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PURPOSE. To provide information to visual scientists on how to optimally design exper-
iments and how to select an appropriate sample size, which is often referred to as a
power analysis.

METHODS. Statistical guidelines are provided outlining good principles of experimental
design, including replication, randomization, blocking or grouping of subjects, multi-
factorial design, and sequential approach to experimentation. In addition, principles of
power analysis for calculating required sample size are outlined for different experimen-
tal designs and examples are given for calculating power and factors influencing it.

RESULTS. The interaction between power, sample size and standardized effect size are
shown. The following results are also provided: sample size increases with power, sample
size increases with decreasing detectable difference, sample size increases proportionally
to the variance, and two-sided tests, without preference as to whether the mean increases
or decreases, require a larger sample size than one-sided tests.

CONCLUSIONS. This review outlines principles for good experimental design and methods
for power analysis for typical sample size calculations that visual scientists encounter
when designing experiments of normal and non-Gaussian sample distributions.

Keywords: design of experiments, statistical power, sample size, randomization, repeated
measures, cluster designs

This tutorial in the “Focus on Data” series provides infor-
mation on how to optimally design experiments and

how to select an appropriate sample size, which is often
referred to as a power analysis. A power analysis is of great
importance when planning an experiment that has a reason-
ably good chance of detecting treatment effects if they exist.
In addition, the size of the effect anticipated should be of
practical importance and the experimental design should
ensure reproducibility of results. Funding agencies and jour-
nals consider rigor and reproducibility as major criteria for
funding and publication. Sample size determination is an
important tool for learning about what can be achieved
in a study. There is much more to a power analysis than
to justify grant proposals. It gives the investigator perspec-
tive on whether a well-designed experiment is feasible and
likely to accept or refute a hypothesis based on an estimated
measurement variability and the effect size that is antici-
pated. A well-considered power analysis to justify the sample
size is an essential requirement for all studies.

Designing a good experiment is not easy, as in the begin-
ning there is much uncertainty. Although one may have a
certain response in mind, it is uncertain how to best measure
it. Factors that can affect the response may be anticipated,
but there is usually uncertainty about the relevant level of
each factor that should be tested and the optimal sampling
interval for detecting a response. Also, some of the factors
may interact in how they affect the response (for exam-

ple, treatment effects may depend on age or sex), and the
experimental design should make it possible to assess such
interactions. Moreover, not every factor can be anticipated
and incorporated into the experiment. A good experimental
design with proper randomization can ensure that unantici-
pated, omitted factors will equally impact the treatments to
be studied.

When one designs an experiment, one usually knows
very little about the measurement variability and the effect
size. It would be so much easier if one already knew the
results. Although it is certainly true that the best time to
design an experiment is after the results of the experi-
ment have come in, knowing this does not help design the
experiment. What helps is understanding sound experimen-
tal design principles, access to pilot data, and knowing the
relevant prior literature as it relates to the questions that are
being studied. Fortunately, one usually does not start from
the very beginning but can build on the research that has
been carried out before.

GOOD PRINCIPLES OF EXPERIMENTAL DESIGN

Detailed discussions of important design principles can be
found in books on the statistical design of experiments,
such Box et al.,1 Ledolter and Swersey,2 and Montgomery.3

The seminal contributions of Fisher4 have shaped this field.
The following are important statistical design principles:
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• Replication. Observing a certain result just once or
twice does not make it reliable. Natural variability
is present everywhere; results from repeated trials
on the same subject vary, and results from trials on
different subjects vary even more. Replicating the
experiment increases the reliability and rigor of the
results.

• Randomization. Allocation of treatments randomly to
experimental subjects ensures the validity of an infer-
ence in the presence of unspecified disturbances by
making certain that the risk of such disturbances
is spread evenly among the treatment groups. For
example, in visual science, this might entail assigning
different treatments to groups of patients at random,
or randomizing the order of an assigned treatment to
a group of subjects or eyes. Without randomization,
treatment differences may be confounded with other
variables that are not controlled by the experimenter.
Anticipating confounding variables in advance can
help tremendously in randomizing subjects based on
these variables, such as age, sex, animals from the
same litter or cage, severity of disease, or level at
baseline.

