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This review aims to provide an overview of the current knowledge of the genetic lesions

driving pediatric acute myeloid leukemia (AML), emerging biological concepts, and

strategies for therapeutic intervention. Hereby, we focus on lesions that preferentially or

exclusively occur in pediatric patients and molecular markers of aggressive disease with

often poor outcome including fusion oncogenes that involve epigenetic regulators like

KMT2A, NUP98, or CBFA2T3, respectively. Functional studies were able to demonstrate

cooperation with signaling mutations leading to constitutive activation of FLT3 or the RAS

signal transduction pathways. We discuss the issues faced to faithfully model pediatric

acute leukemia in mice. Emerging experimental evidence suggests that the disease

phenotype is dependent on the appropriate expression and activity of the driver fusion

oncogenes during a particular window of opportunity during fetal development. We also

highlight biochemical studies that deciphered some molecular mechanisms of malignant

transformation by KMT2A, NUP98, and CBFA2T3 fusions, which, in some instances,

allowed the development of small molecules with potent anti-leukemic activities in

preclinical models (e.g., inhibitors of the KMT2A–MENIN interaction). Finally, we discuss

other potential therapeutic strategies that not only target driver fusion-controlled signals

but also interfere with the transformed cell state either by exploiting the primed apoptosis

or vulnerable metabolic states or by increasing tumor cell recognition and elimination by

the immune system.
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GENOMIC LANDSCAPE OF PEDIATRIC AML

From Cytogenetics to Next-Generation Sequencing
Molecular hematology–oncology starting in the 1970s of the last century was heavily influenced by
the pioneering work of Janet Rowley and others that used conventional cytogenetics followed by
the upcoming recombinant DNA technology to show that, in addition to other structural lesions,
balanced chromosomal translocations frequently lead to expression of fusion genes (1). Following
these developments, the classification of leukemia evolved from a morphology-based classification
to the progressive, and still ongoing, inclusion of genetic-based criteria (2, 3). During the last
decade, high-throughput sequencing technologies (often referred to as next-generation sequencing,
NGS) have facilitated the establishment of almost complete maps of the genomic landscape of
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leukemic cells in acute myeloid leukemia (AML) patients (4).
In landmark studies by Timothy Ley and members of the
Cancer Genome Atlas Research Network, the genome of a single
AML patient was obtained in 2008. They later sequenced the
whole genome of 24 selected AML cases but also the exomes
of the progeny of hematopoietic stem and progenitor cells
(HSPCs) taken from seven healthy individuals of different age
(5, 6). Subsequently, they characterized the genomes of 200
clinically annotated adult cases of de novo AML either by whole-
genome sequencing or exome sequencing along with RNA,
miRNA sequencing, and DNAmethylation analysis (7). Together
with previous genetic and functional studies, several important
observations can be highlighted. Firstly, the mutational rate of
AML cells is lower than for most other cancers. Secondly, almost
all samples had at least one mutation in genes of nine different
categories [transcription factor fusions, nucleophosmin (NPM1),
tumor suppressors, DNA-methylation-related genes, signaling
mediators, chromatin modifiers, myeloid transcription factors,
cohesin genes and spliceosome complex]. Thirdly, recurrent
patterns of co-existence suggested functional cooperation as
previously reported for transcription factor fusions/mutations
[often referred to as “class II mutations”] and signaling
mutations in tyrosine kinases or RAS-type GTPase (RAS) [often
referred to as “class I mutations”] but also novel mutations
targeting epigenetic regulators such as DNA methyltransferase
3a (DNMT3A) and isocitrate dehydrogenase (IDH)1/2 became
apparent. Together with functional studies, these associations
suggest that as little as twomutations in different categoriesmight
be sufficient to initiate leukemogenesis. Finally, the data obtained
from healthy individuals suggested that the HSC compartment
accumulates about 10–15 single-nucleotide variants every year.

Over a decade later, the Children’s Oncology Group (COG)–
National Cancer Institute (NCI) TARGET AML initiative
was able to characterize the genomic landscape of almost
1,000 pediatric AML patients by whole genome sequencing
of samples from 197 and targeted sequencing of tumor
cells from 800 patients (8). This extensive effort revealed
similarities but also important differences between adult and
pediatric AML. First, the overall somatic mutation frequency
in pediatric AML is lower than that in adult patients.
Notably, the mutational burden increases with age, with
fusions and focal copy number aberrations being more
common in younger patients, whereas smaller sequence variants
are more frequent in older individuals. Second, pediatric
AML patients with fusions involving transcriptional regulators
like lysine methyltransferase 2A (KMT2A), CBFA2/RUNX1
translocation partner 3 (CBFA2T3), or motor neuron and
pancreas homeobox 1 (MNX1) tend to have few additional
mutations and were associated with a particularly poor outcome.
Third, distinct combinations of co-occurring alterations, such
as the nucleoporin 98 (NUP98)–nuclear receptor binding
SET domain protein 1 (NSD1) fusion and mutation of
fms-related tyrosine kinase 3 (FLT3) or WT1 transcription
factor (WT1), were observed, significantly affecting disease
outcome. Fourth, alterations in signaling mediators such as N-
or K-RAS and the receptor tyrosine kinases KIT and FLT3
appeared to be more prevalent than in adult patients. In

contrast, mutations in DNMT3A, IDH1/2, NPM1, or tumor
protein p53 (TP53) were less common in pediatric AML.
Fourth, some “novel” pediatric-specific chromosomal copy
number changes were found, including focal deletions in
genes like muscleblind like splicing regulator 1 (MBNL1),
zinc finger E-box binding homeobox 2 (ZEB2), E74-like
ETS transcription factor 1 (ELF1), or interleukin 9 receptor
(IL9R). Collectively, the TARGET AML initiative provided a
comprehensive dataset of genetic alterations in pediatric AML
that confirmed and extended previous observations indicating
that similar to adult patients, pediatric AML is the product of
a low number of cooperating mutations frequently involving
transcriptional regulators affecting differentiation and self-
renewal properties and mutations of signaling mediators (9)
(Figure 1). Here, we focused on hallmarks of aggressive pediatric
AML fusion oncogenes, including KMT2A, CBFA2T3, and
NUP98 fusions.

Fusion Genes Associated With Aggressive
Pediatric AML
The TARGET-AML study suggested that the association
of pediatric AML with different fusion oncogenes strongly
correlates with age of the patient (8) (Figure 1). Whereas,
fusions involving KMT2A, CBFA2T3, or MNX1 are molecular
hallmarks of AML affecting infants and early childhood (<3
years), those affecting the core binding factor (RUNX1 and
CBFB) or the retinoid acid receptor (RARA) occur at any age
but peak in children (3–14 years) or even in young adults (15–
39 years). In addition, two particular NUP98 fusions, NUP98–
lysine demethylase 5A (KDM5A, a.k.a. JARID1A, or RBP2) and
NUP98–NSD1, are molecular hallmarks of cytogenetically silent
infant or childhood AML, respectively.

