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Abstract

Motivation: Recently, the number of available protein tertiary structures and compounds has

increased. However, structure-based virtual screening is computationally expensive owing to dock-

ing simulations. Thus, methods that filter out obviously unnecessary compounds prior to computa-

tionally expensive docking simulations have been proposed. However, the calculation speed of

these methods is not fast enough to evaluate�10 million compounds.

Results: In this article, we propose a novel, docking-based pre-screening protocol named Spresso

(Speedy PRE-Screening method with Segmented cOmpounds). Partial structures (fragments) are

common among many compounds; therefore, the number of fragment variations needed for evalu-

ation is smaller than that of compounds. Our method increases calculation speeds by �200-fold

compared to conventional methods.

Availability and Implementation: Spresso is written in Cþþ and Python, and is available as an

open-source code (http://www.bi.cs.titech.ac.jp/spresso/) under the GPLv3 license.

Contact: akiyama@c.titech.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein tertiary structures and compounds contain essential infor-

mation for drug discovery, and the availability of this information

has increased in recent years. For example, the Protein Data Bank

(PDB), which is the most popular public database of protein struc-

tures, contains>114 000 entries, a 20% increase from 2014 to

2015 (Rose et al., 2015). Moreover, the ZINC database of commer-

cially available compounds contains �34 000 000 compounds

(Irwin et al., 2012). In drug discovery, the first step is to identify po-

tential drug compounds specific to the target, followed by an opti-

mization step to identify more feasible structures from among the

potential drug compounds. Thus, the identification of potential drug

compounds is therefore similar to ‘finding needles in a haystack’

(Klon et al., 2004); thus, estimation of the likelihood for a com-

pound to become a viable drug is critical in enhancing the effective-

ness of searches. To estimate drug likelihood, computational

methods called ‘virtual screening’ have been improved by the large-

ness of available databases (Sliwoski et al., 2014). Furthermore,

Chiba et al. (2015) pointed out that using multiple virtual screening

methods results in obtaining viable drugs more efficiently based on

the results of a potential drug identification contest.

Structure-based virtual screening (SBVS) is currently a standard

step preceding wet-lab experiments during drug discovery (Cheng

et al., 2012). In SBVS, protein-ligand docking simulations are
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performed to estimate binding affinities (Meng et al., 2011) and

plausible binding modes for many drug candidates; however, this

process is computationally demanding (Drwal and Griffith, 2013)

because docking simulation is an optimization problem with many

search degrees. The internal degree of freedom of a compound is a

significant factor associated with the search space degrees and com-

putational time required for docking simulations. For example,

AutoDock Vina (Trott and Olson, 2010) spends �500 CPU seconds

per compound, whereas the commercial docking tool Glide

(Friesner et al., 2004) is 50-fold faster than AutoDock Vina; how-

ever, its use is still not feasible to evaluate all available compounds

in the ZINC database because of the time and cost involved. Given

these limitations, studies have focused on screening compounds

prior to docking, termed ‘pre-screening’ (Kumar and Zhang, 2015).

These methods can be divided into two broad categories: ligand-

based and structure-based (Drwal and Griffith, 2013; Ferreira et al.,

2015). Ligand-based approaches utilize known active/inactive com-

pounds to screen candidate compounds, using machine learning

methods or rule-based selection (Ripphausen et al., 2011). These

approaches are widely used as filtering methods and can deal with

vast numbers of compounds, since ligand-based approaches are

computationally less expensive than structure-based approaches.

However, prediction based on known active/inactive compounds

can lead to bias (Drwal and Griffith, 2013), and this method has dif-

ficulty finding drug candidates with different scaffolds from known

active compounds. Structural docking-based methods avoid this

problem, but require large computation times. For example, the

high-throughput virtual-screening mode of Glide (Glide HTVS;

Friesner et al., 2004) and Panther (Niinivehmas et al., 2015) can

evaluate compounds up to 10-fold faster than ordinal docking tools,

using a rough evaluation of affinity between ligand and protein. In

particular, Glide HTVS has been widely used in recent studies for

pre-screening (Mirza et al., 2016; Muralidharan et al., 2015).

