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Following skeletal muscle injury (SMI), from post-injury reaction to repair consists of

a complex series of dynamic changes. However, there is a paucity of research on

detailed transcriptional dynamics and time-dependent marker gene expression in the

early stages after SMI. In this study, skeletal muscle tissue in rats was taken at 4 to

48 h after injury for next-generation sequencing. We examined the transcriptional kinetics

characteristics during above time periods after injury. STEM and maSigPro were used

to screen time-correlated genes. Integrating 188 time-correlated genes with 161 genes

in each time-related gene module by WGCNA, we finally identified 18 network-node

regulatory genes after SMI. Histological staining analyses confirmed the mechanisms

underlying changes in the tissue damage to repair process. Our research linked a variety

of dynamic biological processes with specific time periods and provided insight into the

characteristics of transcriptional dynamics, as well as screened time-related biological

indicators with biological significance in the early stages after SMI.

Keywords: time-series RNA-seq, gene expression and regulation landscape, time-related biomarkers,

transcriptional dynamics, skeletal muscle injury

INTRODUCTION

Skeletal muscle injury (SMI), which has many possible etiologies, is commonly observed in daily
life and trauma surgery practice (Zhu et al., 2007; Huard et al., 2016). Among many factors that
may induce SMI, mechanical trauma- and sports-related injuries are common in both clinical and
forensic practice (Best and Hunter, 2000). The skeletal muscle is a complex organ that is not easily
regenerated in situ after traumatic injury, especially in cases of contusion injury (Sicherer et al.,
2020). Therefore, mechanical trauma- and sports-induced SMI can induce dramatic and prolonged
adverse effects on muscle functional capacity (Huard et al., 2002). Thus, in clinical settings as well
as in many cases of intentional injuries, traffic accidents, insurance claims, and other emergencies,
mechanical trauma-induced SMI can result in physical dysfunction. This has adverse effects on the
activities of daily living and work capabilities of the injured parties and is related to wound age
estimation in some criminal or civil cases (Grellner and Madea, 2007). Therefore, detailed analyses
of the pathological processes occurring after SMI, gene expression changes, and damage repair
mechanisms have far-reaching significance for clinical sports medicine and forensics.
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Among many types of SMI, the general injury and
repair mechanisms as well as causes are similar (Urso,
2013), particularly with regard to mechanical trauma-induced
SMI. Wound response and healing are dynamic processes
with degeneration, inflammation, regeneration, and fibrosis
occurring sequentially (Li and Luo, 2019). To clarify the
detailed pathological changes, biological processes, and possible
mechanisms of the SMI repair process, there have been a number
of studies at the levels of tissue morphology, cells (proliferation,
apoptosis, and autophagy), proteins, nucleic acids, and molecular
biology (Zhu et al., 2007; Zhao et al., 2009; Rybalko et al., 2015;
Du et al., 2020; Sugasawa et al., 2020).

Although the changes in gene expression after SMI have
been clarified, most studies performed to date were limited to
distinguishing the type and degree of injury (Warren et al., 2007;
Li and Luo, 2019; Yang et al., 2019). Some studies focused on
changes in gene expression at various stages during the process
of SMI repair (Sass et al., 2017), but these were based on open-
source microarray data, and there were no clear time points
indicating the divisions between repair stages. Although Xiao
et al. studied gene expression changes in mice from days 1 to
21 after injury (Xiao et al., 2016), the early stage after injury,
in which relatively rapid and diverse changes in gene expression
and various biological processes have not been observed (Tidball,
2005; Stroncek and Reichert, 2008; Järvinen et al., 2013). In
addition, most genetic time-series indicators come from the
literature and theoretical studies, and to date, there have been no
systematic screening studies and time-series algorithm analyses
(Zhu et al., 2016; Gaballah et al., 2018). The maturity omics
technologies, along with the adoption of big data and artificial
intelligence approaches, have resulted in the widespread use of
omics analyses combined with artificial intelligence algorithms,
to study the processes of SMI repair (Camacho et al., 2018;
Abdelmoez et al., 2020). Studies in this field have moved from a
single feature to the integration of multiple aspects (Burnett et al.,
2019).

In this study, we focused on the changes in gene expression
and transcriptional dynamics in the early period after SMI in
rats, to analyze the changes in biological processes and transcript
profiles of the early period after injury. In this way, we analyzed
transcriptional dynamics changes in the early period of SMI
repair and screened time-dependent marker genes. This research
provided a detailed transcriptome landscape of gene expression
and biological processes changes in the early period of the
SMI repair process, and identified marker genes that exhibited
sequential variation in their expression with reference values for
wound age estimation.

RESULTS

Establishment the Early Skeletal Muscle
Injury Model and Histomorphological
Observation in Rats
First, we built an early state skeletal muscle injury animal
model in 0–48 h using rats (see METHODS section). Then, we
examined the injured rats in groups at seven time points after

SMI (Figure 1B). To confirm the solid of animal model and
the processes of muscle tissue injury to repair, we performed
a preliminary histological analysis with hematoxylin and eosin
(H&E) staining. H&E staining revealed the changes in muscle
morphology after injury (Figure 1A). In comparison with the
normal control group, the transverse sections of skeletal muscles
exhibited breakage and the destruction of large numbers of
muscle fibers at 4 h after injury. At 8 h after injury, interstitial
blood vessels were congested with the infiltration of large
numbers of inflammatory cells. At 12 h after injury, muscle
fibers exhibited obvious hyperemia and edema, which reflected
a strong inflammatory response at this time point. At 16 and
20 h after injury, the inflammation was reduced and the amount
of fibrous tissue in the injured area gradually increased. At
24 and 48 h after injury, the numbers of fibroblasts increased,
and muscle fibers were partially rebuilt. This was observed in
longitudinal sections of muscle fibers at 4 and 48 h after injury
(Supplementary Figure 1).

Gene Co-expression Modules During the
Early Period Post-SMI
To objectively describe and confirm the processes of pathological
changes in the early period after SMI based on transcription
profiles, we examined genes with obvious changes in expression,
Gene Ontology (GO) terms, and pathways during the early
phases of the post-injury response. In this study, we obtained
raw next-generation sequencing data from 60 samples (in
total 20,662 genes) (Supplementary Table 1). Then we subjected
the standardized data (Supplementary Figure 2) to principal
components analysis (PCA). After removing abnormal samples,
the results of PCA indicated that the samples from each injury
group were clearly discriminated from the normal samples and
also that the groups at 4, 8, 24, and 48 h after injury were clearly
distinct from one another. The groups at 12, 16, and 20 h after
injury were not clearly differentiated (Supplementary Figure 3).
These divisions were also reflected in the clustering correlation
heat map (Supplementary Figure 4). Therefore, after removing
genes with low expression, 15,901 common genes expressed in 53
samples (Table 1) were subjected to weighted gene co-expression
network analysis (WGCNA) (Supplementary Table 2) (Zhang
and Horvath, 2005). A soft power of 22 was selected to construct
a scale-free network (Figure 1C). We then used dynamic tree
cutting to divide the gene co-expression modules according
to the common gene expression file. The clearest gene co-
expression module distribution obtained at early post-SMI
period using the Dynamic Merge tool included 24 modules
comprising 23 meaningful modules and one undefined gray
module (Figure 1D) (Zhang et al., 2019b).

To understand the correlations between each co-expression
module and specific time points after injury as well as the
potential biological significance of these modules, we used
Spearman correlation analysis to calculate R values and p-
values. Correlations with time and the biological significance of
the 23 meaningful modules were visualized in a module-trait
relationship heat map (Figure 1E). To analyze the expression
of related genes in each meaningful module, we selected
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FIGURE 1 | Experimental design, histological characteristics and gene co-expression module division according to WGCNA during the early period after SMI. (A)

Animal model design. Sixty-four male Sprague Dawley rats were randomly divided into eight groups (n = 8 rats/group; seven experiment groups and one control

group). Experimental rats underwent a SMI in the right hind limb and were monitored at 4, 8, 12, 16, 20, 24, and 48 h after injury. (B) H&E staining was performed to

reveal the characteristics from injury to repair. The SMI repair process in the right hind limb in seven experimental groups (4, 8, 12, 16, 20, 24, and 48 h post-injury)

and the normal group was histologically evaluated in transverse sections. Scale bar: 50µm. (C) Relationship between soft power and network connectivity. Based on

the scale-free network (y-axis, R2 = 0.94) with a soft threshold set to 22 and the mean connectivity value, the network exhibited negligible connectivity. The networks

exhibited a scale-free network distribution. (D) Network cluster dendrogram. The network was divided into 24 co-expression modules each of which was assigned a

color. The color gray was assigned to genes that did not cluster into a specific module. (E) Correlation between consensus modules and sample traits in each module.

Red indicates a positive correlation, with a darker color indicating a stronger correlation. The top number in each cell indicates the correlation coefficient, and the

bottom number indicates the significance of the correlation (i.e., the p-value).

modules associated with positive time-point correlations (R > 0)
(Figure 1E), setting p < 0.05 (Jin et al., 2019) as the threshold
value. For each time point, we only considered the module with
the highest R value.