• Blocking. Randomizing the assignment of treatments
to subjects or eyes is important as it spreads the
existing variability among subjects equitably across
all treatments. However, the experimenter can do
considerably better if the experimental subjects can
be grouped into blocks, such that units are homoge-
nous within the same block, but different across
blocks. In the visual sciences, eyes can be blocked
by subjects, or in the case of mice, by cage or
litter. Responses on eyes from different subjects
vary considerably, whereas the responses on eyes
from the same subject are usually related with
much smaller variability. When studying effects, one
frequently treats only one eye, whereas keeping the
other eye as a within-subject control. This approach
assumes that the treatment will only affect the eye
that receives it, which may not be the case in every
situation. If the effect is restricted to the treated eye,
then the large subject effect that affects both eyes
in a similar way can be removed, resulting in an
increase of the precision of the comparison, poten-
tially making it more sensitive to detecting an effect,
if one exists. Also, it is more efficient to design the
experiment such that each treatment is applied to
the same subject (or eye) at different time points in
which the effect of the first treatment is no longer
present and will not affect the second treatment
effect. The consecutive arrangement of the treat-
ments can always be randomized to make sure that
treatment effects are not compromised by the order.
A within-subject comparison of the effectiveness of
a treatment or a drug is subject to fewer interfering
variables than a comparison across different subjects.

• A multifactor design should be considered, instead
of a one factor at-a-time experimental approach. A
common, but inefficient, approach to studying the
effects of several factors is to carry out successive
experiments in which the levels of each factor are
changed one at-a-time. Fisher4 showed that a better
approach is to vary the factors simultaneously and
to study the response at each possible factor-level
combination. Such approach makes it possible to

learn about interaction effects (e.g., whether the
effect on the response when changing one factor
depends on the level of another factor).

• Sequential approach to experimentation. Each exper-
iment contributes to one’s understanding. The results
of one experiment are critical to determine the next
experimental steps. Hence only a portion of the over-
all research plan and budget should be spent on the
initial experiment.

In medical research, investigators run experiments all the
time, and evidence-based medicine relies on randomized
experiments to confirm which of several treatments are the
most effective.

The search for effective ways to design experiments and
issues of sample size and statistical power are commonplace
in scientific experimentation. If experiments are executed
poorly, little, or even nothing, will be learned from the result-
ing data. Although it is true that most experiments increase
knowledge (one usually learns “something” through exper-
imentation), the experimenter wants to learn as efficiently
as possible. Relatively few experimental runs (observations)
are needed in efficient experimental designs to get precise
estimates of the factor effects. Sir Ronald Fisher, the eminent
statistician and scientist who developed this area, said that “a
well-designed experiment may improve the precision of the
results tenfold, for the same cost in time and labor” (Fisher,4

page 217).

POWER ANALYSIS: IMPORTANCE OF CALCULATING

THE REQUIRED SAMPLE SIZE

Prior to running an experiment, one needs to determine
the sample size required to identify scientifically meaning-
ful effects. In other words, one must address the question
whether a certain sample size is sufficient to detect a spec-
ified response effect if it really exists. If the sample size is
too small, observed effects may not be statistically signifi-
cant and meaningful effects may not be uncovered, even if
they do exist. Conversely, including too many samples when
not necessary cannot only be a waste of resources, but can
also expose subjects to unnecessary risks, and may reveal
statistically significant, but clinically irrelevant, results.