The KMT2A (better known as mixed lineage leukemia, MLL)
gene on the long arm of chromosome 11 (11q23) encodes
a SET-domain histone methyltransferase that is important
for the maintenance of the hematopoietic stem cells (10).
KMT2A is the target of chromosomal translocations in adult
and pediatric acute leukemia, mostly leading to fusions of
the N-terminus of KMT2A with a large number of different
partners, of which AF4/FMR2 family member 1 (AFF1, a.k.a.
AF4), MLLT3 super elongation complex subunit (MLLT3, a.k.a.
AF9), MLLT1 super elongation complex subunit (MLLT1, a.k.a.
ENL), and MLLT10 histone lysine methyltransferase DOT1L
cofactor (MLLT10, a.k.a. AF10) are the most prevalent (11).
Although t(4;11)(q21;q23) leading to a KMT2A–AFF1 fusion
is a molecular marker of infant acute lymphoblastic leukemia
(ALL), it can occur at any age, and is rarely also found in
AML. In contrast, t(9;11)(p22;q23) and ins(10;11)(p12;q23q13)
leading to expression of KMT2A–MLLT3 and KMT2A–MLLT10
fusions appear more prevalent in pediatric than in adult AML.
Interestingly, KMT2A–MLLT3+ disease in infants presents more
often as ALL than AML, whereas the phenotype changes into
a typical myelo-monocytic AML M5 with increasing age of
the patient. The difficulty to classify leukemia with KMT2A
fusions, including lymphoid diseases, is also based on the fact
that leukemic blasts retain a substantial amount of lineage
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FIGURE 1 | Genetic alterations in pediatric AML. Schematic illustration of the number of genetic alterations (per AML sample, top panel), frequency, and type of

chromosomal alteration (middle panel), and frequency and type of focal mutations in pediatric AML related to different age groups (infant, children, adults, and

elderly; lower panel). Frequencies are indicated globally for the entire group of indicated mutations. The figure is mostly based on Bolouri et al. (8).

infidelity and/or plasticity highlighted by frequent co-expression
of myeloid markers and relapse of KMT2A+ B-ALL as AML
(12). Functionally, it is currently thought that KMT2A fusions
transform HSPCs by recruitment of a large super elongation
protein complex (SEC) that activates transcription of target genes
via directly influencing elongation by the RNA polymerase II
(RNA-pol II). In addition, KMT2A fusion proteins also recruit
the DOT1L histone 3 lysine 79 (H3K79me) methyltransferase
that positively regulates expression of critical target genes (13)
(Figure 2).

The importance of aberrant transcriptional control is
furthermore highlighted by fusions between KMT2A and lysine
acetyltransferase 6A (KAT6A a.k.a. Monocytic leukemia zinc
finger protein, MOZ, or MYST3) or 6B [KAT6B a.k.a. Moz-
related factor (MORF) or MYST4] to the histone acetyl
transferases EP300 or CREBBP in some rare cases of pediatric
myelodysplastic syndromes (MDS) and AML (14–16). In
contrast to adult patients where MYST (MOZ/Ybf2/Sas2/TIP60)
fusions are often associated with therapy-related AML, in
pediatric patients, these fusions are found in congenital and
perinatal leukemia. Interestingly, some infants with KAT2A-
CREBBP+ AML were reported to go into spontaneous
remission; however, the underlying biology remains poorly
understood (17, 18).

The CBFA2T3 (a.k.a. ETO2 or MTG16) gene on the long
arm of chromosome 16, encoding a transcriptional co-repressor,

is targeted by two recurrent AML-associated chromosomal
rearrangements, the t(16;21)(q24;q22) and the cytogenetically
silent inv(16) (p13q24) leading to expression of RUNX1–
CBFA2T3 and CBFA2T3–GLIS2 fusions, respectively. Whereas,
the first is more prevalent in therapy-related adult AML and
rarely found in pediatric patients, the second appears to be
an exclusive pediatric lesion (19, 20). NGS strategies allowed
the identification of the CBFA2T3–GLIS2 fusion from tumor
cells of pediatric patients with de novo acute megakaryoblastic
leukemia (non-DS AMKL) (21, 22). CBFA2T3–GLIS2 is the most
prevalent chromosomal aberration of this disease entity followed
by KMT2A, RBM15 (RNA-binding motif protein 15)-MRTFA
(Myocardin related transcription factor A) (a.k.a. OTT-MAL),
NUP98–KDM5A and other rare events (e.g., GATA2–HOXA9,
MN1–FLI1, or NIPBL–HOXA9) (23). CBFA2T3–GLIS2 is not
restricted to AMKL but can also be found in cytogenetically
normal (CN) pediatric AML with different phenotypes (M0,
M1, M2, M4, and M5, according to the FAB classification).
Notably, AMKL patients are significantly younger than those
with other AML phenotypes (24). Mechanistically, CBFA2T3–
GLIS2 binds DNA, through CBFA2T3-associated transcription
factors or directly through GLIS2 (GLIS family zinc finger 2)
zinc-finger domains at enhancers and regulatory elements and
leads to altered transcription and activity of key transcription
factors like the upregulation of the ETS transcription factor
ERG and a strong downregulation of GATA1 (25). Genetic
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FIGURE 2 | Structure and function of KMT2A fusion oncogenes associated with pediatric leukemia. (A) Schematic outline of the KMT2A (a.k.a. MLL1) protein

organization containing AT-rich, CXXC, PHD-fingers, transactivation (TA), and a SET methyltransferase domain with recurrent chromosomal breakpoint clusters leading

to fusions to >90 different partners, of which >70% are formed by AFF1 (AF4) on 4q21, MLLT3 (AF9) on 9q23, MLLT1 (ENL) on 19p13, and MLLT10 (AF10). (B)

Simplified illustration of the function of KMT2A in normal hematopoiesis (left) and upon rearrangement in acute leukemia (right). In normal hematopoiesis, KMT2A is

proteolytically cleaved into an N- and C-terminal fragment that associated with co-regulators leading to activation of its targets (including, e.g., the HOX-A gene

cluster, MEIS1 or PBX1) through H4K16 acetylation and H3K4 methylation. In leukemia, KMT2A fusion proteins recruit a super elongation multi-protein complex and

the DOT1L H3K79 methyltransferase to activate its target genes including the HOX-A gene cluster, MEIS1, PBX1, and EYA1.

hijacking of ERG and GATA1 activities represents a common
theme among pediatric AMKL as constitutive trisomy 21 (a.k.a.
Down’s syndrome) AMKL disease progression is characterized
by independent genetic alterations also impacting ERG (carried
by chromosome 21) and GATA1 (Figure 3) (26, 27). Notably,
additional mutations in cohesin components (∼50% of patients),
CTCF (∼20% of patients), epigenetic regulators (∼45% of
patients), and signaling pathway intermediates (∼45% of
patients) may also re-enforce an ERG/GATA activity imbalance
(28, 29). CBFA2T3–GLIS2 is also associated with aberrant
expression of GLI-family target genes, including BMP factors,
motivating evaluation of GLI inhibitors’ efficacy and specificity
for this fusion (21, 22, 30).