Six co-expression modules (represented by different colors in
Figure 1E, in this study we named the modules using the name
of corresponding time point) were selected based on the results of
WGCNA analysis (Table 1; gene annotation information for each

selected module listed in Supplementary Table 2). However, we
did not find an eligible module in 16 h group (Table 1 lists the
correspondence between module color and time. The modules
corresponding to time point in the following text are directly
named by time). Finally, the most relevant module in each
group, referred to as a highly correlated (HCr) module, was
selected for gene expression analysis. Next, to confirm that the
module division according to WGCNA and the selection of
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TABLE 1 | The number of samples, genes, selected GO terms, and KEGG pathways associated with the selected gene co-expression module in each group.

Group Name Normal 4 h 8 h 12 h 16 h 20 h 24 h 48 h

No. of samples 6 6 7 6 8 6 8 6

Module Name \ Lightslateblue Mediumpurple1 Blue \ Lavenderblush1 Brown4 Dark-gray

Co-expressed genes \ 1,118 1,946 455 \ 11 102 2,028

Selected GO terms* \ 18 28 26 \ 7 11 12

Selected KEGG pathways* \ 17 5 7 \ \ 2 4

Name of the module \ 4 8 12 \ 20 24 48

*GO terms and KEGG pathways of interest were selected based on the threshold p-value (p < 0.01). “\” indicates that no module was selected for this group.

HCr modules based on gene co-expression profiles as outlined
above (Table 1) were reasonable, we explored the relevance
of gene co-expression in the HCr modules using heat maps
of all genes that clustered in a given module. The results
indicated that the modules identified by this analysis largely
corresponded to the variation in gene expression at specific
time points after SMI (Supplementary Figure 5). In addition,
expression levels (corresponding to the feature vectors) (Zhang
and Horvath, 2005) in the module of eigengene (represented by
sparse loads of the most important feature vectors and variance
directions (variable genes with maximum variable percentage)
corresponding to the major contributions of the expression
profile) (Shen et al., 2006) were plotted in histograms based
on transcriptome analysis results for each HCr module in all
time-point groups (Supplementary Figure 5). In detail, in the
“4,” “8,” “12,” and “48” modules, eigengene expression levels
were highest at 4, 8, 12, and 48 h, respectively, among all the
time points after injury examined in this study. In the “20” and
“24 modules, eigengene expression levels were relatively high at
20 and 24 h, respectively (Supplementary Figure 5). Based on
eigengene expression in each selected HCr module, we could use
these modules for further analyses.

Functional Analysis of Gene Expression
Profiles in Each HCr Modules Reflecting
the Characteristics of Post-SMI
Transcriptional Dynamics
After selecting the most relevant meaningful module in each
group, we analyzed gene expression profiles to reflect the
transcriptional kinetic characteristics of each module. We
performed functional analysis to determine the transcriptional
dynamics changes during the early post-SMI period.

We focused on biological processes among the GO terms
that were enriched in the selected modules and selected the
GO terms of interest based on their associated p-values (p <

0.01). Due to the unequal numbers of genes in each selected
module, the numbers of biologically meaningful GO terms
chosen differed among modules (Table 1). The screening process
of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
for each selected module was similar to that described for GO
terms. According to the above principles, we focused on several
phases of pathological changes in the early period after SMI,

Based on this, the GO terms and KEGG pathways screened are
shown in Supplementary Figure 6.

As outlined above, the entire course from SMI to repair can
be roughly divided into five interconnected biological stages:
response to stimuli and stress, inflammation, immune process,
cellular process, and repair process (Figure 2A). In the stage
associated with stimuli and stress, most GO terms were enriched
in the “4” and “8” modules. As shown in Figure 2A, almost
all GO terms enriched in the “12” module were associated
with inflammation and the immune process. Especially the 48 h
module, most of the enriched GO terms were related to the
repair process.

During the entire course of the SMI repair process, based
on the enrichment of GO terms in all HCr modules, each stage
could be further divided into some sub-classes (Figure 2A). In
the stage associated with stimuli and stress, the response to
external stimuli and the stress began immediately after injury.
The oxidative stress responses also began in the early period of
the SMI repair process. We divided the inflammation stage into
sub-stages associated with the release of inflammatory mediators,
inflammatory processes, and the inflammatory cell response.

In particular, among the sub-classes pertaining to
inflammatory cell response, the migration of various
inflammatory cells (neutrophil, macrophages, lymphocyte,
and mononuclear) exhibited a time-varying pattern. From the
number of enriched GO terms, we inferred that inflammation
predominated from 4 to 12 h after injury. Similarly, in the
immune process stage, most immune-related GO terms
were enriched in the “12” module. By contrast, autophagy
was only enriched in the “24” module (Figure 2A). In
addition, the GO terms of DNA repair, recombination, and
regulation of DNA-dependent DNA replication were enriched
in the “48” module, suggesting the involvement of DNA-
related intracellular mechanisms in the course of tissue repair
(Supplementary Figure 6A).

Taken together, the findings outlined above demonstrated
the temporal variation in GO terms enriched in each HCr
module during the entire course of the SMI repair process. The
changes in gene expression profiles revealed the basic biological
processes and pathological changes occurring during the SMI
repair process.

Similar to GO term enrichment analysis, the entire course
of the SMI repair process could be roughly divided into stages
associated with damage, the repair process, and signal regulation
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FIGURE 2 | Variation in transcriptional dynamics during the early period after SMI. (A) Changes in transcription during post-SMI repair associated with biological

processes based on GO analysis. Different colors represent different sub-classes associated with detailed bioprocesses. Further information regarding the GO terms

enriched in each sub-class is listed on the right in the same colors. Solid red cells in the table represent the GO terms enriched in the module representing each

time-point during the course of injury repair. (B) Changes in transcription during post-SMI repair associated with KEGG pathways. Different colors represent different

sub-classes associated with detailed pathways. Further information regarding the KEGG pathways enriched in each sub-class is listed on the right in the same colors.

Solid blue cells in the table represent the KEGG pathways enriched in the module representing each time-point during the course of injury repair.
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FIGURE 3 | The top high-connectivity hub genes in each HCr module identified using WGCNA analysis. (A) The top 30 high-connectivity genes in six

time-point-related HCr modules listed by degree of connectivity. Different colors represent the different degrees of connectivity in each module (161 genes in total).

Only 11 genes were screened in the 20 h module. (B) Clustered heat map of the distribution of the 161 hub genes across time-point-related HCr modules (left, HCr

modules are shown in different colors according to WGCNA results). The mean expression in each gene module is shown (right). Functional annotation of the genes in

each cluster was performed using GO enrichment analysis. Only the top three enriched processes are shown, sorted by p-value.

based on KEGG pathway analysis (Figure 2B). We also classified
the KEGGpathways into 2–3 sub-classes for each stage of the SMI
repair process (Figure 2B). The distribution of KEGG enriched
pathways varied in a time-dependent manner. For example, the
IL-17 signaling pathway, RIG-I-like receptor signaling pathway,
and Toll-like receptor signaling pathway, which are related to
the production of inflammatory factors, were enriched in the
“4” and “8” modules, whereas pathways related to inflammation
and the immune response, such as natural killer cell-mediated
cytotoxicity, were enriched in the “12” module (Figure 2B).
Pathways related to DNA replication and cell cycle in the repair
stage were enriched in the “48” module (Figure 2B). These
observations were consistent with the time-dependent variation
exhibited by GO terms and the mechanisms underlying the
muscle damage-repair process. Taken together, GO and KEGG
enrichment analyses for all HCr modules indicated the temporal
pathological variation and regulatory processes occurring during
the early phase of SMI repair in rats.

In this turn, temporal variation in the active biological
processes and pathways after injury were precisely regulated by
some aspects of regulation-related KEGG pathways, especially
during the initial period of the SMI repair process (i.e., in
the “4” module; Figure 2B). The enriched regulatory KEGG
pathways included those related to cascade reactions (such
as the NOD-like receptor and MAPK signaling pathways);
transcription factors (such as the FoxO signaling pathway);
pathway switching, including protein phosphorylation
regulation and histone modification (such as the Jak-STAT
signaling pathway and ubiquitin-mediated proteolysis); and
second messenger regulation (such as the cAMP signaling
pathway) (Yang et al., 2007; Sharma et al., 2012; Icli et al.,
2019).

In summary, throughout the entire SMI repair process,
temporal variation in the distribution of KEGG pathways and
biological processes (as indicated by GO term enrichment)
in each HCr module objectively reflected the transcriptional
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dynamics as observed in gene expression profiles and the
biological significance of the HCr modules (Figure 2).

Functional Analysis of High-Connectivity
Genes in the HCr Modules Illustrates the
Features of Post-SMI Transcriptional
Dynamics
To further confirm the HCr module selected previously
to represent each period, and to study the expression of
representative functional genes in each HCrmodule, we screened
the top 30 high-connectivity genes in each HCr module based
on the results outlined above. First, we entered all co-expressed
genes in each module (Table 1) into the web-based analysis
program Cytoscape (Kohl et al., 2011) to screen for the top 30
high-connectivity genes in homologous HCr modules. Due to
the differences in numbers of co-expressed genes in each HCr
module (Table 1), the screening process yielded a total of 161
genes distributed in the HCr modules (Figure 3A).