Nevertheless, the limited speed associated with this method pre-

cludes evaluation of all compounds available for purchase from

ZINC in a reasonable computation time.

For these reasons, a much faster docking-based method sufficient

to evaluate all ZINC compounds or any other compound libraries is

urgently needed, despite its limited screening accuracy. In addition,

it is not necessary for pre-screening methods to output structural

conformation information because pre-screened candidates will sub-

sequently undergo more expensive docking simulations.

To decrease computational cost, fragment-based methods have

been adopted to calculate compound properties. For instance, topo-

logical polar surface area (TPSA; Ertl et al., 2000) is a molecular

polar surface area (PSA) estimation method that sums the fragment

contributions and there is also a compound volume estimation

method by counting each type of atom (Zhao et al., 2003). Since

docking score depends on proteins as well as compounds, docking

score calculations by the fragment-based method is more difficult

than that with compound properties; however, both property esti-

mation methods suffice in terms of computational expenditure.

To address these concerns, we present a structure-based pre-

screening method called Spresso (Speedy PRE-Screening method

with Segmented cOmpounds, pronounced like ‘espresso’) that de-

composes all candidate compounds into fragments with no internal

degrees of freedom. These fragments are docked into target proteins,

and compounds are roughly scored based on the results of fragment

docking. Spresso performs ultrafast compound evaluation without

protein-ligand conformation prediction. It utilizes the concept of

compound decomposition from a previous docking program

(eHiTS; Zsoldos et al., 2007) and expands the concept by allowing

reuse of fragment-docking results for analysis of different target

compounds sharing the same fragment to enable ultrafast calcula-

tions in total.

2 Materials and methods

2.1 Elements of Spresso
The procedure of Spresso is comprised of three key steps summar-

ized in Figure 1: (i) compound decomposition (Fig. 2), (ii) fragment

docking and (iii) fragment-based evaluation of each compound

score.

2.1.1 Compound decomposition

Several compound decomposition rules have been proposed, with

the most famous being RECAP (REtrosynthetic Combinatorial

Analysis Procedure; Lewell et al., 1998). RECAP was originally cre-

ated for combinatorial chemistry, thus a compound will be frag-

mented in a restrictive manner. Generally, the smaller the internal

degree of freedom of a structure, the faster the docking calculation

speed. Therefore, more bonds should be cleaved by Spresso than

that by RECAP to accelerate the process. Thus our decomposition

strategy creates rigid fragments with no internal degree of freedom.

In our method, a fragment is defined as a rigid substructure without

considering hydrogen atoms because they are sometimes ignored in

docking calculations. To divide compounds into appropriate

Fig. 1. Spresso flowchart

Fig. 2. An example of compound decomposition. The carbon moiety in the

structure on the right has four adjacent groups; therefore, it is not merged

into any adjacent groups
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fragments, a two-step algorithm is used. (i) The first step involves

rigid-group determination: all ring systems are considered rigid,

even in the case of cyclohexane. Acyclic fragments with double, tri-

ple, or resonance bonds and sp2-hybridized atoms are also con-

sidered rigid. (ii) The second step involves merging solitary groups

(single-atom fragments): each non-solitary group and its adjacent

solitary group are merged, except for solitary groups having three or

more adjacent groups. Figure 2 shows an example of ligand decom-

position. As exceptional cases, single atom fragments can exist in

some compounds. Whenever a bond is broken during this decom-

position, hydrogen atoms are added.

Another benefit of decomposition is the sharing of docking re-

sults for duplicated fragments. Generally, there are many derivatives

in a compound library, resulting in vast numbers of duplicate frag-

ments. This duplication allows us to reduce the total number of ne-

cessary fragment docking simulations. The effect of decomposition

from compound to fragment depends upon the compound library

and the degree of decomposition, since increasing the number of

pre-screened compounds and cleaved compound bonds will acceler-

ate subsequent fragment docking compared to compound docking

without decomposition.

