Laboratory for Mitochondri
diovascular and Metabolic Disease Center, Inje University, Bokji-ro 75,

E-mail address: phyhanj@inje.ac.kr (J. Han).
1 These authors contributed equally to this work

http://dx.doi.org/10.1016/j.imr.2015.07.004
2213-4220/© 2015 Korea Institute of Oriental Medicine. Published by Else
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

compounds are normally colorless, and in its natural status,
zinc is stable as a divalent cation, unlike other bioactive metals
such as iron and copper. Recently, zinc ions have attracted a
lot of attention as physiological and pathophysiological medi-
ators. Zinc is found in almost every tissue in the body; however,
free zinc ions cannot cross the plasma membrane by simple
diffusion. Therefore, cellular and whole-body zinc homoeosta-
sis is maintained through the regulation of the expression
al Signaling, Department of Physiology, College of Medicine, Car-
Busanjin-gu, Busan 47392, Korea.

and SLC30/ZnTs, respectively) and the intracellular zinc-
binding protein metallothionein.10 In certain cases, however,
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required for its activation.22 This aspect of zinc binding on
. Noh et al/Zinc and ion channels

ntracellular entry of zinc can also be induced by Ca2+-
onducting channels that take part in the transport of zinc
cross the plasma membrane.11

Ion channels are protein pores located in the membrane
f nearly all cells and many intracellular organelles, where
hey regulate the selective movement of ions via filter and
ating mechanisms.12 Divalent cations, including calcium,
agnesium, and zinc, act as second messengers in the regula-

ion of intracellular signaling pathways, whereas monovalent
ations, such as sodium and potassium, mainly regulate
he membrane potential and thereby indirectly control the
nflux of calcium.8 Based on their channel-opening properties,
on channels can be broadly classified as either voltage-
ated, ligand-gated, second messengers-gated, light-gated, or
echanosensitive channels.13 These ion channels play a piv-

tal role, not only in the generation of a membrane potential,
ut also in numerous other cellular processes, including signal
ransduction, hormone secretion, neurotransmitter release,

uscle contraction, volume regulation, growth, motility, and
poptosis.12,14,15 Channel activities can be modified by muta-
ions in ion channel genes, drugs, or many natural products
erived from animals and plants.12

Over the past 3 decades, researchers have sought to deter-
ine the effect of zinc through electrophysiology studies12

ince divalent metal cations are able to modify the gating
f ion channels.16 While calcium binds almost exclusively
o oxygen donors, zinc displays broad selectivity with regard
o coordination environments, as it employs oxygen, nitro-
en, and sulfur donors from its ligands. Protein function is
ontrolled by its structure and status of charge.17 The biolog-
cal effects of zinc occur at much lower concentrations than
alcium and manifest as protein inhibition, redox-switches,
r protein-interface stabilization.18 Zinc ions bind with a
igh affinity to aspartate, cysteine, glutamate, and histidine
esidues of proteins compared with other amino acids, and
ence their dissociation rates are slow, resulting in long-

asting biological effects.19 For example, the activity of an
nzyme can be directly inhibited by chelation of zinc to the
atalytic cysteine residue, but allosteric inhibition can be
ttributed to zinc binding at a cysteine distal to the active site
f the enzyme.18,20 The availability of zinc in the cell influ-
nces protein function, most evidently via direct interaction
ith proteins. Histidine (imidazole group, (CH)2N(NH)CH), cys-

eine (thiol group, –C–SH or R–SH), aspartate, and glutamate
carbonyl oxygen, C=O) have potential binding regions with an
lectrical charge for coordination with zinc.21,22 Thus, these
exible coordination geometries within proteins allow zinc to
ause a rapid conformational shift and consequent biological
eactions.23

Based on the chemical characteristics of zinc, ion chan-
els that possess amino acids with a high affinity to zinc
ould be influenced by both the extracellular and intracellu-
ar zinc pools. Ion channel regulation by zinc may result in
he activation or inhibition of the ion current, depending on
he zinc concentration and/or the extracellular or intracellu-
ar action site (Table 1). A comprehensive summary of all ion
hannels affected by zinc is beyond the scope of our short

eview. Instead, we will briefly summarize the current findings
n the effects of zinc on some major ion channels, including
otassium (K+), calcium (Ca2+), sodium (Na+), ligand-gated,
143

and acid-sensing channels. This will lead to a better under-
standing of the interplay between zinc and ion channels and
will expand our knowledge on the (patho)physiological activ-
ity of other ion channels that are likely to be affected by zinc.