We performed detailed enrichment analyses of GO terms
representing biological processes and KEGG pathways
for these 161 high-connectivity co-expressed genes
(Supplementary Figure 7). The bubble diagram of GO terms
in Supplementary Figure 7A lists the details of the top three
GO terms in each HCr module discussed above (in total, 50
GO terms representing biological processes were screened). As
shown in Supplementary Figure 7B, seven KEGG pathways
related to the immune response, proteasome, and repair-related
process were enriched.

Next, to better show the significance of these genes in each
HCr module, a heat map of the top high-connectivity co-
expressed genes was produced, which clearly revealed some genes
were more highly expressed at specific time points after injury,
indicating the relevance of the corresponding HCr module to
each time point (Figure 3B). The expression time-series graphs
to the right of the heat map showed the relative mean expression
of genes in each HCr module, reflecting the significance of
these high-connectivity co-expressed genes. Next, GO term
enrichment analysis was performed to determine the functional
representativeness, of the top high-connectivity co-expressed
genes in each HCr module. Among them, we screened the top
three representative GO terms in each HCr module to determine
the functions of the high-connectivity co-expressed gene cluster
and to confirm the transcriptional dynamics in the SMI repair
process (Figure 3B). The dominant functions of the co-expressed
genes (eigengene in part) in each HCr module matched those
expected from the classical biological process of SMI repair
illustrated in Figure 2A. Moreover, the HCr modules screened
from the results of WGCNA and the high-connectivity co-
expressed genes in each module represent the early period of the
SMI repair process and reflect the transcriptional dynamics of the
gene expression profiles.

Genes Identified in the Screening Process
Represent Time-Series Markers After SMI
Having analyzed the HCr modules identified by WGCNA
and expanded on the transcriptional dynamics of the gene

expression profiles in all time periods covering the early stages
of the SMI repair process, we focused on the time-dependent
variation in gene expression. Based on the data analysis workflow
(Supplementary Figure 2), we identified time-dependent genes
using the maSigPro (microarray Significant Profiles) R package
(version 2.0.2) (Nueda et al., 2014).

As described above, raw clean data on the experiment-wide
gene expression profiles were obtained from 53 samples and
20,662 genes (Supplementary Table 1). The results of maSigPro
analysis indicated that during the early period after SMI, 1512
genes exhibited marked temporal changes in expression at the
95% confidence level. Using hierarchical clustering andmaSigPro
default parameters, these genes exhibiting time-dependent
changes in expression were divided into six clusters with
different expression profiles during the experiment (Figure 4A
and Supplementary Table 3) (Nueda et al., 2014). The raw
profiles for each group in each cluster are presented in
Supplementary Figure 8A, and the median profile of gene
expression and profile differences between the time-dependent
experimental and control groups are presented in Figure 4A.
In comparison to the control group, the experimental groups
exhibited marked downregulation of genes in Cluster 2 and
upregulation of genes in Cluster 5. Thereafter, the expression
levels of these genes mostly increased in Cluster 2 and decreased
in Cluster 5 throughout the whole period after injury, coming
close to the levels in the control group. The genes in Cluster 1,
Cluster 3, and Cluster 6 were upregulated from 4 to 48 h after
injury, whereas the genes in Cluster 4 exhibited the opposite
trend (Figure 4A). Due to the different numbers of genes in
each cluster (divided according to maSigPro), we chose the
high-connectivity genes in the top 10% from the six clusters
using a protein–protein interaction (PPI) network visualized with
Cytoscape software (version 3.7.2), and a total of 152 genes were
selected (Supplementary Figure 8B).

Next, to study the temporal variation in the expression of
DEGs at different time points, we performed pattern analysis
using STEM software (Ernst and Bar-Joseph, 2006), which has
been widely used for in-depth analyses of gene-expression time-
series clustering data.

Comparison of the gene expression profiles between the
control group and the experimental groups revealed that there
were 540 DEGs expressed in common in the seven experimental
groups. The distribution of all DEGs in 7 experiment groups
(|log2FC|≥1) was shown in Supplementary Figure 9A.

These genes are common differential expression gene sets that
at each stage of 0–48 h after skeletal muscle injury compared with
the control group. According to the GO and KEGG enrichment
results of this part of genes (Supplementary Figure 10), the
biological functions of the common differential genes at 7
time points after injury enriched mainly included immune
performance, inflammation, cell cycle and stress response. From
this point of view, according to the literature (Crow et al., 2019),
the set of 540 common differential genes can be regarded as
systemic global prior differential genes (DE genes).

STEM software was used to identify dynamic gene expression
clusters in the common 540 DEGs using default parameters
(Supplementary Table 4). The results revealed six expression
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FIGURE 4 | Screening and functional analysis of time-dependent genes using STEM and maSigPro. (A) maSigPro results indicating the median gene expression

profile for each cluster (green dots and lines represent injury groups; red dots and lines represent control groups). (B) STEM analysis of the 540 DEGs (between

experimental and control groups) common to the seven experimental groups (p < 0.001). The number at bottom left corner indicates the number of genes in each

(Continued)
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FIGURE 4 | cluster. (C) Venn diagram of the genes selected from STEM (41 genes) and maSigPro (152 genes) analyses. We used all genes selected for subsequent

analysis (188 genes in total). (D) Heat map of the expression of the 188 time-dependent genes selected above in each time period based on hierarchical clustering.

Red bars represent high expression levels, blue bars represent low expression levels.

patterns in the DEGs (p < 0.001; Supplementary Figure 9B);
however, no similar gene expression trends among these patterns
were found (Figure 4B). The analysis also identified 439 common
DEGs exhibiting dynamic expression at different time points
after injury (Supplementary Table 5). Similar to the results of
maSigPro analysis, we then chose high-connectivity genes in
the top 10% representing the six expression patterns using a
PPI network that was visualized with Cytoscape software, and
a total of 41 genes were selected (Supplementary Figure 9C).
Furthermore, 41 time-related highly linked genes screened by
post-injury common differential genes (global prior differential
genes) may play a role in global regulation.

Taken together, the maSigPro analysis based on raw RNA-
seq data and STEM analysis based on common DEGs revealed
time-dependent marker genes and genes exhibiting dynamic
expression during this phase from two perspectives.

Integrated Functional Analysis of
Time-Dependent Marker Genes With
Variable Expression Fully Reflects the SMI
Repair Process
To comprehensively study the function of the time-dependent
marker genes selected as outlined above using an in-depth
analysis, we integrated the 152 genes screened by maSigPro
and the 41 genes (global prior differential genes) selected by
STEM. To obtainmarker genes fully reflecting temporal variation
during the SMI repair process, we extracted the union set from
the total of genes and identified 188 genes for further in-depth
analysis (Figure 4C).

This set of 188 genes included marker genes exhibiting time-
dependent variation in expression and genes with dynamic
expression during the early period after SMI. The circular heat
map in Figure 4D indicates that throughout the whole period
after SMI, nearly one-third of these genes were downregulated,
whereas the remaining two-thirds were upregulated. This
observation indicated that these 188 genes exhibited time-
dependent variation in expression and could be used as time-
dependent marker genes.

We then examined the expression of the 188 time-
dependent marker genes using GO term enrichment (biological
processes) and KEGG pathway analyses. These 188 genes were
associated with 737 GO terms and 48 KEGG pathways. In
the GO term enrichment analysis, we selected GO terms
based on the p-value (p < 0.01) and identified 52 GO terms
(Supplementary Figure 11A). The selected GO terms indicated
that the 188 genes reflected the mechanisms underlying the early
stages of the SMI repair process. Then, we identified 42 KEGG
pathways, which are listed in Supplementary Figure 11B. The
KEGG pathways associated with these 188 genes also reflected
the precise regulation of multiple processes after injury, e.g.,
the TNF signaling pathway, IL-17 signaling pathway, osteoclast

differentiation, cell cycle, and chemokine signaling pathway
(Supplementary Figure 11B).

In summary, the results suggested that these genes not only
reflected time-dependent changes but also included hub genes
and core regulatory genes participating in the many complex
processes involved in SMI repair.

Elucidating the Biological Significance of
Marker-Gene Expression Changes Using a
Combination of Time-Dependent Genes
and High-Connectivity Genes
Having illustrated the characteristics of the transcriptional
dynamics and time-dependent gene expression variation, in this
section, we further illustrate the possible connection between
transcriptional dynamics that reflect biological processes and
time-dependent marker genes to identify potential biomarkers
that will allow us to elucidate the correlations between
temporal changes in gene expression and the biological
processes that occur in the early period after SMI. In
addition, we verified our results based on morphological and
immunohistochemical analyses.