2.1.2 Fragment docking

After decomposition, all rigid fragments are docked to the best lo-

cation regardless of the other fragments. This means that all frag-

ments are independently docked to the location in the protein

cavity where they fit best. Fragments having the same substruc-

tures as those from different compounds can be scored identically,

thereby significantly decreasing the number of fragments needing

to be docked. The best score from the docking results for each frag-

ment is recorded. For this procedure, any docking tool capable of

outputting a score can be used, including AutoDock Vina (Trott

and Olson, 2010), Glide (Friesner et al., 2004), or GOLD

(Verdonk et al., 2003).

2.1.3 Fragment-based evaluation of each compound

Compounds are evaluated after fragment docking is completed.

Given that only fragments are docked into the target protein, we

cannot obtain docking scores for entire compounds. Therefore, the

screening evaluation score for each compound must be calculated

based on the docking scores of fragments decomposed from the

original compound. There are two strategies for compound evalu-

ation: (i) choosing combinations of fragment conformations that

avoid contradictions, and (ii) choosing the best conformation with-

out consideration of fragment collisions. The former strategy is

more precise as compared to the latter strategy, but searching for

conformation combinations can also be computationally expen-

sive. Given our goal of creating a computationally faster ‘pre-

screening’ method, we chose the latter strategy for compound

evaluation.

We can consider many formulae for calculating compound-

evaluation scores from fragment-docking scores (scoref ). In this

study, we evaluated seven calculation formulae.

(I) Summation of fragment-docking scores (SUM)

SUM ¼
X

f
scoref (1)

Summation is one of the simplest evaluation methods, where

SUM reflects the approximate rough upper bound of the

compound-docking score. Generally, the SUM value is larger

when a compound is divided into more fragments.

(II) Best value of fragment-docking scores (MAX)

MAX ¼ max scoref (2)

Utilizing the best value is also a simple evaluation method,

where MAX reflects the estimated rough lower bound of

compound-docking scores. In most cases, the MAX value will

be less than the compound-docking score; however, a docking

score associated with a single fragment may exceed the

compound-docking score in specific cases (i.e. a compound

too large for a protein cavity).

(III) Generalized Sum (GS)

GSx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

f
scoref

� �xx

q
(3)

GS1 is equal to SUM, while GS1 is equal to MAX; therefore,

GS can express the mixture of SUM and MAX values continu-

ously. In this study, we chose (III) GS3 from the GS2�GS10

evaluation results (Supplementary Fig. S1).

The other four calculation formulae are shown in supplementary

text S1. GS requires non-negative values as input, while the

fragment-docking score is almost always a negative value because

the score was fitted to experimental DG. Therefore, the fragment-

docking scores are inverted, and positive docking scores (which are

inverted to negative values) are treated as zero.

The best pre-screening accuracy was achieved when (III) GS3

was used (detailed description provided in Section 3.2); thus, GS3

was adopted as the default formula in Spresso.

2.2 Datasets
The Directory of Useful Decoys, Enhanced (DUD-E; Mysinger

et al., 2012) was used to evaluate the performance of pre-screening

during the virtual-screening process. The DUD-E dataset is widely

used and consists of 102 diverse sets of protein targets, as well as

active and decoy compounds. The ZINC database (Irwin et al.,

2012) was also used to measure calculation time, since the number

of active compounds and decoys in each set is insufficient as com-

pared to those used in actual virtual screening. We chose ‘all pur-

chasable’ and ‘all boutique’ datasets, then eliminated duplication

based on ZINC ID. The total number of compounds was

28 629 602.

2.3 Implementation
The code for fragment decomposition was written in Cþþ, and the

compound-evaluation score calculations were written in Python.