It is very important to know whether the data that
are collected from an experiment have a realistic chance
of detecting meaningful effects. Consider, for example, an
experiment on mice that studies the effect of a new drug
or genetic treatment on improving visual function. Typically
one knows how large an effect will be considered clini-
cally meaningful (e.g., a 30%–40% effect size for a promis-
ing new drug being tested in preclinical studies). Research
studies are expensive, and costs increase with the number
of subjects that need to be recruited into the study. Prior
to running the experiment, one must calculate the statisti-
cal power of detecting (practically) meaningful effects. For
some planned experiments, detection may not be feasible;
many more subjects may be needed to learn about clinically
important effects. If one cannot afford the required sample
sizes, one must restructure or abandon the problem in favor
of problems that can be solved with the budget at hand. If
there is little chance that meaningful effects can be detected,
resources are better expended elsewhere. Although medical
grant proposals typically require a section on sample size
and power, these sections are usually written in a defensive
manner to justify the experimental plan the investigator has
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settled on a long time ago. Often these sections are written
to defend a prior assumption the investigator has, and they
rarely assess critically whether the planned research is worth
its cost or whether the effect size is appropriate. Many times
they represent an intricate “song and dance” to justify why
limited funds can be used to study something experimenters
want to study anyway. Experimenters need to understand
that sample size studies are there to help them determine if
a question can reasonably be answered; sample size studies
are not there to game the system to achieve funding.

Many statistics packages have modules for determining
the appropriate sample sizes (see Appendix for some exam-
ples and links). Some programs are dedicated to this task
exclusively, such as the sample size/power programs by
Lenth.5 Lenth’s sample size applets (they are free, good,
and easy to use) cover many different situations, includ-
ing continuous outcome variables (with an emphasis on
means and variances), categorical outcome variables (with
an emphasis on proportions), and correlations. G*Power,
developed by Faul et al.,6,7 is another free software program
available for both Macintosh and PC platforms.

Statistical power is defined as the probability that a data-
based test will correctly reject a false null hypothesis (e.g.,
the means of two distributions are equal). The higher the
statistical power, the smaller the type II error of not reject-
ing a false null hypothesis (false-negative result). Incorpo-
rated into the power analysis is also the specified type I error
(false-positive result) of rejecting the null hypothesis when
the difference was really only due to chance alone. Statis-
tical power can be thought of as the probability of finding
a difference in population characteristics when such differ-
ences actually exist. Of course, power increases with the
magnitude of the differences one wants to detect; it is easier
for data-based tests to detect larger differences than smaller
differences. Experiments with low statistical power may not
uncover meaningful effects, even if they do exist. A mini-
mum level of statistical power must be sought, at least 80%
or greater, to detect a specified practically relevant differ-
ence. The choice of power (e.g., 80%, 90%) is related to how
certain one wants to be that the experimental design (e.g.,
sample size) is sufficient to detect a meaningful difference
if one does exist. In designing clinical trials, the Consol-
idated Standards of Reporting Trials (CONSORT) has an
agreed on CONSORT Statement, which is an evidence-based,
minimum set of recommendations for reporting randomized
trials (http://www.consort-statement.org). It offers a stan-
dard way for authors to prepare reports of trial findings,
facilitating their complete and transparent reporting, and
aiding their critical appraisal and interpretation. Sample size
calculation is one of the key requirements.

Sample size selection for some typical problems that
visual scientists encounter in their research are discussed
next.8

Power Analysis: Detecting a Difference from a
Known Mean of a Single Normal Distribution
(One-Sample Situation)

We test the null hypothesis H0 : μ = μ0 against the one-
sided (lower-tailed) alternative hypothesis H1 : μ < μ0. We
test the research hypothesis whether or not an intervention
reduces the mean from its current known value μ0. When
determining the appropriate sample size, we need to specify
values for the four following items:

FIGURE 1. Plotting the required sample size against the standard-
ized effect size (e.g., effect size divided by the SD of the measure-
ments) for 5% significance level and 70%/80%/90% power. For antic-
ipated larger effects, fewer samples are required, but if one is trying
to achieve greater power (e.g., top line of 90% power), the required
sample size increases.

• σ = √
Var(Y ), the SD (standard deviation = square

root of the variance) of the normally distributed
measurement variable Y. Prior data in the literature
or pilot data provide a planning value for the SD.

• The significance level (that is, the probability of
falsely rejecting a true null hypothesis); usually α =
0.05.

• The power (usually 0.80, or 80%) to detect a spec-
ified meaningful change (commonly referred to as
effect size) δ = μ1 − μ0 < 0. β = 1 − Power (here
β = 1 − 0.8 = 0.2) is the probability of a type II error
of accepting the null hypothesis H0 if the mean has
indeed shifted to μ1 = μ0 + δ < μ0.