2. Ion channel activity and its modulation
by zinc

Cellular ion channel activity is determined by the total num-
ber of channel proteins present at the membrane and by
their individual activity and/or kinetics, which is controlled by
post-translational and oxidative modifications.24 Many clini-
cal drugs and natural toxins affect the activity of numerous
channels.12 It has also been suggested that metal ions, includ-
ing zinc, could affect ion channels either by blocking the
current or by modifying the gating through screening of fixed
surface charges, metal binding to fixed charges, or nonelectro-
static effects on the gating.25

2.1. Potassium channels and zinc

Potassium ion (K+) channels modulate the resting membrane
potential in many cells and their dysfunction leads to cardiac,
neuronal, renal, and metabolic disease.12,26,27 In voltage-gated
ion channels, the voltage sensor formed by four transmem-
brane helical segments (S1–S4) partially faces the lipid bilayer
and thus can interact both with the membrane itself and with
physiological and pharmacological molecules.13 This struc-
tural characteristic of voltage-gated ion channels makes them
susceptible to conformational changes upon zinc binding, and
these changes can result in the activation or inhibition of the
channel. As shown in Table 1, zinc can change the opening
properties of K+ channels in the oocytes of Xenopus species
and in mammalian L929 cells.28 Zinc reduces the ion current
of the human ether-a-go-go channel (Kv11.1) through interac-
tion with histidine residues of the channel. In addition, the
activation of the ether-a-go-go family of K+ channels, Kv10.2
and Kv12.1, is slowed by zinc binding on the channel’s aque-
ous cleft in the extracellular region.29 Extracellular binding of
zinc to the Kv1.4 and Kv1.5 channels also leads to inhibition of
their activities.30,31 Kv1.2 channels, by contrast, are insensitive
to zinc ions.32

In contrast to some voltage-gated K+ channels, transient
receptor potential channel A1 (TRPA1),33 the pancreatic ATP-
sensitive K+ channel (KATP), and large-conductance voltage-
and Ca2+-activated Slo1 K+ (BK) channel19,34 can be directly
or indirectly activated by a rise in intracellular zinc levels
(Table 1). TRPA1 can be activated indirectly in response to
zinc entry through ion channels, such as L-type Ca2+ chan-
nels, and is activated irrespective of the membrane potential
and affects the sensing of pain and cold insult.33,35 A rise in
extracellular zinc levels is less effective, since extracellular
zinc does not increase TRPA1 channel activity in somatosen-
sory neurons.36 The binding of zinc to glutamate, histidine,
and cysteine residues of the intracellular domain of TRPA1 is
the activation of TRPA1 may explain some of the pathologi-
cal consequences of zinc toxicity.36 Intracellular zinc activates
KATP channels in both the pancreas (sulfonylurea receptor
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Table 1 – Direct effect of zinc binding on ion channels

Channel type Binding site Effect

Potassium channel
Transient receptor potential channel A129,33 His or Cys residue in intracellular region Activation
BK (MaxiK, Slo1, or KCa1.1) channel34 His, Glu, or Asp in intracellular region Activation
ATP-sensitive K+ channel (KATP, Kir6.2)55,56 Phosphorylation of Thr180/Ser372 residue Activation/inhibition
Human ether-a-go-go channel (Kv11.1)28 Extracellular region Inhibition
Ether-a-go-go channel (ERG, Kv12.1, Kv10.2)29 His328 of S4 in extracellular region Inhibition
Voltage-dependent K+ channel (Kv) 1.331 Extracellular region Inhibition
Voltage-dependent K+ channels (Kv) 1, 4, 530,31 Extracellular region Inhibition