The NUP98 gene on the short arm of chromosome 11
(11p15) encodes a structural component of the nuclear pore
but the protein can also function as a transcriptional regulator
(31). Similar to KMT2A, NUP98 is targeted by numerous
chromosomal translocations or inversions in various but mostly
myeloid hematological malignancies, leading to the expression of
chimeric proteins containing the N-terminus of NUP98 fused to
a large variety of different partners including several homeobox
proteins (32). The best studied is t(7;11)(p15;p15), leading to
a NUP98–HOXA9 fusion in MDS, chronic myeloid leukemia

(CML) in blast crisis, and AML of any age. In contrast, the
cytogenetically cryptic t(5;11)(q35;p15) and t(11;15)(p15;q35)
translocations, leading to the expression of NUP98–NSD1 or
NUP98–KDM5A fusions, respectively, are preferentially found
in pediatric AML. NUP98–NSD1 contains the GLFG repeats
of NUP98 fused to several PHD finger domains and the
SET methyltransferase domain of NSD1 (33). NUP98–NSD1
is one of the most prevalent aberration in pediatric CN-
AML, often presenting with a myelomonocytic phenotype
(M4/M5; FAB) associated with poor outcome. Interestingly, in
the majority of patients, tumor cells also harbor an internal
tandem duplication in FLT3 (FLT3-ITD) and/or mutation in
WT1 (34). NUP98–KDM5A was identified from a patient
with megakaryoblastic leukemia and later shown to be present
in about 10% of non-DS-AMKL (35, 36). NUP98–KDM5A
contains the GLFG repeats of NUP98 fused to the C-terminal
PHD finger domain of the KDM5A histone demethylase.
Similar to KMT2A fusions or CBFA2T3–GLIS2, the presence
of NUP98–KDM5A confers a poor clinical outcome (23).
The mechanism of transformation by NUP98 fusions might
involve the N-terminus containing GFLG repeats recruiting
a large WDR82-SET1A/B-COMPASS (WSC) protein complex
to promote trimethylation of lysine 4 of histone 3 (H3K4me)
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FIGURE 3 | Structure and function of the CBFA2T3–GLIS2 fusion associated with pediatric AMKL. (A) Schematic outline of the karyotypically silent inv(16) leading to

fusion between the telomerically located GLIS2 (16p13) and CBFA2T3 (16q24) genes, respectively. All known fusions contain the Nervy homology domains (NHR) 1–3

of the transcriptional co-repressor CBFA2T3 and the five zinc fingers (ZF) of the GLIS2 transcription factor. (B) Schematic representation of the change in key

transcription factors activity during the normal differentiation of hematopoietic stem cells (HSC) toward mature platelet-producing megakaryocytes. ERG and GATA2

activity are higher in HSC and progressively replaced by FLI1 and GATA1 in megakaryocytes. A schematic representation of the consequences of genetic alterations

found in pediatric AMKL is also shown. It is currently thought that, while AMKL associated with Down’s syndrome target ERG and GATA1 through independent

genetic alterations, the CBFA2T3–GLIS2 fusion is able alone to maintain both high ERG and low GATA1 activity contributing to the blockage of differentiation and

aberrant self-renewal capacities of AMKL leukemic blasts.

favoring active transcription (37). On the other hand, the fusion
partners appear also to contribute to alter target gene expression
such as the HOX-A gene cluster by, e.g., H3K36 methylation
(NUP98–NSD1) or by acting as a boundary factor that prevents
spreading of repressive polycomb factors (NUP98–KDM5A) (38,
39) (Figure 4).

The MNX1 (a.k.a. HLXB9) gene on the long arm of
chromosome 7 (7q36) encodes a homeobox transcription factor
that is essential for pancreatic organogenesis, and moto-

neuron differentiation, and is involved in a t(7;12)(q36;p13)
translocation that is a hallmark of infant AML with poor

outcome (8, 40). Although initial reports suggested that

this translocation would lead to a chimeric fusion protein
containing HLH and ETS domains of ETV6 joined to regulatory

sequences and first exon of MNX1 lacking the homeodomain,
it appeared that overexpression of MNX1 might be the primary
consequence (41). The role of MNX1 in the hematopoietic
system remains unclear. However, functional studies suggested
that the protein might regulate cell–cell interaction and adhesion
of leukemic cells and that aberrant expression of MNX1 leads

to differentiation block in megakaryocyte-erythroid progenitor
cells (42, 43).

Signaling Mutations in Pediatric AML
Mutations in signaling mediators such as receptor tyrosine
kinases (e.g., FLT3 and KIT) and RAS-related molecules
(e.g., N-RAS, K-RAS, PTPN11, or NF1) are found in adult
and pediatric AML (8). These mutations generally lead to
constitutive activation of interconnected signaling cascades that
activate downstream effectors, such as signal transducers and
activators of transcription (STAT), ELK, MYC, c-JUN, or NF-
kB involved in transcriptional regulation of cell proliferation
and survival.

The RAS proteins are a family of highly homologous low-
molecular-weight proteins that bind GTP, located at the inner
face of the plasma membrane. In the normal situation, the
activity of RAS is controlled by hydrolysis of bound GTP by
GTPase activating proteins (GAPs) and the replacement of
bound GDP with fresh GTP, which is catalyzed by the family
of guanine nucleotide exchange factors (GEFs) (44). About
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FIGURE 4 | Structure and function of AML-associated NUP98 fusions. (A) Schematic outline of the NUP98 pore protein organization containing multiple N-terminal

GLFG repeats and a C-terminal RNA binding domain lost by fusion to >30 different fusion partners including homeodomain proteins (HOXA-C-D gene cluster) and

non-homeodomain proteins including NSD1, NSD3, or KDM5A (JARID1A) [modified from Masetti et al. (30)]. (B) Recent work (36) suggested that, in normal cells, in

addition to its role as a pore protein, NUP98 is part of a transcriptional co-activator protein complex containing WDR82 and SET1A that regulate their targets (that are

not the classical KMT2A targets) by setting H3K4me marks. The NUP98–NSD1 interacts with KMT2A and re-localizes the NUP98-associated WSC activity resulting in

activation of classical KMT2A targets including the HOX-A gene cluster, MEIS1 or PBX1.

20% of human cancers have activating point mutations of RAS
most frequently affecting K-RAS, less N-RAS, and rarely H-RAS
(45). The TARGET study reported N/K-RAS mutations in over
40% of investigated pediatric AML cases. Notably, the highest
prevalence of RAS mutations was observed in infant patients
that also harbored KMT2A fusions (8). Most cancer-associated
RAS mutations affect codons 12, 13, and 61 and all compromise
the GTPase activity of RAS, preventing GAPs from promoting
hydrolysis of GTP on RAS and leading to the accumulation of
RAS in the GTP-bound active form. G12D, G12V, G13D, and
Q61H are the most prevalent RAS mutations in pediatric AML.
Although the prognostic value of RAS mutations is an ongoing
matter of debates, like other signaling mutations, they appear to
affect the outcome by changing clonal expansion in AML (46).

The FLT3 protein is a class III receptor tyrosine kinase (RTK)
family that contains an extra-cellular domain made up of five
immunoglobulin-like regions, a single transmembrane region,
an intracellular juxtamembrane domain (JMD), and two kinase
domains at the carboxyl terminus. Inactivation studies in mice
have shown that FLT3 signaling is central to the development
of HSPC, B-cells, dendritic cell progenitors, and natural killer
cells (47). Binding of FLT3-ligand (FL) leads to dimerization