Result: The required sample size for detecting a change
δ with power 1 − β is

n = (zα + zβ )
2(σ/δ)2;

zα and zβ are percentiles (z-scores) of the standard normal
distribution; they can be looked up in normal probability
tables. For 5% significance level, zα=0.05 = −1.645; for 80%
power and type II error of 0.20, zβ=0.20 = −0.8416.

The required sample size decreases inversely with
R2 = (δ/σ )2. The ratio R = |δ|/σ expresses the size of the
detectable meaningful change as a fraction of the SD; we
refer to it as the standardized effect size. Figure 1 plots the
sample size against R, for 5% significance and three different
values of power (70%, 80%, and 90%). For given R, one can
find graphically the sample size that is required to detect that
change. Approximately 25 observations are needed to detect
a change of half an SD with 80% power; fewer (19) observa-
tions are needed for 70% power, and more (35) observations
are needed for 90% power.

The (result) equation involves five quantities, and the
relationship between them can be displayed graphically in
other ways. For example, for fixed sample size (and fixed
significance level), the power can be graphed against the

http://www.consort-statement.org
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FIGURE 2. Plotting the power against the standardized effect size
R (e.g., effect size divided by the SD of the measurements) for
5% significance level and three different sample sizes (20, 30, 50).
Power decreases for anticipated smaller effects, and power increases
for larger sample sizes. Fixing power at 80%, for example, one can
detect a change of 0.35 (SD) with 50 samples, a change of 0.45 (SD)
with 30 samples, and a change of 0.56 (SD) with 20 samples.

standardized effect size R. The graph in Figure 2 shows how
power decreases for decreasing standardized effect size.

Facts to Remember.

• Sample size increases with power. The more power
you want, the larger the sample size.

• Sample size increases with decreasing detectable
difference. The smaller the difference or effect size
you expect, the larger the sample size that will be
required.

• Sample size increases proportionally to the variance.
The larger the uncertainty of the outcome measure-
ment (variability of a result), the larger the sample
size must be. The sample size quadruples with a
doubling of the SD.

• Tests are typically one-sided as one expects increases
(or decreases) in the mean. Two-sided tests, without
preference whether the mean increases or decreases,
require a larger sample size than one-sided tests. For
a two-sided test, the term zα in the earlier noted
result is replaced by zα/2. For α = 0.05, zα/2 = −1.96.

Example: For the general population, mean thickness of
the inner retina is known to be 100 μm, based on prior
research publications. The subject variability is large, with
SD of approximately 20 μm. We are interested in whether
individuals from a certain ethnic group have a thinner
(smaller) mean retinal thickness. How many subjects from
this ethnic group need to be studied to confirm with 80%
power a reduced mean thickness of 5 μm? In this case,
μ0 = 100 and σ = 20. For 5% significance, and 80% power
to detect a reduction of δ = −5 units, we need n = (zα +
zβ)2(σ /δ)2 = (−1.645 − 0.8416)2(20/−5)2 ≈ 100 individuals.

Example: A new glaucoma strain of mice has been devel-
oped through breeding on a Black 6 background strain
(C57BL/6). The investigators are interested in a power anal-

ysis to determine how many mice of the new strain are
needed to test for a significant increase in intraocular pres-
sure (IOP). From the literature, it is known that C57BL/6
mice at 7 months of age have IOP with mean 13.3 mm Hg
and SD 1.25 mm Hg. An increase in IOP in the new strain
would be considered significant if it were increased by 0.5 to
13.8 mmHg. For 5% significance, and 80% power to detect an
increase of δ = 0.5mm Hg, we need n = (zα + zβ )2(σ/δ)2 =
(−1.645 − 0.8416)2(1.25/0.5)2 = 39 mice.

Assume we have planned on only 20 mice. What would
the power be to detect an increase of 0.5 mm Hg? Solving
the equation in the earlier noted result for β, we obtain β ≈
0.44 and a power of 56% (considerably less than the planned
80%). With 20 mice, what change could we detect with 80%
power? Solving the equation in the earlier noted result for
δ, we obtain δ ≈ 0.70mm Hg. There is a good chance that a
change of 0.50 mm Hg stays undetected.