First, we identified the genes in common between the 161
high-connectivity co-expressed genes (eigengenes) in the HCr
modules and the 188 time-dependent marker genes. The results
indicated that there were 18 genes common to the two gene sets
(Figure 5A). Next, we analyzed the positions of these 18 genes in
a network in which the set of 161 high-connectivity co-expressed
genes and the set of 188 time-dependent marker genes were
combined, as well as the functions of the 18 genes during the early
period after SMI. In Figure 5A, the 18 genes are listed in a red-
outlined box in the middle of the two gene networks. Genes in
these two networks are connected by lines of different thickness.
The functions of the 18 genes also corresponded to the main
biological processes discussed above, and they may be hub genes
in these complex processes after injury (Figure 5A and Table 2).
In addition, we produced a heat map of the 18 genes to visualize
changes in their expression levels during the early period after
SMI. The expression levels of the bottom one thirds of genes
from the “4” and “8” modules were initially upregulated, and
then gradually downregulated. By contrast, the expression levels
of the top two thirds of genes from the “48” module exhibited the
opposite trends (Figure 5B).

These observations indicated that the transcriptional
dynamics of the co-expressed genes in the HCr modules were
closely related to the time-dependent marker genes through these
18 genes. In addition, based on the integration of transcriptional
dynamics and the time-dependent marker genes, some of
the hub genes may reflect temporal gene-expression changes
associated with biological processes occurring in the early stage
following SMI.
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FIGURE 5 | Gene net and heat map of 18 selected gene markers and distribution of neutrophils during the early period after SMI. (A) Net of 18 marker genes

(red-outlined boxes) selected by the intersecting the 188 time-dependent gene set and 161 hub genes distributed across the six HCr modules identified using

WGCNA. The gene network on the left represents the 188 time-dependent genes. The six gene networks on the right represent hub genes selected by WGCNA. The

blue, red, and green triangles represent different modules. (B) Heat map of 18 marker genes representing their time-dependent expression. (C) Immunohistochemical

staining for the neutrophil marker MPO. Representative images of transverse sections from three experimental groups and the control group are shown. MPO-positive

neutrophils are indicated by brown particles. Scale bar: 100µm.
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TABLE 2 | Detailed information and main functions of 18 marker genes.

Gene Name HCr module Marker Gene functions

Btg2 4 (lightslateblue) Blue triangle (2 genes) Participation in cell differentiation and apoptosis; transcriptional regulation (Tirone, 2001)

Junb 4 (lightslateblue) Blue triangle (2 genes) Involved in angiogenesis; transcriptional regulation (Zou et al., 2018)

Myc 8 (mediumpurple) Brown triangle (5 genes) Promotion of skin wound healing (Wang et al., 2020)

Fosl1 8 (mediumpurple) Brown triangle (5 genes) Angiogenesis and cell proliferation regulation (Galvagni et al., 2013)

Cxcr2 8 (mediumpurple Brown triangle (5 genes) Mediation of the migration of neutrophils to inflammation sites (Donahue and Hines, 2009)

CD44 8 (mediumpurple) Brown triangle (5 genes) Mediation of leukocyte adhesion and migration; macrophage subpopulation regulation

(Krolikoski et al., 2019)

Nfe2l2 8 (mediumpurple) Brown triangle (5 genes) Promotion and regulation of the oxidative stress response in the inflammation process (Arefin

et al., 2020)

Top2a 48 (dark-gray) Green triangle (11 genes) Participation in DNA repair (Swan et al., 2020)

Ttk, Cdca8 48 (dark-gray) Green triangle (11 genes) Regulation of cell proliferation (Li et al., 2020)

Nuf2, Aurkb, Mad2l1 48 (dark-gray) Green triangle (11 genes) Cell cycle regulation; cell mitosis regulation (Hegyi and Méhes, 2012; Zhang et al., 2019a)

Next, to intend confirm the process of inflammation during
the early period after SMI, we labeled neutrophils using an anti-
MPO primary antibody. The results of immune-histochemical
analysis suggested that, in comparison with the normal control
group, with the development of inflammation, the degree of
neutrophil infiltration and the neutrophil distribution varied in
a characteristic manner during the early period (0–24 h) after
SMI (Figure 5C).

Taken together, the results of the histo-morphological and
immune-histochemical analyses reflected the characteristics of
the SMI repair process.

DISCUSSION

SMI repair is a continuous and dynamic biological process
(Chellini et al., 2019). Throughout the whole process, especially
in the early stages after injury, changes in tissue morphology, cell
proliferation, gene expression, and pathway regulation are rapid
and complex (Sass et al., 2017; Liu et al., 2020). There have been
a number of studies regarding the connections between a variety
of complex biological processes and specific time periods after
injury. In addition, systematic approaches for analysis during
this dynamic biological process have been developed. Gene
expression in biological systems is finely regulated. On the whole,
altering the genes and regulation factors that maintain the state
of the system causes changes in some of the genes in it. On the
other hand, after the system is disturbed, the control genes in the
initial state are consumed and start to change, thus causing the
change of gene expression in the system (Efroni et al., 2008).

However, there is still a lack of genes or biomarkers that
can be used to clearly distinguish the various stages after injury
and for monitoring the continuous and dynamic biological
processes. Using next-generation sequencing technology and
time-series algorithms, many studies have conducted systematic
and transcriptional dynamics analyses to understand the time-
dependent progressive development of physiological processes
and time-dependent gene expression in biological processes, such
as those involved in transcriptional variation in skin wound
healing (Theocharidis et al., 2020), changes in transcription
profiles during healing after fractures (Coates et al., 2019),

changes in transcriptional dynamics during oral and liver tumor
progression (Jee et al., 2019; Kang et al., 2019), and changes in
the transcriptome during organ and tissue development (Zhu
et al., 2018). In this study based on next-generation sequencing,
we used WGCNA co-expression module analysis, STEM and
maSigPro time-related algorithms, and PPI network analysis to
clarify the characteristics of multi-level biological processes and
transcriptional dynamics after SMI.

From the perspective of early transcriptional dynamics after
injury, in the “4” and “8” modules, most enriched GO terms
were associated with the response to injury stimulation and
stress (Filippin et al., 2009), inflammatory mediator release, and
inflammatory responses. Furthermore, inflammatory response
to antigenic stimulus and macrophage migration were enriched
in the 24 and 48 h HCr modules, respectively, suggesting that
inflammation occurs throughout almost the entire SMI repair
process. However, the apoptotic signaling pathway, positive
regulation of the apoptotic process, and the intrinsic apoptotic
signaling pathway in response to oxidative stress became active
in the early post-injury period and may persisted until 48 h or
even later after injury. In addition, KEGG pathways related to a
single regulatory process were mainly enriched in the “4,” “8,” and
“24”modules. This indicated that the bioprocesses were regulated
throughout the whole period after injury (Figure 2B). In the
early period after injury, the tissue repair process was mainly
focused on vascular regeneration. While, the process of tissue
repair occurred mainly in the period from 48 h or later during
the SMI repair process. Fibrous repair, tissue regeneration, and
cell proliferation were the main repair pathways (Figure 2A).

In this study, we refined the transcriptional characteristics
of the early stage after SMI. GO and KEGG analyses of the
HCr modules showed that this dynamic stage involves multiple
continuously changing biological processes after SMI, including
connections between related regulatory factors, transcription
factors, protein modification changes and pathway regulation.
The results of histomorphological and immune-histochemical
analyses (Figures 1A, 5C) also revealed morphological changes
in damaged muscle tissue and the infiltration and migration of
inflammatory cells (neutrophils) around the tissue at 0–48 h after
SMI, reflecting the temporal variation inherent in the SMI repair
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process. Above all, these findings contribute to further research
on wound age estimation from the perspectives of pathways,
protein modification, pathway regulation, and cell migration.

Yang et al.’s study found that Btg2 may be a target gene for
miR-222-3p, and during myogenesis, the expression of Btg2 in
C2C12 myoblasts regulates cell proliferation and differentiation
(Yang et al., 2019). In this study, we found that Btg2 distributed
in the 4 h module after skeletal muscle injury. This suggested
that Btg2 may promote the differentiation and maturation of
myoblasts in the early stage after skeletal muscle injury. For
this turn it might play a role in the regeneration and repair
for injured skeletal muscle. In addition, Junb gene plays an
important role in functional recovery of damaged skeletal muscle,
promoting regeneration of damaged skeletal muscle cells, and
regulating remodeling and functional differentiation of skeletal
muscle cells during skeletal muscle development (Li and Luo,
2019). In this study, similar to Btg2, Junb might play a major
role in the regulation and maintenance of skeletal muscle cell
size and remodeling after skeletal muscle injury. Furthermore,
the c-Myc related genes distributed in the 8 h module in this
study, can inhibit the differentiation of myoblasts and promote
the proliferation of myoblasts and muscle fiber hypertrophy
(Luo et al., 2019). Studies showed that MyoD1 may regulate
the transition from differentiation to proliferation of skeletal
muscle cells through Myc protein (Kohsaka et al., 2014). For
this case, Myc and myosatellite cell-related protein MyoD may
jointly promote the proliferation of damaged skeletal muscle and
play a role in skeletal muscle regeneration. In the future study
of the repair process initiated at the early period after skeletal
muscle injury, the relationship betweenMyc and MyoD deserves
further attention.