Calcium channel
Voltage-dependent Ca2+ channel (CaV) 1.235,42 Extracellular region of �1C subunit Inhibition
CaV2.142 Extracellular region of �1A subunit Inhibition
CaV2.242 Extracellular region of �1B subunit Inhibition
CaV3.142 Extracellular region of �1G subunit Inhibition
CaV3.242 Extracellular region of �1H subunit Inhibition
CaV3.342 Extracellular region of �1I subunit Inhibition
Store-operated Ca2+ channel43 Cys residue in extracellular region Inhibition

Ligand-gated channel Inhibition
N-methyl-D-aspartate (NMDA) receptor channel57 Extracellular region of GluN2 subunit Inhibition
�-aminobutyric acid (GABA) receptor channel45 Extracellular region Inhibition
Dopamine receptor channel44 Extracellular region Inhibition

Sodium channel
Tetrodotoxin-sensitive Na+ channel58 Extracellular region Inhibition
Tetrodotoxin-resistant Na+ channel58 Extracellular region Inhibition
Saxitoxin (STX) -blocked Na+ channel48 Extracellular region near STX binding site Activation/inhibition
Epithelial Na+ channel (EnaC)49 His and Asp in extracellular region Activation
Na+/H+ exchanger (NHE)59 Intracellular region inhibition

Acid-sensing ion channel (ASIC)
ASIC160 Lys133 in extracellular region of ASIC1 Inhibition

nnel;
Asp, aspartate; BK, large conductance Ca2+-activated potassium cha
Thr, threonine.

1/Kir6.2) and the heart (sulfonylurea receptor 2A/Kir6.2) in a
dose-dependent manner by binding sites near or on the sul-
fonylurea receptor protein.34 Similarly, BK channels, which are
allosterically modulated by voltage and intracellular Ca2+ lev-
els, can also be activated by a rise in intracellular zinc levels,
which, similar to Ca2+ binding, leads to structural rearrange-
ments of the BK channel.29,33

2.2. Calcium channels and zinc

Ca2+ channels are selective for Ca2+ ions and regulate cel-
lular calcium concentrations, which are critically important
in the regulation of excitability, exocytosis, motility, apopto-
sis, and transcription.17 Ca2+ channels can roughly be divided
into two classes: (1) voltage-dependent Ca2+ channels, and
(2) ligand-gated Ca2+ channels such as the inositol trisphos-
phate receptor, ryanodine receptor, and store-operated Ca2+

channel (SOCC).37 It has previously been found that zinc can
replace Ca2+ in the binding sites of numerous transport pro-
teins such as the mitochondrial Ca2+ transporter and the Ca2+

channels located in excitable membranes.38 Although extra-
cellular zinc cannot cross the cell membrane by diffusion,
some Ca2+-permeable channels such as voltage-dependent
Ca2+ channels, N-methyl-d-aspartate receptors, and amino-
3- hydroxy-5-methyl-4-isoxazolepropionate receptors are also

permeable to zinc.39 Zinc can only pass through the L-type
Ca2+ channel when Ca2+ levels are low, because zinc has
a lower affinity than Ca2+.38,40 However, zinc could strongly
suppress the high-voltage dependent activated-Ca2+ channel
Cys, cysteine; Glu, glutamate; His, histidine; Lys, lysine; Ser, serine;

including L-type and N-type Ca2+ channels, even in the pres-
ence of sufficient Ca2+ levels.35,40,41 Based on experiments in
human embryonic kidney tsA-201 cells,42 the sensitivity of
Ca2+ channels to zinc binding depends on whether zinc binds
to the �1 pore region of the Ca2+ channel, as this region is
crucial for selectivity and channel conductance (Table 1).