Applying this Result to Paired Comparisons. The
result can be used in the paired (blocked) test with response
D = Y2 − Y1, where Y2 is the response under treatment 2 and
Y1 is the response under treatment 1. The two groups may
reflect treatment and control, or after-treatment and base-
line. An important aspect in the paired comparison is that
both treatments are applied on the same subject, allowing us
to express the treatment effect with the difference of the two
measurements. After taking differences, the problem reduces
to a one-sample comparison, and the previous result can be
applied. All the researcher needs to provide is a planning
value of the SD of the differences, σ = √

Var(D), the mean
of the differences under the null hypothesis μ0, and a mean-
ingful detectable difference.

Example: Assume an experiment in which eyes of Black
6 mouse strain (C57BL/6) are treated with a pressure lower-
ing eye drop. Drops are administered to one randomly
selected eye of each mouse. The change in the IOP after
and before treatment (D = treatment IOP – baseline IOP)
reflects the effectiveness of the medication. Fortunately, a
number of publications assess the variability of the differ-
ence in IOP measurements from the same eye at two differ-
ent time points, and a planning value for the SD of such
difference can be obtained from the literature. In the case
of mice, σ = √

Var(D) ≈ 1 mm Hg. We wish to test whether
the treatment is effective and whether the mean of treat-
ment/baseline differences is less than 0. A reduction of 0.5
mm Hg is considered clinically significant. With this infor-
mation, the number of mice should be n = (zα + zβ)2(σ /δ)2

= (−1.645 − 0.8416)2(1/−0.5)2 ≈ 25.

Power Analysis: Comparing Means of Two
Independent Normal Distributions

We test the null hypothesis H0 : μ2 − μ1 = 0 against the
one-sided (lower-tailed) alternative H1 : μ2 − μ1 < 0. Both
group means, μ1 and μ2, are unknown and must be esti-
mated from the sampled data. This makes the problem differ-
ent from the one-sample situation discussed previously, in
which one mean is known with certainty. For a two-sample
comparison, we need to specify values for the following five
quantities:

• σ 1 and σ 2 : two SDs that need not be equal
• significance level; usually α = 0.05
• power (usually 0.80) to detect a specified meaning-
ful difference (effect size) δ = μ2 − μ1 < 0
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Result 1: (Ledolter8). The required total sample size (for
groups 1 and 2 together) is

N = (zα + zβ )
2[(σ1 + σ2)/δ]

2
.

The sample sizes of the two groups, n1 and n2, must
be selected proportional to the SDs: n1 = σ1

σ1+σ2
N and n2 =

σ2
σ1+σ2

N .
Result 2: When the SDs are the same (σ 1 = σ 2 = σ ),

the sample size for either of the two groups is n = 2(zα +
zβ)2(σ /δ)2, for a combined sample size of N = 2n = 4(zα +
zβ)2(σ /δ)2.

For equal SDs, Figure 1 can be used to determine the
required sample sizes, but the value on the y-ordinate must
be doubled when obtaining the sample sizes for each of the
two groups. In the one-sample case, the reference level is
given with certainty. In the two-sample case, larger sample
sizes are required as two means need to be estimated.

Example: Ledolter and Kardon9 studied the average reti-
nal nerve fiber layer (RNFL) thickness from an optic disc
scan for both normal subjects and glaucoma patients on opti-
mal treatment. As expected, the average RNFL thickness of
normal subjects was considerably larger than that of glau-
coma subjects. They also found that the variability in RNFL
thickness among glaucoma patients (SD = 10 μm) was larger
than that of normal subjects (SD = 8.5 μm). The larger SD
of the glaucoma group is expected because there is a large
range of disease severity and response to treatment affecting
the thickness of the RNFL.