Spresso code is freely available at http://www.bi.cs.titech.ac.jp/

spresso/ under the GPL version 3 license. We used Glide SP mode

and Glide HTVS mode for fragment docking, and used Glide HTVS

to dock compounds for comparison.

2.4 Computing environment
All calculations were conducted on the TSUBAME 2.5 supercom-

puting system, Tokyo Institute of Technology, Japan. We used its

thin nodes in all experiments, with each node having two Intel Xeon

X5670 CPUs (six cores/CPU) and 54 GB of RAM. Because Glide

software is a single-thread program, all docking simulations were

performed in parallel using 12 CPU cores. It should be noted that

Glide is a proprietary software, and thus it cannot be optimized for

specific computing environments.
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2.5 Metrics
Two computational experiments were conducted: (i) evaluation of

calculation speed, and (ii) evaluation of virtual screening accuracy.

Since one license will allow us to use only one CPU core, we used

CPU time to evaluate calculation speed. Accuracy was measured by

performance efficiency according to enrichment factors (EFs)

(Hamza et al., 2012).

EF
x% ¼

Pos
x%=All

x%
Pos

100%=All
100%

(4)

In Eq. 4, Pos
x%, All

x%, Pos
100% and All

100% are the number of ac-

tive compounds in the top x% of screened compounds, the number

of compounds in the top x% of screened compounds, the total num-

ber of screened active compounds, and the total number of screened

compounds, respectively. In virtual screening, it is pragmatically

meaningless to assess differences between lower ranked compounds

because wet-lab experiments can be executed up to only a few thou-

sand compounds even though computational methods can deal with

more than 1 million compounds. Therefore, EF
1% and EF

2% were

calculated to evaluate accuracy.

2.6 Assessment of prediction accuracy
As previously mentioned, Spresso is not intended for independent

use. Therefore, an evaluation must involve not only Spresso but also

a following compound docking calculation. The procedure used for

evaluation of accuracy was as follows: (i) with each pre-screening

method, 2%, 5%, or 10% of the number of all target compounds

were selected; (ii) pre-screened candidates were docked using Glide

SP to obtain a docking score; and (iii) the top 1% and 2% of com-

pounds were used to calculate EF
1% and EF

2%. We calculated five

combinations for each pre-screening method.

3 Results

To evaluate the usefulness of Spresso with regard to speed and pre-

diction accuracy, two experiments were performed. In all experi-

ments, Glide HTVS, which is a conventional pre-screening method,

was also evaluated for comparison.

3.1 Comparison of docking-calculation speed
Table 1 shows the calculation times for docking of all 28 629 602

ZINC compounds into three target proteins from the DUD-E data-

set. Spresso using Glide SP-mode fragment docking (Spresso-SP)

required<2 CPU days, and Spresso with Glide HTVS-mode frag-

ment docking (Spresso-HTVS) required<1 CPU day, while whole-

compound docking using Glide HTVS mode required>4 CPU

months. These results suggest that Spresso is up to �200-fold faster

than compound docking with conventional Glide HTVS pre-

screening.

3.2 Prediction accuracy in DUD-E benchmarking
Table 2 shows the average EF values associated with each DUD-E

target. The formulae for SUM, MAX and GS3 in Table 2 are listed

as (I)–(III) in Section 2.1, respectively. The other four calculation

formulae were also evaluated (Supplementary Table S1). Eight score

calculations were evaluated, revealing that the combination of

Spresso-SP and GS3 was the best. Spresso-HTVS exhibited slightly

less accurate results as compared to Spresso-SP. The superiority of

Spresso-SP was more obvious with GS. These differences were de-

pendent upon the docking tools used. Our results indicate that

Spresso was less accurate when compared with conventional

method. Pearson’s correlation with Glide SP score also showed

Spresso-SP (GS3) is slightly less similar to (R¼0.55, Fig. 3) than

Glide HTVS (R¼0.60, Supplementary Fig. S2) for CP3A4, one of

the DUD-E target. These results represent a major disadvantage of

Spresso; however, we believe this loss in accuracy can be

Table 1. The results of docking times for docking of all 28 629 602

ZINC compounds into three DUD-E protein targets

Target Calculation time [CPU hours]