of FLT3 and autophosphorylation of tyrosine residues in the
kinase domains, resulting in activation of multiple signaling
cascades including RAS/RAF, PI3K/AKT, or STAT5, resulting in
increased proliferation and survival. FLT3 is highly expressed
in many hematological malignancies and often co-expressed
with its ligand FL, suggesting autocrine signaling (48, 49). FLT3
is targeted by two categories of activating mutations, internal
tandem duplication (ITD, variable in length) and tyrosine kinase
domain (TKD) mutations. FLT3-ITD results in FL-independent
dimerization, constitutive phosphorylation, and activation of
downstream mediators. FLT3-ITD is found in about 10–20%
of newly diagnosed pediatric AML patients and was reported
to be an independent prognostic factor for poor outcome
particularly for patients with high ITD allelic ratios and/or
loss of the wild-type FLT3 allele leading to copy number-
neutral ITD homozygosity (48). FLT3-TKD mutations mostly
affecting aspartic acid D835 are less common (5–10%) than
ITD and seem not to carry the same prognostic significance.
Nevertheless, TKDmutation may also occur secondary at relapse
of ITD+ patients that are treated with FLT3 inhibitors. Notably,
FLT3-TKD mutations are particularly prevalent in pediatric
leukemia patients with KMT2A fusions (50).
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Mutations in Epigenetic Regulators
In contrast to adult AML, mutations in regulators of DNA
methylation and histone modification including Ten-Eleven
Translocation2 (TET2), IDH1 or IDH2, Enhancer of Zeste
Homolog 2 (EZH2), DNMT3A, and Additional Sex Combs
like-1 (ASXL1) are much less prevalent, affecting only about
1–2% of pediatric patients (51). Nevertheless, IDH1 or IDH2
mutations in codons 132 and 140, respectively, were found in
over 10% of a cohort of CN pediatric AMLmostly in combination
with alterations of KMT2A, NUP98, and FLT3-ITD or RAS
(52). DNMT methyltransferases (DNMT1, DNMT3A/B), the
TET family of enzymes (TET1–3), and IDH1/2 are functionally
interconnected (53). DNMTs methylate DNA cytosine residues
that can be oxidized from 5-methylcytosine (5mC) to 5-
hydroxymethylcytosine (5hmC) by TET enzymes in an iron- and
α-ketoglutarate (α-KG)-dependent manner. The presence of an
IDH1/2mutation results in the production of 2-hydroxyglutarate
(2-HG), which is structurally very similar to α-KG and competes
with α-KG to inhibit α-KG–dependent enzymatic processes
(53). Mouse models have shown that inactivation of TET2
and DNMT3A or targeted mutagenesis of IDH1/2 mostly
induces preleukemic states and leads to AML development upon
cooperation with additional mutations (54–56). Even though rare
in pediatric patients, it is important to search for alterations of
these factors, as novel approaches for therapeutic targeting (as
outlined below) showed very promising results in adult AML.

MODELING GENETIC LESIONS IN
PEDIATRIC AML

Development of recombinant DNA technologies allowed the
cloning and characterization of a large number of genetic
alterations identified in tumor cells from AML patients. To
address their potential for induction and maintenance of a
transformed phenotype, the cDNA of a gene of interest carrying
a mutation or eventually an entire fusion gene is transferred
into hematopoietic cells (cell lines or primary cells) mostly
by recombinant retroviruses. Based on the limited access to
primary material of a genetically rather heterogeneous disease as
pediatric AML, the majority of functional studies are performed
in animals, mostly mice. In vitro experiments measure the
impact of an AML-associated mutation on proliferation and
survival but also self-renewal and differentiation of bone marrow
(BM)-derived HSPC. The latter two are often determined
by measuring the serial replating capacity in growth factor-
containing semisolid medium such as methylcellulose (MC).
Expression of many KMT2A, NUP98, CBF, or RARA fusions
support serial HSPC replating in MC associated with variable
blockage of normal maturation. This assay also allows structure-
function studies to dissect critical domains of a given gene
product. To determine the transforming potential in vivo,
researchers aim to express the respective cDNA/mini gene in
HSPC of their animal model. In one widely used approach,
mouse BM-derived cells are virally transduced to overexpress
the respective genetic lesion and transplanted into irradiated
syngenic recipients [often referred to as BM transplant (BMT)

or reconstitution model] (57). Despite the drawbacks of
often higher-than-physiological expression, viral integration,
and transduction bias of multipotent progenitor cells, this
assay allows relatively fast and easy-to-obtain insights into
the leukemogenic potential of a given lesion. This strategy
was used to show functional cooperation of transcription
factor fusions (e.g., KMT2A–MLLT3, KMT2A–MLLT1, NUP98–
HOXA9, RUNX1–RUNX1T1, PML–RARA, and others) with
signaling mutations like FLT3-ITD, N-/K-RAS, or activating KIT
mutations (58, 59). Nowadays, putative leukemogenic driver
oncogenes can also be knocked into the mouse genome, resulting
in expression regulated from its native promoter/enhancers. In
addition, several chemically inducible transgenic mouse lines
have been generated that identify the role of a mutation not only
for induction but also for maintenance of a leukemic phenotype.
Most likely, genome editing using Crispr/Cas9 will facilitate
targeted recombination and eventually boost the development of
novel AML animal models (60).

As the hematopoietic system of the mouse is not identical
to the situation in humans, researchers developed transgenic
mouse lines with a humanized hematopoiesis expressing several
human hematopoietic regulatory genes in combination with
defects of a normal immune response such as the MISTRG
strain (61). These humanized mice not only allow to expand
patient-derived AML cells but also to study the biology of the
disease (62). Immunodeficient mice also allow to model the
disease by transplanting human HSPCs engineered to virally
overexpress a leukemia-associated fusion oncogene (63) or, more
recently, obtained from the hematopoietic differentiation of
induced pluripotent stem cells (iPSCs) derived fromAML patient
blasts (64, 65). Due to space constraints, we focus on some recent
findings in mouse models related to those genetic lesions that are
recurrently found in pediatric AML.

Modeling KMT2A Fusion-Driven Pediatric
AML
KMT2A fusions, such as KMT2A–MLLT3, are among the
best-studied AML-associated alterations. Transgenic knock-
in as well as BMT models resulted in a myelo-monocytic
AML that closely phenocopied the human disease (66).
Strikingly, transduction of lineage-marker-depleted, Kit+

Sca1+(LSK) cells, common myeloid progenitor (CMP), or
granulocyte-macrophage progenitor (GMP) cells with virus
expressing KMT2A–MLLT3 or KMT2A–MLLT1 followed by
transplantation resulted in a very similar disease (67). To dissect
the activity of KMT2A–MLLT3 and KMT2A–MLLT1 in different
cells of the hematopoietic hierarchy, we developed DOX-
regulated transgenic mouse lines. As expected, we observed that
KMT2A–MLLT3 is able to transform hematopoietic stem cells
(HSC), but also more committed progenitor (CMP and GMP)
cells. However, activation in long-term hematopoietic stem cells
(LT-HSC) resulted in some animals in a particularly aggressive
AML characterized by high expression levels of the transcription
factors MECOM (MDS1 and EVI1 complex locus, a.k.a. EVI1)
and ERG, which also characterize human AML with poor
outcome (68). In contrast, using the same strategy, we found
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that activation of KMT2A–MLLT1 preferentially transformed
HSC, while CMP were transformed less efficiently and GMP
were not transformed at all (69). This finding in transgenic mice
might also reflect the situation in patients, as KMT2A–MLLT1
leukemic cells in patients often express lymphoid markers and
are diagnosed as ALL or mixed lineage leukemia, whereas
KMT2A–MLLT3 mostly present with AML-M5 (11). These
observations in adult mice suggest that cells of the hematopoietic
hierarchy have a differential sensitivity for a given leukemogenic
fusion gene. In attempts to model pediatric KMT2A-rearranged
AML, Chen et al. transplanted fetal liver-derived HSPC from
a KMT2A–MLLT3 transgenic (knock-in) mice into wild-type
mice and observed induction of a leukemic phenotype often
expressing lymphoid surface markers after long latency. In
contrast, transplantation of adult BM-derived cells led to the
typical AML-M5 phenotype (70). Although differential grafting
potential of highly cycling fetal liver-derived cells compared
to adult BM cells might have influenced these experiments,
pediatric but not adult KMT2A–MLLT3+ leukemia often express
lymphoid markers, strongly suggesting that activation at a
particular developmental stage significantly influences disease
biology. However, so far, we are not aware of any animal
model that appropriately phenocopies KMT2A fusion-driven
pediatric AML.