Let us assume that one wants to study the RNFL differ-
ence between normal subjects and glaucoma patients from a
certain subgroup (such as age, sex, ethnic origin) for whom
we have incomplete information on its mean RNFL thick-
ness. Although group means are unknown, we have good
reason to assume that group variabilities are similar to the
ones from our earlier normal/glaucoma study. Suppose one
plans for 80% power to detect a mean reduction of 5 μm.
How many subjects should one sample?

For the group 1 of normal patients, σ 1 = 8.5 μm; for group
2 of glaucoma patients, σ 1 = 10 μm. For a detectable differ-
ence of interest δ = −5 μm, 80% power (β = 0.20), and signif-
icance level α = 0.05, the combined sample size from Result
1 is N= (zα + zβ)2[(σ 1 + σ 2)/δ]2 = (−1.645 − 0.8416)2[(8.5 +
10)/−5]2 ≈ 85. We should sample (8.5/18.5)85 = 39 healthy
subjects and (10/18.5)85 = 46 glaucoma patients. We should
sample more glaucoma patients as their variability is larger.

The two SDs are not that different. For further illustration,
we take the larger SD as the planning value for the common
SD. From Result 2, the sample size in each of the two groups
is n = 2(zα + zβ)2(σ /δ)2 = 2(−1.645 − 0.8416)2(10/−5)2 ≈
50, for a combined sample size of 100.

Example: A second example from the visual science
considers an experiment that investigates whether a topical
medication can reduce the IOP. The experiment compares a
group of mice receiving the medication with another group
of mice of the same strain receiving a placebo drop. The
two groups are matched on similar levels of IOPs; effective-
ness is measured by changes in IOP from baseline prior to
receiving the treatment or placebo. We compare two groups:
group 1 consisting of mice receiving the placebo, and group
2 receiving the treatment. The SD of differences in IOP taken
on the same subject at different times is 1.16 mm Hg, and
there are good reasons to assume that the SDs in the treat-
ment and the placebo groups are about the same. If we want

80% power to detect a mean change of IOP of 0.5 mm Hg,
n = 2(zα + zβ)2(σ /δ)2 = 2(−1.645 − 0.8416)2(1.16/0.5)2 ≈
34, for a combined sample size of 68.

Power Analysis: Comparing Means of Two
Independent Log-Normal Distributions

It is often easier for investigators to specify treatment effects
as percentage changes in the means and variability in terms
of coefficients of variation. The detectable effect of interest is
then the proportionate change in the means, f = E (Y2 )

E (Y1 )
− 1;

for example, a 20% increase in the mean when f = 0.2, or
a 30% decrease in the mean when f = −0.3. The measure-
ments Y for each of the two groups are often log-normally
distributed (the logarithm of the data sample transforms it to
a normal distribution), with different means but equal coef-
ficients of variation c =

√
Var(Y )
E (Y ) .

Prior data can be used to check the distributional assump-
tions. A plot of the two (group-specific) histograms should
show skewed log-normal distributions with long right tails.
Histograms of the log-transformed data should be normal;
they can have different means, but their SDs should be
approximately the same. The SD of the untransformed
measurements should be proportional to the mean, with the
coefficients of variation in the two groups approximately the
same. Their average can be taken as a planning value for c.

Result: (Van Belle and Martin10). The objective is to detect
a 100f percent proportionate change in the means, and to do
so with power 1 − β. For two log-normal distributions with
equal coefficients of variation c, the number of observations
needed in each group is

n = 2(zα + zβ )
2

[√
log(1 + c2)

log(1 + f )

]2

.

Example:Activation of neurons by sensory stimuli follow
a proportional law (referred to as the Weber-Fechner
law11,12), and measures of sensitivity to stimuli tend to follow
log-normal distributions. We are comparing two groups of
mice: a normal group and one with a new, genetically engi-
neered form of retinitis pigmentosa with damage to the
rods and cones. The mice in each of the two groups are
exposed to a series of different stimuli differing in light
intensity, and the amplitude of the electroretinogram (ERG)
is recorded in response to a flash of light at each inten-
sity. Amplitudes at each intensity follow log-normal distri-
butions with coefficient of variation c = 0.30.13 We expect
that the ERG response in the normal group will be larger
than that of the retinitis pigmentosa group. We want 80%
power to detect a 20% greater ERG response in the mean of

the normal group. For c = 0.30,
√
log(1 + (0.30)2) = 0.2936;

for f = 0.20, log(1+ 0.2) = 0.1823. We need n = 2(−1.645
− 0.8416)2(0.2936/0.1823)2 = 32 mice in each group, for a
total of 64 mice.