Spresso-SP Spresso-HTVS Glide HTVS

ACES 42.6 (� 76.8) 22.8 (� 143.1) 3268.8

EGFR 38.9 (� 126.4) 21.5 (� 229.3) 4925.1

PGH1 41.8 (� 88.0) 20.9 (� 175.4) 3674.5

Values in parentheses indicate the fold increase in speed exhibited by

Spresso relative to Glide HTVS.

Fig. 3. A scatter plot of the Glide SP score and the Spresso-SP score for DUD-

E CP3A4 target. Each dot represents a compound in DUD-E CP3A4 dataset.

The correlation coefficient is R¼0.55

Table 2. The results of averaged prediction accuracy for 102 DUD-E

targets

Methods Enrichment factors

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%

Spresso-SP SUM 4.58 6.78 8.92 4.00 5.53

MAX 9.28 11.01 11.94 7.51 8.31

GS3 9.73 12.79 15.03 8.01 9.94

Spresso-HTVS SUM 4.60 6.78 8.93 4.20 5.46

MAX 9.29 9.93 12.41 6.38 8.29

GS3 9.00 12.18 14.49 7.39 9.24

Glide HTVS 17.85 18.97 19.60 12.50 12.92

Note: All enrichment factors represent the average of 102 EFs from DUD-E

protein targets. (a%–b%) indicates the EFb% when compounds were prescreened

using a% of all compounds. Best EF values among Spressos are written in bold.
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compromised owing to the method’s unprecedented calculation

speed based on the fact that the previous method (Glide HTVS) re-

quires impermissibly longer computation time.

In order to reveal how many compounds selected by Glide SP are

included in the compounds selected by pre-screening methods Glide

HTVS or Spresso, the overlap in selected compounds identified with

each method was calculated for DUD-E Diverse Subset (8 targets).

Venn diagrams are shown in Figure 4 and Supplementary Figures

S3–S9. These diagrams indicate that the compounds identified with

Spresso have less intersection with those from Glide SP than Glide

HTVS.

4 Discussion

4.1 Number of unique fragments
The primary reason for the accelerated docking speeds observed was

the reduction in number of docking trials. In this case, 28 629 602

compounds in the ZINC database were decomposed into 263 319

fragments; thus, the number of fragments was approximately one-

hundredth of the number of compounds, resulting in �100-fold de-

creases in docking time. The number of fragments is dependent on

the database; for example, the ChEMBL version 21 database (Bento

et al., 2014) contains 1 583 897 compounds, which were decom-

posed into 127 360 fragments (a �10-fold reduction). As for the

PubChem (Kim et al., 2016) compound database, 88 527 810 com-

pounds have a molecular weight<1000 Da, and they were decom-

posed into 2 082 185 fragments (a �40-fold reduction).

Additionally, the RECAP rule decomposed 28 629 602 ZINC com-

pounds into 3 161 753 fragments, approximately 12-times larger

than that by our decomposition rule. For this reason, RECAP is un-

feasible for use in our pre-screening method.

4.2 Superiority of GS3

The computational experiment in section 3.2 revealed the (III) GS3

formula as the best of the eight possible methods for calculating

compound-evaluation score. Method (I) SUM, utilizing all fragment

scores equally, was the worst of the eight, while GSx returned ac-

ceptable results. The GSx exponent acts as a weight coefficient,

which implies that the result indicates that higher-scoring fragments

should be more weighted. However, GS3 returned more accurate re-

sults relative to method (II) MAX, given that considering the top

few fragment scores is more informative than considering only the

top fragment score.