Modeling NUP98 Fusion-Driven Pediatric
AML
Multiple transgenic mouse models have shown that expression
of several NUP98 fusions in the hematopoietic system results
in various malignancies (32). Functional cooperation between
NUP98–HOXA9 and BCR–ABL fusions became a widely used
model to study CML in blast crisis (71, 72). Transgenic
NUP98–HOXD13 mice, which develop myelodysplasia
eventually progressing to AML, are often used to study
molecular mechanisms of MDS (73). However, the transforming
potential of the preferentially or exclusively pediatric NUP98
fusions (NUP98–KDM5A and NUP98–NSD1) is less clear.
Transplantation of adult BM-derived HSPC retrovirally
expressing the NUP98–KDM5A fusion resulted in a fully
penetrant AML phenotype after 50–100 days, indicating a
strong leukemogenic potential. Tumor cells expressed surface
markers of early myeloid progenitor cells, but expression of
megakaryoblastic markers observed in pediatric cases was not
reported (40). Transplantation of adult BM-derived HSPC
retrovirally expressing the NUP98–NSD1 fusion was reported
to induce an AML phenotype in mice after a long latency with
tumor cells expressing myeloid but also early stem cell-related
(FLT3, CD34, and KIT) surface markers (38). However, using
the same retroviral vector but a slightly different experimental
strategy, we only observed development of AML upon co-
transduction of NUP98–NSD1 together with FLT3-ITD, a
mutation that is found in the majority of the patients (74).
Even though these models indicate that NUP98–NSD1 has
some transforming potential, alone it seems not sufficient to
induce the disease. In addition, most of NUP98–NSD1+ AML
occurring in children and younger adults present mostly with a

myelomonocytic AML for which we currently do not have an
appropriate model.

Modeling Pediatric AMKL Fusion
Oncogenes
CBFA2T3–GLIS2, RBM15–MRTFA, NUP98–KDM5A, and
KMT2A fusions are found in about 60–70% of non-DS-related
pediatric AMKL. Additional rare fusions like GATA2–HOXA9,
MN1–FLI1, NIPBL–HOXB9, or NUP98–BPTF were cloned
from tumor cells from pediatric AMKL patients (75). Earlier
work identified some JAK3 activating mutations in cell lines
derived primarily from DS-AMKL, which induced a transient
myeloproliferative disease with megakaryoblastic elements when
retrovirally expressed in hematopoietic cells from Balb/c mice
(76). Knock-in of the MRTFA cDNA at the endogenous Rbm15
locus led to bona fide Rbm15–MRTFA fusion expression in mice,
altered clonogenic potential of fetal liver-derived hematopoietic
cells, and AMKL with a low penetrance. Retroviral co-expression
of the thrombopoietin receptor (MPL) carrying an activating
mutation (W515L) induced leukemia with morphologic
characteristics of AMKL; however, such a combination is rarely
seen in patients (77). Using a similar approach to combine a
transgenic model of Trisomy 21 (Ts1Rhr) with GATA1s and
MPLW515L, Malinge et al. demonstrated that all three alterations
were required to induce AMKL in mice (78, 79). Retroviral
expression of CBFA2T3–GLIS2, GATA2–HOXA9, MN1–FLI1,
and NIPBL–HOXB9 allowed serial replating of adult mouse BM-
derived hematopoietic cells in MC associated with expression of
megakaryocytic markers on some CBFA2T3–GLIS2- and MN1–
FLI1-expressing cells. Consistently with the high homology
between ERG and FLI1, transplantation of these MN1–FLI1-
transduced cells was sufficient for the development of murine
leukemia presenting clear features of AMKL (80, 81). However,
GATA2–HOXA9- and NIPBL–HOXB9-transduced cells led to
penetrant AML phenotypes but with limited megakaryocytic
features, and CBFA2T3–GLIS2-transduced cells did not induce
any disease (81). Of note, expression of RBM15–MRTFA was
also not able to induce leukemia development using a retroviral
transduction/BM transplant approach, suggesting that this
approach is not suitable to model the leukemogenic activity
of all fusion oncogenes (77). Very recent work suggested that
transplantation of fetal liver hematopoietic cells retrovirally
expressing the CBFA2T3–GLIS2 fusion in lethally irradiated
recipients is able to induce an AMKL phenotype co-expressing
the CD41 and CD61 megakaryocytic markers but with a
limited penetrance (82). Together, these results indicate that
better models are required to more faithfully recapitulate
pediatric AMKL.

Challenges to Accurately Model Pediatric
Acute Leukemia in Mice
The genetic heterogeneity, as well as the rareness of pediatric
AML that limits access to primary cells, urges for the
development of models that closely phenocopy the biology of
the human disease. Establishment of appropriate models for
pediatric leukemia is a challenging task illustrated by the efforts
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to develop a mouse model for KMT2A–AFF1+ infant B cell ALL.
The observation that KMT2A fusion+ infant leukemias have on
average only about two non-silent mutations strongly suggests
that the fusion might be sufficient for inducing the disease or that
only very few cooperating hits are necessary (8, 83). Expression of
a knocked-in KMT2A–AFF1 fusion ORF developedmostly B-cell
lymphomas after a long latency in mice (84). An ALL phenotype
developing after a relatively long latency was observed in mice
carrying a conditional KMT2A–AFF1 allele, or by retroviral co-
expression of KMT2A–AFF1 and the reciprocal AFF1–KMT2A
fusion (85). More recently, Jim Mulloy et al. demonstrated that
transplantation of human CD34+ HSPC retrovirally expressing
a human–mouse chimeric KMT2A-Aff1 fusion developed pro-B-
ALL after a latency of 100–250 days. In contrast, expression of
this chimeric fusion in mouse HSPCs resulted in AML, whereas
only low titers could be generated of viruses containing the fully
human fusion ORF. Although this study was the first that indeed
produced a KMT2A–AFF1-driven pro-B-ALL, the disease did
not develop in “infant” or newborn mice (86). In another attempt
to model KMT2A–AFF1 infant leukemia, Barrett et al. induced
the fusion between developmental E12 and E14 to all definitive
hematopoietic cells formed during embryonic development using
a conditional invertor mouse strain controlled by the VE-
Cadherin-cre recombinase. Expression of KMT2A–AFF1 at this
early stage increased engraftment and self-renewal of fetal liver
cells and provided the cells with a high clonogenic B-lymphoid
potential; however, no early progression to B-ALL was observed
(87). Interestingly, Menendez et al. earlier found the KMTA2A–
AFF1 fusion in BM mesenchymal stoma cells in affected
patients, suggesting an early pre-hematopoietic precursor cell
origin of the fusion (88). Of note, one cannot exclude that
these observations are explained by species-related differences,
inappropriate expression levels in cells at a particularly sensitive
developmental stage, or the lack of a potential cooperative lesions.

Experiments based on transplantation of fetal liver- or BM-
derived cells retrovirally expressing the NUP98–HOXA9 fusion
into adult recipients revealed that the age of the cell of origin
determines not only the latency period for disease development
but also the lineage phenotype and changes of the BM niche
(89). In the attempt to model Trisomy 21-associated AMKL,
retroviral expression of ERG in murine adult BM leads to
100% of T-cell leukemia, while expression in E12.5 fetal liver
cells generated erythro-megakaryocytic leukemia in 40–60% of
recipient mice (90). Also, GATA1s and Trisomy 21 have been
shown to induce stage-specific alterations of fetal hematopoiesis
in both murine transgenic models and humans (91, 92). Proof
of concept that neonatal hematological malignancies can also
be induced in mice was provided by experiments that modeled
juvenile myelomonocytic leukemia (JMML). Hereby, either fetal
expression of KrasG12D controlled by Flt3-cre recombinase
or constitutive co-deletion of Cbl/Cbl-b resulted in aggressive
neonatal myeloproliferative disorders that were lethal within 2–3
weeks after birth (93, 94).