Power Analysis: Cluster Designs for Comparing
Two Means

For a two-group comparison with equal variances the
sample size for each of the two groups is n = 2(zα +
zβ)2(σ /δ)2; see our earlier Result 2. This result assumes
that the two treatments are assigned to the experimen-
tal units (e.g., subjects, mice, and others) at random.
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However, sometimes the randomization is carried out on
clusters that consist of groupings of the experimental
units. Clusters may be cages of animals, and experimen-
tal units could be mice. Clusters may be patients, and
experimental units could be eyes. The randomization is at
the cluster level: the treatment groups (experimental and
control) are assigned to clusters at random, and each of
m experimental units in a cluster is assigned to the same
treatment. Although the data of interest comes from the
experimental units in the two experimental groups, the
randomization is carried out on the clusters. In the exam-
ple with patient eyes, we may assign n = 10 patients each
to one of the two treatments, for a total of 20 patients. For
cluster size m = 2, this generates a total of 40 eyes, with 20
eyes for each treatment.

Usually subjects from the same cluster tend to be alike.
Because observations from the same cluster are most likely
correlated, with intracluster correlation coefficient ρ > 0, the
m observations in a cluster do not carry the same weight as
m independent observations. For the retinal thickness exam-
ple in Ledolter et al.,14 the intracluster correlation is approx-
imately 0.8.

Result: The required number of observations n (number
of clusters, k, times number of observations in each cluster,
m) in each treatment group is

n = km = 2(zα + zβ )
2(σ/δ)2 [1 + (m− 1)ρ]

Discussion: The intracluster correlation inflates the
sample size that we obtain under complete random
sampling, 2(zα + zβ)2(σ /δ)2, by the factor [1 + (m −
1)ρ]. For ρ = 0, we are back to our earlier Result 2. For
ρ = 1, we must multiply the sample size that we obtain under
complete random sampling by the number of experimental
units in the cluster (m). Here experimental units in a cluster
are carbon-copies of each other. The m experimental units
in a cluster basically count as one unit (and not as m).

In the presence of large intracluster correlation it is
important to randomize over many clusters so as to maxi-
mize the efficiency of the experiment. Taking more and more
replicates within the cluster does not increase the power of
the experiment by much, but taking more clusters does.With
perfect correlation you may as well leave off one eye from
each cluster and save yourself the work collecting measure-
ments on the second eye. For ρ = 0.80 and say n = km
= 2(zα + zβ)2(σ /δ)2[1 + (m − 1)ρ] = 100 eyes, you take 50
subjects and analyze both of their eyes. It would be wrong to
ignore the intracluster correlation and calculate the number
of eyes from n = km = 100/[1 + (m − 1)ρ] = 56.55, taking
only 28 subjects with their 56 eyes.

Comments

Our review covers parametric tests that assume normal-
ity, and the derived sample sizes represent a best-case
“scenario.” When non-Gaussian distributions are sampled
(that cannot be transformed to a Gaussian distribution,
such as through a log transformation), nonparametric tests
are often used instead because the normal distribution
assumption may not be valid for parametric statistical tests.
Nonparametric tests (such as the Wilcoxon signed-rank test)
are less efficient than their parametric equivalents (two-
sample t-test) if the underlying distributions are in fact
normal, and being less efficient implies that the sample

size must be increased to achieve the same power. For the
two-sample comparison, Lehman15 shows that in most situa-
tions the sample sizes derived for the parametric test should
be increased by approximately 15%. If one plans to use
a nonparametric test, a good rule of thumb adds approxi-
mately 15% to the sample size that is required for the para-
metric test.