From the perspective of systems biology and gene expression
dynamics, in the early period of skeletal muscle injury-repair
process, when the damage occurs, the system was disturbed by
exogenous disturbance, which destroys the initial critical state of
the gene and transforms from near critical state to supercritical
state. From this perspective, the genetic reprogramming occurs
to drive changes in system state and biological phenotypes
(Tsuchiya et al., 2015). Gene expression state in the same tissue
is relatively stable as a whole and is maintained by subcritical
genes and genomic attractors (Tsuchiya et al., 2016). In this
case, WGCNA was used to divided gene expression matrix after
SMI into time-dependent modules, and the gene expression in
each module had two forms of transformation and maintenance
during this process. While the same tissue (skeletal muscle) gene
under conditional perturbation (damage), over time, leads to
the genome-wide attractor deviation, and the random coherence
occurs (Tsuchiya et al., 2015). In this view, the changes in gene
expression and system state after skeletal muscle injury may
depend on the occurrence of such random coherence.

Our analysis indicated that many biological processes were
involved and the active processes changed frequently within 0–
12 h after SMI. However, in comparison with other time periods,
no obvious gene-expression module was distinguished at 12–
16 h after injury. This time period may represent a transition
stage from stress inflammatory response to tissue remodeling
Moreover, as can be clearly seen in Figures 2A,B, there were

fewer enriched GO terms and no enriched KEGG pathways from
16 to 20 h after injury. Therefore, we believe that there may be
a plateau in gene expression and biological processes within a
certain period after SMI.

In this study, among the injured skeletal muscle tissue, the
eigengenes and hub genes within the HCr modules might be
in a supercritical state during the state transition process, and
other regulatory genes, including some housekeeping genes and
tissue stability genes within the module were involved in the
maintenance and drive of the system state (Tsuchiya et al.,
2016). From this perspective, we could explain the possible
mechanism of gene expression changes in the phase of 16–20 h
after skeletal muscle injury in this study. The results showed
that the significance modules could not be divided through
the threshold value at 16 h after injury, so there were not
enough module eigengene drive system states variation during
this period.

The transition of the whole system state depends not only on
the local regulation of genes, but also on the global regulation.
The local regulation of eigengenes in module or hub genes within
the module drove the system state transformation. Meanwhile,
from a global perspective, the expression of low and moderately
mutated DE genes in the whole system played an important role
(Tsuchiya et al., 2014). Based on this, in our study, we analyzed
and described the changes of gene expression in the early stage
of skeletal muscle injury and the key genes that driving the
transition of the state from the perspectives of the changes in the
module eigengenes from the gene expression profile spread over
time HCr modules after skeletal muscle injury and the regulation
of time-dependent differential genes and global common DE
genes. Meanwhile, we have broadened the robustness of the
screening threshold for DE genes selection.

In addition, the interaction between genes (gene network) will
change during the occurrence of diseases or specific biological
processes driven (Censi et al., 2011). Hub genes which were
selected from multiple time HCr modules and time-related gene
clusters represented the gene interrelationship after injury in
a specific state. In addition, due to the changes of intergene
relationships after skeletal muscle injury, we have reason to
believe that the changes of temporal intergene relationships and
environmental factors lead to the variation of gene criticality in
the system, which may be another cause of the changes of gene
expression profile and phenotype after skeletal muscle injury that
deserves further study.

In summary, changes in gene expression profile, complex
phenotypes, and time-related genes after skeletal muscle injury
are correlated with changes in local module characteristic gene
states, global gene expression regulation, and gene interaction
networks (changes in hub genes) in skeletal muscle tissue
biosystem. Interestingly, during 24–48 h, especially at 48 h
after injury, more intramedular eigengenes were screened
out (Supplementary Figure 5), which may be driving the key
transition of skeletal muscle tissue from injury to repair process.
It can be inferred that the gene expression level changed greatly
in this period after injury, and then the key transformation of the
driving systemmight occur at this stage. This key transformation
is related to the significant changes in the gene interaction
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network (the number of hub genes increased) at this stage and
the possible construction of some new gene regulatory networks.
Furthermore, it seems to provide clues for further research on the
initiation of skeletal muscle injury repair process during the early
stage after skeletal muscle injury.

For another part, during the damage-repair process post-
SMI, the dynamic changes based on transcriptional kinetics
and data on the time-specific and time-related gene screening
obtained via the application of time-related algorithms have high
reference value, especially for forensic research on wound age
estimation. Additionally, we have information on methods for
the examination of initial tissue morphology (Yagi et al., 2016),
the quantitative analysis of labeled proteins (Zhao et al., 2009),
combined PCR analysis of multiple indicators (Du et al., 2013),
and more recently, combining multiple indicators and multiple
statistical analysis approaches (Du et al., 2020). In this study,
instead of a theoretical algorithm, we developed a method for
selecting time-dependent indexes using omics data. Combined
with information on time-related gene modules, we screened
for more accurate and objective time-dependent indicators that
reflect the damage-repair process. This provides new possibilities
for shortening the time inference window in the early period
after injury.

In addition, regarding the 18 network node genes (Figure 5A)
that were finally identified in this study, many groups have
shown that they play a significant role in the regulation and
linkage of related pathways in trauma, skin wound healing,
inflammatory processes and inflammation-related diseases,
tumor progression, and other inflammation-related biological
repair processes (Han et al., 2019; Kumar et al., 2020; Wang
et al., 2020) (Table 2). Studies showed that among Fos proteins,
including Fosl1, significantly bind to the promoter regions of
multiple genes and differentially regulate the expression level
of related genes during the processes of tissue and cell damage,
repair and differentiation (Reddy and Mossman, 2002). In
addition, Fosl1 plays an important role in the regulation of cell
proliferation, differentiation, apoptosis, movement, invasion
and metastasis, and it can increase cell adhesion and inhibit
cell migration after tissue injury (Galvagni et al., 2013). Not
only Fosl1, but CXCR2 also plays a key role in the regulation
of neutrophil movement and distribution (Zuñiga-Traslaviña
et al., 2017). In studies on a variety of inflammatory diseases
and tissue damage showed that CXCR2 might be used as a
potential target for early anti-inflammatory intervention (Zhu
et al., 2020). According to the results of immunohistochemistry
in this study, the migration and distribution of neutrophils after
skeletal muscle injury generally showed a certain regularity in
morphology aspect. At the same time, combined with CXCR2,
the regulation hub of the net of the module genes and showed the
time-dependent change pattern, we can further pay attention to
the regulation effects of related genes and markers on neutrophil
movement and distribution during the early period after
skeletal muscle injury. Meanwhile, researches showed that CD44
interacts with hyaluronic acid (HA) to regulate reprogramming
of pro-inflammatory macrophages (M1) to anti-inflammatory
macrophages (M2). The transformation of macrophage
polarization from inflammatory (M1) to anti-inflammatory

(M2) phenotype has significant significance for the regeneration
of damaged tissues, the treatment of inflammatory diseases
and the remission of autoimmune diseases (Shahbazi et al.,
2018). Above all, from the perspective of the regulation of
inflammatory cell migration and phenotypic transformation,
further exploration of the transformation regulation of pro-
inflammatory and anti-inflammatory response during the early
state after skeletal muscle injury is expected to be a new direction
for early intervention of skeletal muscle injury.

These genes may be of value not only in studying
gene expression and transcriptional regulation mechanisms in
damage-repair processes but also as references in research
regarding wound age estimation and in reflecting the dynamic
continuous processes of damage repair.

Moreover, translational medicine research is becoming an
area of major importance in the post-genomic era (Hegyi et al.,
2020). From the perspective of homologous gene expression
and conservation through evolution, the study of diseases or
physiological processes based on time-series changes in model
organisms lays a foundation for cross-species inference or
translational research among related species (Parikh et al., 2010;
Hardison, 2016; Zhu et al., 2018). Based on detailed studies
of gene expression and transcription kinetics in biological
processes, research at the level of gene-expression changes
after injury has significant reference value for research on
translational medicine and for the further exploration of cross-
species translation based on the same or similar biological
processes among related species (Czarnewski et al., 2019; Hansen
et al., 2020).

In this turn, for studies among different species are
essentially in different systems, based on changes in system
state and gene expression in similar biological processes
under the same disturbance. From the above analysis, in
the future, we should not only analyze the phenotypes
and gene changes of the state after the disturbance, but
also further explore the similarity of the changes of the
state after skeletal muscle injury among species from the
perspective of local and global regulation and the variation
of interaction between genes. In this way, we can further
explore the wound age estimation and the repair of skeletal
muscle injury among different species from the perspective of
key genes, global regulation and the changes of interaction
between genes.