It is very likely that the type of hematopoietic stem
or progenitor in which the mutation/fusion first appears
is of importance for both development and phenotype of
pediatric AML. Although under considerable debates, the normal
hematopoietic hierarchy is constituted of a continuum of

progenitors presenting different self-renewal and differentiation
potential (95, 96). Notably, there is increasing evidence that the
fetal and adult hematopoietic hierarchies significantly differ in
structure and composition (97). Although not yet demonstrated
in murine models of pediatric AML, several AML oncogenes
(including KMT2A–MLLT3) studied in an adult context are
able to transform both HSC and more committed progenitors
(e.g., GMP) while others are not able to do so (67, 98–101).
Also, as indicated above, the phenotype of KMT2A–MLLT3+

and KMT2A–MLLT1+ leukemia was dependent on the stage
of the hematopoietic hierarchy in which the driver mutation
was expressed (68, 69). Recently, some studies have reported
the successful derivation of iPSCs from human AML cells,
including from blasts presenting MLL fusions, suggesting that
this approach can generate human-based preclinical models
(64, 65, 102, 103). Although the frequency of successful iPSC
reprograming from AML blasts is likely low, iPSC-derived
hematopoiesis followed by transplantation into immunodeficient
models may represent a future opportunity to investigate specific
stages of the human fetal hematopoietic development that are
difficult to access using primary human samples (104).

Collectively, these studies indicated several factors to be taken
into account for appropriately modeling pediatric AML in mice:
(1) driver (and eventually also cooperating)mutationsmost likely
need to be active in utero; (2) a driver and cooperating lesion
might not occur and/or be active at the same developmental
stage; (3) a given genetic lesion (e.g., fusion gene) has its optimal
expression level; and (4) particular developmental cell stages or
identity are likely more permissive to transformation than others
(Figure 5).

MOLECULAR TARGETING OF PEDIATRIC
AML

Functional cooperation studies in cellular and animal models
suggest that we can group AML-associated mutations into
drivers that are essential for induction and maintenance of the
disease, and cooperating mutations that support expansion of
the malignant clone or may facilitate transformation by mostly
metabolic modifications (101). As a consequence, inactivation or
degradation of the driver might represent the most promising
approach for long-term cure of the disease. However, in cases
without a clearly defined driver, inhibition of other cooperating
lesions (such as constitutive active protein kinases) or interfering
with more general dependencies of transformed hematopoietic
cells might provide an alternative strategy (Figure 6). Here, we
discuss selected targeting strategies for pediatric AML that are
either effective in the clinic, being explored in ongoing trials or
just demonstrated as proof of concept in preclinical models.

Targeting the Driver Mutation (e.g., Fusion
Oncogene)
Positive proof of concept that long-term cure can be achieved
in AML patients through inactivation of the driver mutation
comes from acute promyelocytic leukemia (APL) that is, in
the vast majority of the cases, driven by the PML–RARA
fusion resulting from t(15;17)(q22;q21). Although, the TARGET
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FIGURE 5 | Hematopoietic developmental stage and hierarchy-dependent susceptibility for transformation by AML-associated fusion oncogenes. (A) Increasing

evidence suggests that pediatric AML-associated oncogenes have a particular window of opportunity during development to transform hematopoietic cells. GATA1s

and Trisomy 21 have been shown to induce stage-specific alteration of fetal hematopoiesis (86). For KMT2A–AFF1+ leukemia, the fusion was found not only in

hematopoietic precursors but also in BM stroma cells (83), suggesting that the fusion might target a very early precursor cell that maintain some mesenchymal

properties. (B) Differential susceptibility of cells of the hematopoietic hierarchy for transformation by fusion oncogenes associated with pediatric AML [adapted from

Rodriguez-Fraticelli et al. (95)]. Together, these observations suggest that both the developmental stage and the type of cell in the hematopoietic hierarchy in which a

genetic alteration occurs determines whether a leukemia will develop and the associated disease phenotype and aggressiveness.

pediatric AML study did not report PML–RARA+ APL patients,
who are often considered separately for therapeutic reasons,
they make up to of 5–10% of pediatric AML patients in the
United States (105). Notably, about 10% of the pediatric cases
clinically presenting as APL seem not to carry any RARA fusion
(106). Several transgenic mouse models have shown that the
PML–RARA fusion is essential but most likely not sufficient
to induce the disease as it cooperated with other mutations
such as FLT3-ITD (107). Pioneer work by Hughes de Thé and
Zhu Chen demonstrated that pharmacological doses of all trans
retinoid acid (ATRA) or arsenic trioxide (As2O3) induce different
molecular mechanisms that ultimately lead to proteasome-
dependent degradation of the PML–RARA fusion protein (108).
A phase III randomized multicenter trial demonstrated clinical
efficacy and superiority of the combination of ATRA with
As2O3 over ATRA and chemotherapy in adult patients (109).
Pediatric APL patients treated with ATRA and anthracyclines
or As2O3 reached an estimated overall 5- and 8-year survival

of >95% (106). Collectively, these observations strongly suggest
that targeted degradation of a driver fusion oncogene is the
strategy of choice for long-term cure of a significant fraction of
AML patients.

Multiple mouse models demonstrated that several KMT2A
fusions are strong leukemogenic oncogenes that drive the disease
in the presence of few, if any, cooperating mutations (66,
110). We were able to show that induction and maintenance
of a transformed state of murine hematopoietic cells by the
KMT2A–MLLT3 or KMT2A–MLLT1 is dependent on the fusion
dose and is fully reversible (68, 69), indicating that targeted
reduction of the fusion protein might be sufficient to induce
differentiation and dissolve the leukemic phenotype. Biochemical
studies suggested that leukemogenic KMT2A fusions form large
protein complexes that bind to and activate KMT2A targets in an
uncontrolled manner (111). Recent experimental work suggests
that KMT2A fusion-mediated transformation could be impaired
by stabilization of the non-rearranged protein, which naturally
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FIGURE 6 | Potential therapeutic targeting of functionally cooperating molecular mechanisms. Personalized efficient AML therapies will most likely be based on a

combination of strategies that target the driver mutation (A), cooperating processes (B), and general characteristics of the transformed state (C). Targeting the driver

can be achieved by degradation of the fusion oncogene (e.g., as shown for PML–RARA by ATRA and arsenic) and blocking critical protein–protein interactions (e.g.,

MENIN–KMT2A interaction for chromosome binding of KMT2A fusions), related enzymatic activities, or essential downstream targets. Cooperating mutations,

including constitutive active protein tyrosine kinases or RAS proteins, can be targeted with highly selective and potent small-molecule inhibitors (e.g., FLT3 inhibitors).