4.3 Score fitting to Glide SP
Linear least squares fitting is often applied to experimental results or

precise estimates in fragment-based, compound property estimation

methods. In the compound property estimation methods, common

explanatory variables include the fragment type, number of cleaved

bonds and number of rings, amongst others; however, it is inappro-

priate to determine the contribution of each fragment in docking

simulations since docking scores differ based on the target protein,

and thus fragment-docking scores are used with equal contribution.

Additionally, the number of cleaved bonds must affect the sum of

fragment score. Because of above reasons, we generated a linear re-

gression model with two factors, scoreSUM and the number of

cleaved bonds, performed fittings with the Glide SP compound

docking score as a target using the DUD-E HIVPR dataset, and then

calculated the DUD-E CP3A4 dataset compounds’ scorefitting with

the fitted parameter. The data utilized for this pre-screening is de-

tailed in Supplementary Table S2. The correlation coefficient be-

tween scorefitting and Glide SP of CP3A4 was R¼0.49

(Supplementary Fig. S10), which is lower than that between GS3

and Glide SP (R¼0.55, Fig. 3), thus the linear regression fitting did

not work well and explanatory valiables should be more considered.

Fig. 4. A Venn diagram of selected compounds identified by pre-screening for

CP3A4, a DUD-E target. The top 1000 compounds identified by Glide SP,

Glide HTVS and Spresso-SP are shown. The number of compounds for each

method is shown and the numbers of true positives are in parentheses

Fig. 5. Scatter plot of physicochemical features based on pre-screening for ACES, a DUD-E protein target. Each dot represents a compound: cyan dots represent

0.1% of the compounds from the ZINC database; orange dots represent the top 0.1% of Spresso-SP compounds calculated using the method (III) GS3 formula;

and magenta dots represent active compounds for ACES from the DUD-E dataset
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4.4 Can Spresso conserve compound diversity?
Drwal and Griffith (2013) showed that structure-based methods are

likely to maintain the diversity of compound structures as compared

with ligand-based methods. While this is one reason to use

structure-based methods, it does not guarantee that the diversity of

compounds selected by Spresso will be maintained. We analyzed the

diversity of compounds selected by Spresso according to two charac-

teristics: physicochemical features and structural diversity. We

focused on three DUD-E targets (PGH1, ACES and EGFR) and

screened ZINC compounds using Spresso-SP, Glide HTVS and a

ligand-based method. As for the ligand-based method, a support

vector machine (SVM) with RBF kernel was adopted because it is

one of the most popular machine learning methods for ligand-based

screening. ECFP4 fingerprint (Rogers and Hahn, 2010) was used for

input feature vectors of SVM. The details associated with the SVM

are shown in Supplementary Table S3. The logP and the molecular

weight of the top 0.1% of compounds were calculated in order to

assess the bias of physicochemical features. Additionally, the max-

imum Tanimoto coefficient value between each known active com-

pound was also calculated based on ECFP4 fingerprint in order to

assess structural diversity. A high Tanimoto coefficient between two

compounds indicates that the two structures share structural

similarity.

Results of these assessments for the ACES target are shown in

Figures 5 and 6. Figure 5 shows that Spresso is likely to assign higher

scores to large compounds. This is expected in some cases, because

larger compounds are more likely to obtain higher scores in docking

simulations (Verdonk et al., 2004); however, compounds that are

too large to enter protein cavities must be omitted. Figure 5 shows

that Spresso conserved structural diversity on the same scale as that

observed with Glide HTVS, while bias toward known active com-

pounds was observed in results from the ligand-based method

(SVM). Assessment results for EGFR and PGH1 are shown in

Supplementary Figures S11–S14.

4.5 Large-compound cutoff value
According to our results, compounds with a larger volume than that

of the target protein’s cavity should be omitted before Spresso pre-

screening. We propose a cutoff method that compares compound

volume and protein-cavity volume with the following provisions:

(i) the volumes of all compounds (Vc) are estimated with the formula

proposed by Zhao et al. (2003); (ii) the volume of the protein cavity

(Vp) is estimated by Sitemap (Halgren, 2009); and (iii) compounds

where Vc exceeds kVp (k is a parameter) are omitted.