Further, we will use multi-scale statistical models to
quantitatively integrate the changes in local gene associations
and global gene networks in order to find more valuable
key genes that influence system dynamics and driver gene
expression and phenotypic changes in the early period after
SMI. Based on multiple time points after injury of common
DE genes as an important role of global prior DE genes
(Harris et al., 2016). In the follow-up study, to this part of
the genes, we will use to distinguish between damage samples
with different time period after injury for wound age estimation.
Further, to explore and validate the key role of global prior
DE genes in wound age estimation and to drive the stages
transition after skeletal muscle injury, especially the damage to
repair phase.
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CONCLUSIONS

In this study, we applied next-generation sequencing technology
in combination with bioinformatics analysis and time-
correlation algorithms to explore the transcriptional dynamics
in the 0–48 h period after SMI. Moreover, we characterized
the dynamic changes in biological processes with specific
time periods and detailed the transcript features and complex
biological processes in the early stages after SMI. Using
time-dependent analysis software and algorithms, combined
with WGCNA to identify time-correlated gene expression
modules, 18 biologically significant time-correlated change
indicators were identified in the screening process. This is
an important basis and reference for follow-up studies on
the mechanisms operating in the early period of the SMI
repair process, clinical diagnosis and treatment for SMI,
forensic wound age estimation, and for the future translational
medical research.

MATERIALS AND METHODS

Experimental Animals and Models
Male 6–7-week-old Sprague Dawley rats were obtained from
the Experimental Animal Center of Shanxi Medical University
(Taiyuan, Shanxi, China) and housed in environmentally
enriched ventilated cages under specific pathogen-free conditions
at the Provincial Key Laboratory of Forensic Medicine, Shanxi
Medical University (Jinzhong, Shanxi, China) under a 12h
light/dark cycle with ad libitum access to water and food [RM1
(P); Regular Diet Services]. Sixty-four male Sprague Dawley rats
were divided randomly into eight groups (seven experimental
groups and one control group, n = 8 rats/group) once their
body weight reached 240 g (±20 g) (Figure 1B). The animals
in the experimental groups were anesthetized with 10% chloral
hydrate (2.5 ml/kg body weight, intraperitoneal injection) and
the hair on their right posterior limb was removed using a
depilatory agent. A 500 g weight was dropped from a height
of 50 cm onto the right hind limb with a free fall motion.
The rats in the experimental groups were sacrificed at 4, 8,
12, 16, 20, 24, or 48 h after injury using a lethal dose of
10% chloral hydrate (4 ml/kg body weight, intraperitoneal
injection). The animals in the control group were directly
sacrificed using the same method as described above in the
middle of the 0–48 h post-injury period defined in this study.
A muscle sample of ∼200mg was dissected from the wound
site of each rat and divided into two parts: (1) samples from
the central area of damage (∼100mg) were snap-frozen with
liquid nitrogen and cut into small squares for histological analysis
after fixation with formalin solution; and (2) the remaining
samples (∼100mg) were frozen immediately in liquid nitrogen
and saved at −80◦C until RNA-seq (50mg) analysis after the
fascia was removed.

RNA Extraction, Quality Control, and
Next-Generation Sequencing
Frozen muscle samples (∼50mg each) were pulverized in
liquid nitrogen with an RNase-free mortar and pestle, and then

dissolved using RNAiso Plus 9108 (Takara Bio) in accordance
with the manufacturer’s instructions. The concentration
(ng/mL) and purity of the freshly extracted total RNA were
measured using a microplate reader (Infinite M200 Pro;
Tecan). The quality of the extracted total RNA was determined
using spectrophotometry (NanoDrop 2000; Thermo Fisher
Scientific). The concentration of total RNA was determined
using fluorometry (Qubit 3.0; Life Technologies) and the
integrity of total RNA was determined with an Agilent 2100
Nano 6000 Assay kit on an Agilent 2100 Bioanalyzer system.
Only RNA samples with OD260/OD280 ratios within the range
1.8–2.2 and an RNA integrity number > 7.0 were used in the
following experiments. Samples not meeting these criteria were
excluded from the analysis (n= 4).

Sixty samples were submitted to Illumina for library
preparation using a NEBNext Ultra RNA Library Prep Kit
(poly-A selection; NEB) and fluorometer (Qubit 3.0; Life
Technologies) to build and preliminarily quantify the library.
The library was then quantified accurately (IQ SYBR GRN Kit;
Bio-Rad) and the insert size of the library was determined
(Agilent 2100 Bioanalyzer). The library of 60 samples was
then subjected to pair-end 150-bp sequencing, aiming for
coverage of 40–60M reads, using a HiSeq PE Cluster Kit
v4-cBot-HS on the HiSeq-2500 platform (Illumina). The off-
machine data were converted into raw sequence reads after
base recognition using bcl2fastq2 software (Love et al., 2014),
and the results were stored in the FASTQ file format. The
read quality was then inspected using FastQC and MultiQC
(Zhou et al., 2018), and trimmed with Trimmomatic (version
3) (Bolger et al., 2014). These procedures yielded clean data for
bioinformatics analysis.

Bioinformatics Analysis of Transcriptome
Data
Further bioinformatics data analysis was performed using the
high-throughput data analysis software Chipster (version 3.16)
(Kallio et al., 2011). The clean paired-end RNA-seq data obtained
with Trimmomatic were aligned to the rn6 rat genome (HISAT2
version 2.1.0) (Kim et al., 2015) and annotated based on the
Rattus_norvegicus.Rnor_6.0.951 file. In this study, the alignment
files contained paired-end data. The mapped and aligned reads
were quantified to determine gene-level counts using uniquely
aligned unambiguous reads in HTSeq (version 0.6.1) (Anders
et al., 2015) with the default settings and reverse strandedness.
Raw counts were processed using the R bioconductor package
DESeq2 (version 1.12.4 in R Studio version 3.6.3) (Love et al.,
2014) and normalized using the DESeq method to remove
library-specific artifacts. Among the 53 samples, total absolute
read counts of <5 genes were considered to have low expression
and were filtered out. DEGs between the experimental and
control groups were calculated using the Wald test in DESeq2.
Genes with log2-fold change (FC; Injured/Control) > 1 or <

−1 and adjusted p < 0.05 corrected for multiple testing using
the Benjamini–Hochberg method (Benjamini and Hochberg,

1http://hgdownload.soe.ucsc.edu/downloads.html#rat
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1995) were considered significant and subjected to further
downstream analysis.

Module Identification Using WGCNA
WGCNA was performed to identify the gene co-expression
modules at each post-injury time point using the WGCNA
package in R Studio (version 3.6.3) (Langfelder and Horvath,
2008). For subsequent analysis to generate modules, the same
parameters were used to construct all modules for each post-
injury time point in independent analyses. A signed weighted
correlation matrix containing pairwise Pearson correlation
coefficients between all genes across all samples was computed
using a soft threshold of β = 22 to attain a scale-free
topology (Bogenpohl et al., 2019). Using this adjacency matrix,
the topological overlap measure, which measures the network
interconnectedness (Yip and Horvath, 2007), was calculated and
used as an input to group highly correlated genes together using
average linkage hierarchical clustering. The WGCNA dynamic
hybrid tree-cut algorithm was used to detect network modules of
co-expressed genes. After we have selected the aforementioned
HCr modules (Jin et al., 2019), functional enrichment analysis
of genes in the HCr modules was performed to detect enriched
KEGG pathways and GO terms representing biological processes,
and statistically significant clusters were identified using the
Metascape2 database (Zhou et al., 2019).

In gene co-expression networks, high-connectivity genes,
referred to as hub genes (high degrees of connectivity), are
critical for the maintenance of overall network stability. In
WGCNA, intra-module connectivity and correlations with
module eigengenes were used to select hub genes without any
statistical criteria (Bi et al., 2015). STRING was used to construct
a PPI network, with closely related genes located closer together.
In the present study, the degrees of hub genes in each HCr
module were calculated and visualized using Cytoscape version
3.7.23. The top 30 genes according to degree of connectivity
were screened as high-connectivity co-expressed genes in each
HCr module.

Time-Dependent Marker Gene Analysis
Using maSigPro
Time-dependent marker gene analysis was performed using
normalized log2 gene expression values after DESeq analysis
using the Next maSigPro R package (version 1.6.0) (Nueda et al.,
2014). Statistical analysis of time-series data identified genes that
exhibited changes in their expression over time and/or followed
a specific expression pattern. Briefly, the p vector function was
used to compute a regression fit for each gene in both control and
separate experimental groups. Temporally DEGs were detected
using the generalized linear model setting with p ≤ 0.05 after
false discovery rate correction. The final selection of temporally
DEGs was performed by filtering the results of the second
regression model using the get siggenes function, with the R2

parameter set to 0.7 and the vars parameter set to groups (Grilli

2http://metascape.org/gp/index.html#/main/step1
3http://apps.cytoscape.org/apps/iRegulon

et al., 2018). Finally, significant genes were grouped into k =

6 groups (set value).
As mentioned above, STRING was used to construct a PPI

network to select the top 10% of genes in each cluster according
to degree of connectivity, and the results were visualized
using Cytoscape.

Time-Dependent Marker Gene Analysis of
DEGs Using STEM
STEM (Short Time Series Expression Miner, version 1.3.12)
(Ernst and Bar-Joseph, 2006) was used to identify the dynamic
gene-expression clusters among the DEGs common to all seven
experimental groups, and significantly enriched gene families
with similar expression patterns were clustered according to the
default parameters. Similar to how genes were clustered, we used
STRING to construct a PPI network to select the top 10% of
genes in each cluster according to degree of connectivity, and the
results were visualized using Cytoscape. Functional GO term and
KEGG pathway enrichment analyses of the significant clusters
were performed using the Metascape database (see above).