The transformed state can be impaired by blocking survival by primed BH3-apoptosis regulators (e.g., BCL2, MCL1) or by targeting altered metabolism-related

regulators (e.g., mutated IDH1/2).

undergoes proteasomal degradation regulated by casein-kinase II
and IRAK4-dependent phosphorylation events (112, 113). The
transforming potential of KMT2A fusions depends on several
protein–protein interactions as well as enzymatic activities that
have the potential for therapeutic interference. Interaction of
the N-terminus of KMT2A with MENIN and the adapter
protein LEDGF is essential to bind to critical targets and
productive transformation by KMT2A fusion genes (114).
Structure-function studies identified critical interphases, and
small molecules were developed that disrupted binding of
MENIN to KMT2A and impaired KMT2A fusion transformation
(115–117). Constant optimization allowed the generation of
MENIN protein–protein interaction (PPI) inhibitors that impair
the viability of KMT2A fusion-driven cells at a nanomolar
concentration (118). Notably,MENIN PPI inhibitors were shown
to have potent anti-cancer activity not only in KMT2A fusion-
driven leukemia but also in prostate tumors (119, 120). Novel,
more potent and stable MENIN PPIs with increased selectivity
for KMT2A fusions have been presented at ASH 2018 with potent
anti-leukemic activity in patient-derived xenotransplant (PDX)
models of AML (121).

KMT2A fusion complexes recruit the DOT1L histone H3
lysine 79 (H3K79) methyltransferase that positively regulates
expression of the target genes most likely by preventing

association of the sirtuin-1 (SIRT1) deacetylase complex resulting
in loss of H3K9 and H4K16 acetylation, and reduced SUV39-
mediated methylation on H3K9m3 (122). The maintenance
of a KMT2A fusion-induced transformed state showed high
dependence of DOT1L-mediated H3K79 methylation and small-
molecule DOT1L inhibitors showed promising anti-tumor
activity in vitro and in vivo in preclinical models (123). However,
although application of a DOT1L inhibitor (Pinometostat, a.k.a.
EPZ-5676) reduced H3K79 methylation, only modest clinical
activity was observed in adult patients with KMT2A rearranged
leukemia (124).

In addition to MENIN/LEDGF or DOT1L, targeted
interference with other components of the KMT2A fusion
complexes (e.g., WDR5, BRD4, CDK9) have been explored
in various preclinical models (125). Interestingly, AML cells
carrying CEBPA mutations leading to expression of the
short oncogenic CEBP/α p30 isoform appear sensitive to
pharmacological targeting of the KMT2A complex (126).
However, so far, no strategy has been reported that allows
selective degradation of KMT2A fusion proteins to replicate the
success in APL.

Studies with Drosophila cells showed that NUP98 acts as a
transcriptional activator physically interacting with non-specific
lethal (NSL) and Trithorax (KMT2A) protein complexes (127).
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More recent work suggested that NUP98 and some NUP98
fusion proteins (NUP98–HOXA9, NUP98–NSD1, and NUP98–
HOXD13) physically interact with proteins of the human NSL
and KMT2A complexes such as WDR5 or MOF most likely
through the GLFG repeats (37, 128). Notably, conditional genetic
ablation of KMT2A significantly reduced the leukemogenic
activity of the NUP98–HOXA9 fusion in vivo. In addition,
KMT2A-dependent gene expression signatures from murine
NUP98–HOXA9 transformed cells resembled human NUP98–
NSD1-derived profiles, suggesting at least overlapping pathways.
These observations suggest that therapeutic targeting of KMT2A
would also be effective against NUP98 fusion-driven AML.
However, more translational studies found significant differences
in gene expression signatures of pediatric AML cases harboring
either KMT2A fusions or NUP98–NSD1. Indeed, whereas the
first group is often characterized by increased expression of
EVI1, the latter is associated with increased expression of another
PRDM family member PRDM16 (a.k.a. MEL1) (32, 129, 130).
Nevertheless, the activity of leukemogenic NUP98 fusions might
be impaired by blocking the activities of distinct partner genes.
Leukemic blasts immortalized by retroviral expression of the
NUP98–NSD1 fusion showed elevated levels of H3K36me marks
on putative target genes including the Hox-A gene clusters
leading to the idea that small molecules blocking the NSD1
SET methyltransferase domain might have anti-leukemic activity
(38, 131). Interestingly, disulfiram (DSF), known for its aldehyde
dehydrogenase blocking activity, was found to induce apoptosis
of murine myeloblasts transformed by PHD-containing NUP98–
KDM5A and NUP98–PHF23 fusions. Although the detailed
molecular mechanism remains unclear, it appeared that DSF
blocked the interaction of the fusion proteins with the promoters
of critical downstream targets like HoxA7-10, Meis1, and
HoxB5 (132).

Although the use of high-dose cytarabine has improved
the outcome of core binding factor (CBF) AML, we still
lack efficient strategies to selectively inactivate the RUNX1–
RUNX1 partner transcriptional co-repressor 1 (RUNX1T1, a.k.a.
CBFA2T1 or ETO) or CBFB–MYH11 driver fusions. Earlier
work found that oligomerization of RUNX1–RUNX1T1 through
the nervy homology 2 (NHR2) domain of RUNX1T1 was
essential for its activity as a transcriptional corepressor and
mediator of self-renewal to BM cells (133). Interfering with
tetramerization by peptides and by small molecules reduced the
oncogenic activity of the RUNX1–RUNXT1 fusion in preclinical
models (134, 135). RUNX1–RUNXT1 seems to form stable
complexes containing hematopoietic co-factors including E-
proteins, of which the interaction, e.g., between the NHR2
domain of RUNX1T1, with a novel binding motif in E proteins
seems critical (136). The oncogenic potential of the RUNX1–
RUNXT1 fusion was also shown to depend on EP300-medicated
acetylation of distinct lysine (K24, K43) lysine residues; hence,
blocking EP300 activity impaired leukemic transformation (137).
Pioneer work by Illendula et al. provided a novel concept to
molecularly target CBFB–MYH11+ AML. They developed a
small molecule (AI-10-49) that selectively binds the CBFB–
MYH11 fusion protein, resulting in RUNX1-mediated repression
of the potent oncogenic driver MYC (138, 139). CBFA2T3 is

highly homologous to RUNX1T1 containing nervy homology
domains (NHR1–3) that mediate oligomerization of the AMKL-
associated CBFA2T3–GLIS2 fusion. Notably, overexpression
of a small NHR2 peptide (NC128) was able to significantly
reduce the leukemia development of a CBFA2T3–GLIS2+ human
AMKL cell line in immunodeficient mice (25). Collectively,
the oncogenic activity of CBF-related fusions can be impaired
by interfering with oligomerization (RUNX1–RUNX1T1 and
CBFA2T3–GLIS2) and post-translationalmodification (RUNX1–
RUNXT1) or by impairing binding to RUNX1 (CBFB–MYH11);
however, no such strategies were so far successfully translated
into the clinic.

Targeting Cooperating Mutations (e.g.,
Tyrosine Kinase Mutation)
Several small molecules have been established that block
the uncontrolled activity of FLT3-ITD, ranging from pan-
kinase inhibitors like Sunitinib, to promiscuous inhibitors of
multiple tyrosine kinases including Sorafenib,Midostaurin (a.k.a.
PKC412), or Lestaurtinib (a.k.a. CEP-701), to very selective
compounds such as Quizartinib (a.k.a. AC220), Tandutinib
(a.k.a. MLN518), Crenolanib, or Gliternitinib (a.k.a. ASP2215)
(140). Based on an international randomized controlled study
showing that the combination of Midostaurin and chemotherapy
improved the outcome of adult AML patients, the drug recently
became FDA-approved for therapy of de novo FLT3-mutated
AML (141). Very recently, Gliternitinib was also FDA-approved
for relapsed/refractory AML with FLT3 mutations based on
results from the ADMIRAL trial (142). Several FLT3 inhibitors
have been explored in small clinical trials in pediatric AML
patients, and partial or complete responses were reported not
only in KMT2A-rearranged ALL (Midostaurin, Lestauritinib),
but also in refractory/relapse AML (Sorafenib) (143). Promising
results have been reported with the combination of the selective
FLT3 inhibitor Quizartinib with chemotherapy in children with
relapse or refractory AML or KMT2A-rearranged ALL (144).
However, more selective FLT3 inhibition has been linked to
resistance mutations in FLT3-ITD+ AML particularly affecting
the gatekeeper (F69L) or activation loop (D835/I836) residues
(145). Future prospective controlled clinical studies will be
necessary to show the profit and risks of selective FLT3 inhibition
in pediatric AML.