SOCCs refill intracellular Ca2+ stores and are a major Ca2+

entry route modulated by inositol 1,4,5-trisphosphate.40,43 It
has been suggested that the activity of SOCCs is strongly inhib-
ited by heavy metals such as La3+, Gd3+, and Cd2+, which is a
characteristic of SOCCs. Similar to other heavy metals, zinc
could act as a competitive inhibitor for Ca2+ permeation.40

In physiological conditions, zinc competitively blocks the
Ca2+ entry through binding a cysteine residue of SOCC.43 In
addition, zinc can modulate ligand-gated channels such as N-
methyl-d-aspartate receptors, �-aminobutyric acid receptors,
and dopamine transporters through competition of zinc for
their ligand binding sites.44,45

2.3. Sodium channels and zinc

Sodium ion (Na+) channels can be subtyped as passive Na+

channels, voltage-gated Na+ channels, which are present in
most excitable cells, and epithelial sodium channels (EnaCs),
which are present in absorptive epithelia of the kidney, colon,

lung, and sweat glands.46,47 The most important role of
voltage-gated Na+ channels is in the initiation of action poten-
tials in excitable cells. In comparison to other Na+ channels,
heart Na+ channels show an approximately 100-fold higher

dx.doi.org/10.1016/j.imr.2015.07.004
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ffinity for external zinc, as zinc is able to bind to a site within
r near the saxitoxin binding site of heart Na+ channels.48

ENaCs play a major role in the maintenance of the elec-
rolyte balance between Na+ and K+, and their inhibition can
e caused by high concentrations of extracellular Na+, referred
o as Na+ self-inhibition, and by increases in intracellular Na+

evels.49 Apart from these modes of ENaC regulation, extracel-
ular zinc can also prevent or reverse Na+ self-inhibition, and,
herefore, zinc may serve as a potential physiological regulator
r ligand of ENaCs.49

.4. Acid-sensing channels and zinc

cid-sensing ion channels (ASICs) are permeable to cations
nd are activated by extracellular acidosis in response to pH
hanges and other stimuli such as pain.50–52 In the brain, the
ctivation of ASIC1a, a Ca2+ permeable subunit of ASIC, leads
o acidosis-mediated ischemic brain injury. While exposure to
xcess zinc causes neuronal death, it has been suggested that
icromolar levels of zinc could bind the extracellular domain

f the ASIC1b subunit and thereby inhibit the activation of
SIC channels.53

. Limitations

n this review, we outlined the direct modulatory action of zinc
or several types of ion channels. The changes in activity of
he ion channels discussed in this manuscript are induced by
irect binding of zinc to the ion channel or through an increase

n extracellular or intracellular zinc levels. However, what hap-
ens when zinc is released from ion channels or when cellular

evels of zinc decrease is not well determined. It is also unclear
hether the modulation of the ion channel activity by zinc

s the result of a synergistic effect or not. Elucidation of this
ssue will require further research. In addition, changes in the
ellular redox status also modulate channel activity, but it is
nclear how zinc affects this aspect of ion channel regulation.

. Concluding remarks

inc has a relatively high affinity for histidine, cysteine,
spartate, and glutamate residues present in many proteins,
ncluding ion channels. This chemical characteristic of zinc
llows it to interact with both extracellular and intracellu-
ar binding sites in ion channels, leading to conformational
hanges and subsequent activation or inhibition of the ion
hannel. In physiological or pathophysiological conditions
uch as ischemia and metabolic syndrome, cellular zinc levels
re altered, which may help in controlling cell homeostasis
hrough the interplay with numerous ion channels, or may be
etrimental to the cells. Recent molecular-genetic and electro-
hysiological studies have shown that a wide array of human
iseases, including cancer, cardiovascular diseases, and ner-
ous system disorders, are associated with channelopathies.

hese can be caused by either genetic or acquired factors such
s toxins or drugs.12,54 This review may contribute to a better
nterpretation of the effect of zinc dynamics in electrophysio-
ogical studies. In the future, a better understanding of zinc’s
145

role in ion channel regulation may shed light on the molecu-
lar basis of their biological specificity and the development of
therapeutic strategies for channelopathy-related diseases.
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