Histological Analyses (H&E Staining and
Immunohistochemistry)
The injured limbs from the experimental groups (n = 56)
and control group (n = 8) were harvested and placed in
10% neutral buffered formalin for 24 h. The muscle tissue
was rinsed and flushed with phosphate-buffered saline, gently
squeezed to remove non-adherent bacteria, and embedded in
paraffin. Then, longitudinal sections 5µm thick were cut for
histological observations and immune-histochemical processing.
Histological sections for each time point were stained with H&E
to observe the progression from damage to repair in the early
period following SMI.

A primary antibody against MPO (1:500 dilution, ab9535;
Abcam) was used with a Metal Enhanced DAB Chromogenic
Kit (AR1026; Boster) to stain infiltrating neutrophils. A
secondary anti-mouse/rabbit horseradish peroxidase immune-
globin G antibody (SA1020; Boster) was used to identify sites of
inflammation. Sections were counterstained with hematoxylin.

Following staining, the slides were imaged using a Tissue Fax
Plus 2000 slide scanner (Tissuen Gnostics) at a magnification of
40× (H&E staining) or 20× (immune-histochemical staining).

DATA AVAILABILITY STATEMENT

The RNA-seq raw data upload information link, repositories and
accession number in the article are listed as follows: Information
link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE171243, Repository: GEO Accession number: GSE171243.

ETHICS STATEMENT

The animal study was reviewed and approved by Animal
Ethics Committees of Shanxi Medical University [reference
number 2016LL151].

Frontiers in Genetics | www.frontiersin.org 15 June 2021 | Volume 12 | Article 650874

http://metascape.org/gp/index.html#/main/step1
http://apps.cytoscape.org/apps/iRegulon
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171243
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171243
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ren et al. Transcriptional Dynamics After Muscle Injury

AUTHOR CONTRIBUTIONS

JS and YW conceived and supervised the project. KR, JS,
and QD designed the research. LiangW, NL, LD, LianglW, and
YT performed the animal and RNA experiments. LianglW and
GA performed data and bioinformatics analyses. JC, LiangW,
and KR performed the HE and IHC staining. LianglW and QJ
performed the figures on this paper. JS, YW, QD, KR, and NL
interpreted the results. KR, JC, and JS wrote the paper. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the National Natural
Science Foundation of China (No. 81971795).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.650874/full#supplementary-material

REFERENCES

Abdelmoez, A., Sardón Puig, L., Smith, J., Gabriel, B., Savikj, M., Dollet, L., et al.
(2020). Comparative profiling of skeletal muscle models reveals heterogeneity
of transcriptome and metabolism. Am. J. Physiol. Cell Physiol. 318, C615–C626.
doi: 10.1152/ajpcell.00540.2019

Anders, S., Pyl, P., and Huber, W. (2015). HTSeq–a Python framework to
work with high-throughput sequencing data. Bioinformatics 31, 166–169.
doi: 10.1093/bioinformatics/btu638

Arefin, S., Buchanan, S., Hobson, S., Steinmetz, J., Alsalhi, S., Shiels, P., et al. (2020).
Nrf2 in early vascular ageing: calcification, senescence and therapy. Clin. Chim.

Acta 505, 108–118. doi: 10.1016/j.cca.2020.02.026
Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Statal Soc. Ser. B 57,
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Best, T., and Hunter, K. (2000). Muscle injury and repair. Phys. Med. Rehabil. Clin.

N. Am. 11, 251–266. doi: 10.1016/S1047-9651(18)30128-1
Bi, D., Ning, H., Liu, S., Que, X., and Ding, K. (2015). Gene expression

patterns combined with network analysis identify hub genes
associated with bladder cancer. Comput. Biol. Chem. 56, 71–83.
doi: 10.1016/j.compbiolchem.2015.04.001

Bogenpohl, J., Smith, M., Farris, S., Dumur, C., Lopez, M., Becker, H.,
et al. (2019). Cross-species co-analysis of prefrontal cortex chronic ethanol
transcriptome responses in mice and monkeys. Front. Mol. Neurosci. 12:197.
doi: 10.3389/fnmol.2019.00197

Bolger, A., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
doi: 10.1093/bioinformatics/btu170

Burnett, L., Boscolo, F., Laurent, L.,Wong,M., and Alperin,M. (2019). Uncovering
changes in proteomic signature of rat pelvic floor muscles in pregnancy. Am. J.

Obstetr. Gynecol. 221, 130.e1–130.e9. doi: 10.1016/j.ajog.2019.04.025
Camacho, D., Collins, K., Powers, R., Costello, J., and Collins, J. (2018). Next-

generation machine learning for biological networks. Cell 173, 1581–1592.
doi: 10.1016/j.cell.2018.05.015

Censi, F., Giuliani, A., Bartolini, P., and Calcagnini, G. (2011). A multiscale
graph theoretical approach to gene regulation networks: a case
study in atrial fibrillation. IEEE Trans. Biomed. Eng. 58, 2943–2946.
doi: 10.1109/TBME.2011.2150747

Chellini, F., Tani, A., Zecchi-Orlandini, S., and Sassoli, C. (2019). Influence
of platelet-rich and platelet-poor plasma on endogenous mechanisms of
skeletal muscle repair/regeneration. Int. J. Mol. Sci. 20:683. doi: 10.3390/
ijms20030683

Coates, B., McKenzie, J., Buettmann, E., Liu, X., Gontarz, P., Zhang, B., et al.
(2019). Transcriptional profiling of intramembranous and endochondral
ossification after fracture in mice. Bone 127, 577–591. doi: 10.1016/j.bone.2019.
07.022

Crow, M., Lim, N., Ballouz, S., Pavlidis, P., and Gillis, J. (2019). Predictability
of human differential gene expression. Proc. Natl. Acad. Sci. U.S.A. 116,
6491–6500. doi: 10.1073/pnas.1802973116

Czarnewski, P., Parigi, S., Sorini, C., Diaz, O., Das, S., Gagliani, N., et al.
(2019). Conserved transcriptomic profile between mouse and human
colitis allows unsupervised patient stratification. Nat. Commun. 10:2892.
doi: 10.1038/s41467-019-10769-x

Donahue, T., and Hines, O. (2009). CXCR2 and RET single nucleotide
polymorphisms in pancreatic cancer. World J. Surg. 33, 710–715.
doi: 10.1007/s00268-008-9826-z

Du, Q., Li, N., Dang, L., Dong, T., Lu, H., Shi, F., et al. (2020). Temporal expression
of wound healing-related genes inform wound age estimation in rats after a
skeletal muscle contusion: a multivariate statistical model analysis. Int. J. Legal
Med. 134, 273–282. doi: 10.1007/s00414-018-01990-2

Du, Q., Sun, J., Zhang, L., Liang, X., Guo, X., Gao, C., et al. (2013). Time-
dependent expression of SNAT2 mRNA in the contused skeletal muscle of
rats: a possible marker for wound age estimation. Forensic Sci. Med. Pathol. 9,
528–533. doi: 10.1007/s12024-013-9482-y

Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D. J., Dash, C., et al.
(2008). Global transcription in pluripotent embryonic stem cells. Cell Stem Cell

2, 437–447. doi: 10.1016/j.stem.2008.03.021
Ernst, J., and Bar-Joseph, Z. (2006). STEM: a tool for the analysis of

short time series gene expression data. BMC Bioinformatics 7:191.
doi: 10.1186/1471-2105-7-191

Filippin, L., Moreira, A., Marroni, N., and Xavier, R. (2009). Nitric oxide
and repair of skeletal muscle injury. Nitric Oxide Biol. Chem. 21, 157–163.
doi: 10.1016/j.niox.2009.08.002

Gaballah, M., Horita, T., Takamiya, M., Yokoji, K., Fukuta, M., Kato, H., et al.
(2018). Time-dependent changes in local and serum levels of inflammatory
cytokines as markers for incised wound aging of skeletal muscles. Tohoku J.