Parameter k represents the flexibility of the protein cavity, and

k¼1 indicates that the volume of the protein cavity is used as the

threshold of the compound volume; however, this is too strict be-

cause of protein flexibility. False negatives will occur when k is too

small, while false positives will occur when k is too large. Here, we

adopted k¼1.5 in order to restrict false negatives. This cutoff par-

ameter moderately omitted compounds that were too large

(Supplementary Figs S15–S17). This method does not require any in-

formation prior to setting the cutoff value, thereby eliminating struc-

tural bias (Supplementary Figs S18–S20).

Fig. 6. Boxplot representation and average (square dots) of the maximum

Tanimoto coefficient between active compounds of target ACES. The data in-

dicate structural diversity. ZINC, SVM, Glide HTVS and Spresso represent

0.1% of randomly selected compounds from the ZINC database, the top 0.1%

of compounds resulting from SVM prediction, the top 0.1% of compounds re-

sulting from Glide HTVS scoring, and the top 0.1% of compounds returned

from Spresso-SP results using method (III) GS3 scoring, respectively

A B C

Fig. 7. (A) Structure of ZINC12181222, the highest scoring compound for the protein target ACES. (B) Result of ZINC12181222 decomposition. (C) Results of frag-

ment docking. The color of the structure mimics those of the structures shown in (A) and (B)

Spresso: an ultrafast compound pre-screening method based on compound decomposition 3841



However, a tendency for selecting larger compounds still re-

mains a problem for Spresso, with smaller compounds likely to be

eliminated. Therefore, the application of penalty parameters as part

of the fragment score (e.g. fragment efficiency, which is similar to

ligand efficiency (Shultz, 2013)) should be considered as future

work in order to avoid bias in selecting feasible small compounds.

4.6 The top-screened compounds by Spresso
The highest scoring compound for the target protein ACES is shown

in Figure 7. The top compound screened by Spresso-SP with a cutoff

value was ZINC12181222 (Fig. 7A), with a molecular weight of

395.5 Da and a logP of 1.84. These physicochemical features indi-

cate a likely drug compound according to Lipinski’s rule of five

(Lipinski et al., 1997). The decomposition and fragment-docking re-

sults are shown in Figure 7B and C. Since Spresso did not consider

collisions between fragments in order to keep computation time

low, some fragments appear to have collided (Fig. 7C). Interestingly,

the best compound still exhibited a reasonable molecular weight ac-

cording to Lipinski’s rule despite the collisions. Our findings indi-

cate that the cutoff method was capable of omitting compounds

unable to dock given target proteins.

5 Conclusion

In this study, we described Spresso, a docking-based pre-screening

method for database-wide screening. In order to evaluate all com-

pounds from large databases within a practical amount of time,

Spresso uses compound decomposition into fragments, resulting in

reuse of fragment scores, followed by fragment-docking results to

estimate screening values without structure reconstruction. Our re-

sults showed that Spresso achieved up to �200-fold faster calcula-

tion using �29 million compounds as compared to compound

docking by Glide HTVS. This acceleration rate is positively corre-

lated to the number of compounds in a target database.

Consequently, this method is capable of screening over tens of mil-

lions of compounds with limited computational resources.

For compound evaluation, the GS3 formula was adopted; however,

according to the physicochemical assessment, Spresso-preferred com-

pounds are likely to be large, despite the need to filter compounds too

large for a given target protein cavity. We proposed a cutoff based on

protein cavity volume, which requires further validation. Furthermore,

future work should improve prediction accuracy (enrichment factors)

by partially considering collisions between fragments, which may only

slightly increase computation time, e.g. by 5-fold.

The computational efficiency of Spresso enables the screening of

large compound databases within realistic times. In order to manage

chemical compound libraries that continue to increase in size, cor-

responding increases in computational speed are necessary for vir-

tual screening.
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