Also, experimenters usually anticipate losing experimen-
tal units before all data can be recorded and analyzed;
patients withdraw form studies and animals die during the
course of the experiment. Usually, experimenters know the
proportion of units they expect to lose. This proportion
needs to be added to the sample size.

This tutorial has focused on the application of power
analysis before a study is carried out for understanding
whether the analysis being proposed is likely to be meaning-
ful based on the number of samples needed, the variability of
the sample, the effect size anticipated, and the level of signif-
icance and power desired, while at the same time consider-
ing the resources that would be needed. Another application
of a power analysis is “post hoc” or after the study has been
completed, when meaningful statistical significance has not
been obtained. In some publications, it is often stated that a
larger sample size would be needed to bolster the hypothe-
sis, if it was not supported by the limited samples collected
in their study; however, is this always the case? Applying a
power analysis after a “negative result” study may be useful
for answering this question.

CONCLUSIONS

This review has covered typical sample size calculations that
you may encounter when designing your experiments. We
have omitted the comparison of proportions, the assess-
ment of correlations, comparisons that involve more than
two groups of one factor in the 1-way ANOVA setting, and
studies involving two factors in the 2-way ANOVA setting.
Guidelines have also been provided for power analyses of
non-Gaussian sample distributions (e.g., nonparametric test-
ing). Although technical details can get complicated quickly
(for example, power calculations for the correlation coeffi-
cient make use of the Fisher’s z-transformation to normal-
ize the distribution of the Pearson correlation coefficient;
sample size in ANOVA models with more than two groups
are usually powered for the maximum difference between
means3), power analysis software is readily available (see
Appendix). The book by Cohen16 is another source for
formulas, tables, and much useful practical discussion.
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APPENDIX: USEFUL SOFTWARE FOR POWER

ANALYSIS AND SAMPLE SIZE DETERMINATION

Here we list useful software. This list is by no means
exhaustive.

Minitab (State College, PA, USA); https://www.
sas.com/

Sample size determination for a wide variety of
situations, including:

1-sample mean, 2-sample means, paired mean
comparison, 1-sample proportion, 2-sample
proportions, 1-sample variance, 2-sample vari-
ances, 1-way ANOVA (powered for the maximum
difference between means).

The software determines the required sample
size, and draws a power curve that shows how, for
the given sample size, the power changes as a func-
tion of the detectable change.

One can specify the sample size and calculate
the power of detecting a certain specified change
(effect size), or one can specify the sample size
and the power and calculate the effect size that can
be detected. All software packages listed here help
carry out the tedious calculations that we have done
from first principles (see the second example of the
power calculations in the one-sample setting).

The R Project for Statistical Computing; https:
//www.r-project.org/

R Statistical Software provides extensive cover-
age through

• built-in R Functions in library(stats)
• library(pwr), which implements power anal-
ysis procedures as outlined in Cohen16

• several other specialized power analysis
packages

SAS (Cary, NC, USA); https://www.sas.com/
Extensive coverage through the procedures:

PROC POWER and PROC GLIMPOWER
Lenth RV: Department of Statistics and Actuarial

Science, University of Iowa, Iowa City, IA, USA; http:
//www.stat.uiowa.edu/∼rlenth/Power

Lenth RV. Java Applets (piface.jar) for Power and
Sample Size; http://www.stat.uiowa.edu/∼rlenth/
Power

Lenth RV. Some practical guidelines for effective
sample size determination. Am Stat. 2001;55:187–
193.

G*Power: https://www.psychologie.hhu.de/arb
eitsgruppen/allgemeine-psychologie-und-arbeit
spsychologie/gpower.html

G*Power is a freeware software tool for either
Mac or PC operating systems used to compute
statistical power analyses for a number of statistical
applications. G*Power can also be used to compute
effect sizes and to graphically display the results of
power analyses.

http://www.stat.uiowa.edu/10rlenth/Power
https://doi.org/10.1167/tvst.7.5.34
https://doi.org/10.1167/iovs.61.6.25
https://www.sas.com/
https://www.r-project.org/
https://www.sas.com/
http://www.stat.uiowa.edu/rlenth/Power
http://www.stat.uiowa.edu/rlenth/Power
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html