Exp. Med. 245, 29–35. doi: 10.1620/tjem.245.29
Galvagni, F., Orlandini, M., and Oliviero, S. (2013). Role of the AP-1 transcription

factor FOSL1 in endothelial cells adhesion and migration. Cell Adhes. Migrat. 7,
408–411. doi: 10.4161/cam.25894

Grellner, W., and Madea, B. (2007). Demands on scientific studies: vitality
of wounds and wound age estimation. Forensic Sci. Int. 165, 150–154.
doi: 10.1016/j.forsciint.2006.05.029

Grilli, A., Bengalli, R., Longhin, E., Capasso, L., Proverbio, M., Forcato, M., et al.
(2018). Transcriptional profiling of human bronchial epithelial cell BEAS-
2B exposed to diesel and biomass ultrafine particles. BMC Genomics 19:302.
doi: 10.1186/s12864-018-4679-9

Han, Y., Zhao, X., Sun, Y., Sui, Y., and Liu, J. (2019). Effects of FOSL1 silencing on
osteosarcoma cell proliferation, invasion and migration through the ERK/AP-1
signaling pathway. J. Cell. Physiol. 234, 3598–3612. doi: 10.1002/jcp.27048

Hansen, H. H., Ægidius, H. M., Oró, D., Evers, S. S., and Rigbolt, K.
T. G. (2020). Human translatability of the GAN diet-induced obese
mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 20:210.
doi: 10.1186/s12876-020-01356-2

Hardison, R. (2016). A guide to translation of research results from model
organisms to human. Genome Biol. 17:161. doi: 10.1186/s13059-016-1026-9

Harris, L. N., Ismaila, N., McShane, L. M., Andre, F., Collyar, D. E., Gonzalez-
Angulo, A. M., et al. (2016). Use of biomarkers to guide decisions on adjuvant
systemic therapy for women with early-stage invasive breast cancer: American
Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 34,
1134–1150. doi: 10.1200/JCO.2015.65.2289

Hegyi, K., and Méhes, G. (2012). Mitotic failures in cancer: aurora B kinase and
its potential role in the development of aneuploidy. Pathol. Oncol. Res. 18,
761–769. doi: 10.1007/s12253-012-9534-8

Hegyi, P., Petersen, O., Holgate, S., Eross, B., Garami, A., Szakács, Z., et al. (2020).
Academia Europaea Position Paper on Translational Medicine: the cycle model

Frontiers in Genetics | www.frontiersin.org 16 June 2021 | Volume 12 | Article 650874

https://www.frontiersin.org/articles/10.3389/fgene.2021.650874/full#supplementary-material
https://doi.org/10.1152/ajpcell.00540.2019
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1016/j.cca.2020.02.026
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/S1047-9651(18)30128-1
https://doi.org/10.1016/j.compbiolchem.2015.04.001
https://doi.org/10.3389/fnmol.2019.00197
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1016/j.ajog.2019.04.025
https://doi.org/10.1016/j.cell.2018.05.015
https://doi.org/10.1109/TBME.2011.2150747
https://doi.org/10.3390/ijms20030683
https://doi.org/10.1016/j.bone.2019.07.022
https://doi.org/10.1073/pnas.1802973116
https://doi.org/10.1038/s41467-019-10769-x
https://doi.org/10.1007/s00268-008-9826-z
https://doi.org/10.1007/s00414-018-01990-2
https://doi.org/10.1007/s12024-013-9482-y
https://doi.org/10.1016/j.stem.2008.03.021
https://doi.org/10.1186/1471-2105-7-191
https://doi.org/10.1016/j.niox.2009.08.002
https://doi.org/10.1620/tjem.245.29
https://doi.org/10.4161/cam.25894
https://doi.org/10.1016/j.forsciint.2006.05.029
https://doi.org/10.1186/s12864-018-4679-9
https://doi.org/10.1002/jcp.27048
https://doi.org/10.1186/s12876-020-01356-2
https://doi.org/10.1186/s13059-016-1026-9
https://doi.org/10.1200/JCO.2015.65.2289
https://doi.org/10.1007/s12253-012-9534-8
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ren et al. Transcriptional Dynamics After Muscle Injury

for translating scientific results into community benefits. J. Clin. Med. 9:1532.
doi: 10.3390/jcm9051532

Huard, J., Li, Y., and Fu, F. (2002). Muscle injuries and repair: current
trends in research. J. Bone Joint Surg. Am. Vol. 84, 822–832.
doi: 10.2106/00004623-200205000-00022

Huard, J., Lu, A., Mu, X., Guo, P., and Li, Y. (2016). Muscle injuries and
repair: what’s new on the horizon! Cells Tissues Organs 202, 227–236.
doi: 10.1159/000443926

Icli, B., Wu, W., Ozdemir, D., Li, H., Cheng, H. S., Haemmig, S., et al.
(2019). MicroRNA-615-5p regulates angiogenesis and tissue repair by
targeting AKT/eNOS (Protein kinase B/endothelial nitric oxide synthase)
signaling in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 39, 1458–1474.
doi: 10.1161/ATVBAHA.119.312726

Järvinen, T., Järvinen, M., and Kalimo, H. (2013). Regeneration of injured skeletal
muscle after the injury.Musc. Ligaments Tendons J. 3, 337–345.

Jee, B., Choi, J., Rhee, H., Yoon, S., Kwon, S., Nahm, J., et al. (2019).
Dynamics of genomic, epigenomic, and transcriptomic aberrations
during stepwise hepatocarcinogenesis. Cancer Res. 79, 5500–5512.
doi: 10.1158/0008-5472.CAN-19-0991

Jin, Z., Liu, S., Zhu, P., Tang, M., Wang, Y., Tian, Y., et al. (2019). Cross-
species gene expression analysis reveals gene modules implicated in human
osteosarcoma. Front. Genet. 10:697. doi: 10.3389/fgene.2019.00697

Kallio, M., Tuimala, J., Hupponen, T., Klemel,A¤, P., Gentile, M., Scheinin, I.,
et al. (2011). Chipster: user-friendly analysis software for microarray and
other high-throughput data. BMC Genomics 12:507. doi: 10.1186/1471-2164-
12-507

Kang, W., Sun, T., Tang, D., Zhou, J., and Feng, Q. (2019). Fusobacterium
nucleatum time-course transcriptome analysis of gingiva-derivedmesenchymal
stem cells reveals that triggers oncogene expression in the process of
cell differentiation. Front. Cell Dev. Biol. 7:359. doi: 10.3389/fcell.2019.
00359

Kim, D., Langmead, B., and Salzberg, S. (2015). HISAT: a fast spliced aligner
with low memory requirements. Nat. Methods 12, 357–360. doi: 10.1038/nmet
h.3317

Kohl, M.,Wiese, S., andWarscheid, B. (2011). Cytoscape: software for visualization
and analysis of biological networks. Methods Mol. Biol. 696, 291–303.
doi: 10.1007/978-1-60761-987-1_18

Kohsaka, S., Shukla, N., Ameur, N., Ito, T., Ng, C. K., Wang, L., et al. (2014).
A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive
subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway
mutations. Nat. Genet. 46, 595–600. doi: 10.1038/ng.2969

Krolikoski, M., Monslow, J., and Pur,A©, E. (2019). The CD44-HA axis and
inflammation in atherosclerosis: a temporal perspective. Matrix Biol. 78–79,
201–218. doi: 10.1016/j.matbio.2018.05.007

Kumar, R., Mani, A., Singh, N., and Rao, G. (2020). PKCθ-JunB axis
via upregulation of VEGFR3 expression mediates hypoxia-induced
pathological retinal neovascularization. Cell Death Dis. 11:325.
doi: 10.1038/s41419-020-2522-0

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for
weighted correlation network analysis. BMC Bioinformatics 9:559.
doi: 10.1186/1471-2105-9-559

Li, B., Liu, B., Zhang, X., Liu, H., and He, L. (2020). KIF18B promotes the
proliferation of pancreatic ductal adenocarcinoma via activating the expression
of CDCA8. J. Cell. Physiol. 235, 4227–4238. doi: 10.1002/jcp.29201

Li, Q., and Luo, Z. (2019). Transcriptional regulatory network analysis to reveal
the key genes involved in skeletal muscle injury. J. Comput. Biol. 26, 1090–1099.
doi: 10.1089/cmb.2019.0025

Liu, L., Broszczak, D., Broadbent, J., Singh, D., Steck, R., Parker, T., et al. (2020).
Comparative label-free mass spectrometric analysis of temporal changes in
the skeletal muscle proteome after impact trauma in rats. Am. J. Physiol.

Endocrinol. Metab. 318, E1022–E1037. doi: 10.1152/ajpendo.00433.2019
Love, M., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
doi: 10.1186/s13059-014-0550-8

Luo, W., Chen, J., Li, L., Ren, X., Cheng, T., Lu, S., et al. (2019). c-Myc inhibits
myoblast differentiation and promotes myoblast proliferation and muscle fibre
hypertrophy by regulating the expression of its target genes, miRNAs and
lincRNAs. Cell Death Differ. 26, 426–442. doi: 10.1038/s41418-018-0129-0

Nueda, M., Tarazona, S., and Conesa, A. (2014). Next maSigPro: updating
maSigPro bioconductor package for RNA-seq time series. Bioinformatics 30,
2598–2602. doi: 10.1093/bioinformatics/btu333

Parikh, A., Miranda, E., Katoh-Kurasawa, M., Fuller, D., Rot, G., Zagar, L., et al.
(2010). Conserved developmental transcriptomes in evolutionarily divergent
species. Genome Biol. 11:R35. doi: 10.1186/gb-2010-11-3-r35

Reddy, S. P., and Mossman, B. T. (2002). Role and regulation of activator protein-
1 in toxicant-induced responses of the lung. Am. J. Physiol. Lung Cell. Mol.

Physiol. 283, L1161–L1178. doi: 10.1152/ajplung.00140.2002
Rybalko, V., Hsieh, P., Merscham-Banda, M., Suggs, L., and Farrar, R.

(2015). The development of macrophage-mediated cell therapy to
improve skeletal muscle function after injury. PLoS ONE 10:e0145550.
doi: 10.1371/journal.pone.0145550

Sass, P. A., Dabrowski, M., Charzyńska, A., and Sachadyn, P. (2017).
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