Based on in vitro and in vivo cooperation in AML, targeted
inhibition of constitutive active mutant RAS should be of
therapeutic benefit. Although long viewed to be undruggable,
recent observations suggest that pharmacological inhibition of
RAS could be achieved (146, 147). Earlier targeting attempts
focused on interfering with RAS posttranslational modification
and farnesylation of the CAAX motif necessary for localization
of the protein to the cellular membrane. Small-molecule
farnesyltransferase inhibitors exhibited anti-leukemic activity in
H-RAS but not in K-RAS mutant AML. However, the addition
of Tipifarnib (Zarnestra), a selective non-peptidomimetic
competitive farnesyltransferase inhibitor, to low-dose cytarabine
did not improve outcome in older AML patients (148). More
recent work provided proof of concept of targeted interference
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with distinct RAS mutations: compounds were identified that
block K-RASG12C by forming covalent disulfide bridges with the
cysteine. Other compounds were found to block GDP-bound K-
RASG12C and selectively impair cancer growth. Impairing RAS
activity by blocking the interaction with downstream mediators,
genetic depletion by anti-sense oligos, or interfering with RAS
dimerization also suggested that pharmacological targeting could
be achieved. However, clinical translation of targeting mutated
RAS in cancer has not yet been achieved.

In contrast to adult AML, mutations in the genes encoding
for IDH1 and IDH2 are rare in pediatric AML (51, 52). However,
small molecules were generated that potently and selectively
inhibit mutant IDH1 or IDH2 through binding in an allosteric
manner at the interface of the dimerized enzymes (149, 150).
IDH1R132H/C- or IDH2R140Q-selective inhibitors were shown to
induce differentiation of primary AML cells in vitro and in PDX
models, leading to a statistically significant survival benefit (151).
Phase I/II clinical trials with Ivosidenib (targeting IDH1-R132)
and Evasidenib (targeting IDH2R140Q) in refractory or relapsed
adult AML patients show overall response rates >40% with
about 20% complete remission over several months underlining
the potential for these compounds for personalized therapeutic
strategies (152, 153). However, some patients developed
clinical resistance to Evasidenib by secondary mutations in
trans, in the IDH2 allele without the neomorphic R140Q
mutation (154). Despite these limitations, the fact that IDH1/2
mutations can be selectively blocked by clinically effective
small-molecule inhibitors urges for clinical trials in pediatric
AML patients.

Targeting Hallmarks of Transformed Cells
and the Immune System
It is well-known that malignant transformation leads to various
cellular dependencies that may offer targets for therapeutic
intervention (155). A very promising emerging strategy is
to interfere with the cells’ capability to evade programmed
cell death known as apoptosis. In a simplified view of this
complex regulatory pathway, apoptotic cell death is prevented
by pro-survival BCL2-like proteins (e.g., BCL2, BCL2L1:
a.k.a. BCL-XL, MCL1) by keeping in check the cell death
effector proteins BAX and BAK that are activated by BH3-only
proteins (e.g., BCL2L11: a.k.a. BIM; BBC3: a.k.a. PUMA,
BAD, BID; PMAIP1: a.k.a. NOXA) (156). Small molecules
(e.g., Venetoclax, a.k.a. ABT-199) that mimic the function of
BH3-only proteins (“BH3-mimetics”) have been developed that
are inducing apoptosis not only in lymphoid neoplasms like
CLL or B-cell non-Hodgkin’s lymphoma but also in myeloid
neoplasms including AML (157, 158). Selective BCL2 inhibition
by Venetoclax induces rapid cell death in AML cells with an
IC50 as low as 10 nmol/L (159). A phase II study revealed that
Venetoclax monotherapy has potent anti-leukemic activity
in high-risk relapsed/refractory adult AML patients (160).
Small-molecule MCL1 inhibitors (e.g., VU661013, AMG176)
were shown to be synergistic and rescued Venetoclax resistance
of AML cells (161, 162). In addition, Venetoclax showed
synergistic therapeutic activity in combination with other drugs

including low-dose cytarabine, JAK1/2 inhibitors, or DNMT1
inhibitors (decitabine, azacytidine) (163–165). Moreover,
inhibition of BCL2 was found to enhance the anti-leukemic
activity of FLT3 inhibitors (Midostaurin, Gliternitinib) in
preclinical AML models (166). Very recent work suggested that
TP53, the apoptotic signaling network, and the mitochondrial
functionality are the drivers of Venetoclax sensitivity in AML
cells (167). These observations in adult AML patients initiated
some studies to explore Venetoclax in pediatric patients with
relapse/refractory malignancies including acute leukemia
(NCT03236857) (168).

Intensive research is currently ongoing that aims to
therapeutically target the capacity of pediatric leukemia
cells to escape destruction by the immune system (169). Some
studies reported some significant therapeutic responses in
AML treated with antibody-drug conjugates (ADCs) targeting
surface molecules like Gemtuzumab, a calicheamicin-conjugated
antibody against CD33 and the response seems to correlate
with a splicing polymorphism affecting the antibodies’ binding
site (170). Potent anti-leukemic activity has been reported for
bispecific T-cell engaging antibodies (BiTEs) targeting T-cell
CD3 and CD19 (Blinatumomab) on B-cell ALL cells leading
to FDA approval to treat pediatric B-ALL (171). Several BiTEs
targeting some AML-associated surface proteins (CD33, CD123,
and CD371) that have shown potent experimental activities are
currently undergoing clinical trials (172). The immunotherapy
revolution in pediatric hematologic cancers is mostly marked
by the development of chimeric antigen receptor T-cells (CAR-
T). Remarkable success was reported by targeting CD19 on
relapsed/refractory B-ALL patients (173). CAR-T approaches to
target AML-associated antigens (CD33 and CD123) have been
explored in preclinical models, but it appeared that yet to be
defined more tumor cell-selective epitopes might be necessary
to reach the efficacy observed in B-ALL (174). Very recent
experimental studies suggested improved anti CD33 CAR-T
therapy for AML by genome editing-mediated ablation of CD33
in HSC (175, 176). Finally, the success of checkpoint inhibitors
mostly antibodies targeting immune suppressive antigens such
as PD-1, PD-L1, or CTLA-4 in some solid tumors associated with
a high mutational burden such as malignant melanoma initiated
intensive study for their potential in hematological malignancies
including AML (177). PD-1 and/or PD-L1 are expressed in
AML cells, and their blockade coupled with depletion of
regulatory T-cells showed potent anti-leukemic activity in
preclinical models (178). Several monoclonal antibodies (e.g.,
Nivolumab, Prembrolizumab, Durvalumab, and Ipilimumab)
are currently studied for their anti-leukemic potential in
refractor/relapse AML patients; however, checkpoint inhibitors
alone seem to be much less effective in AML than in solid
cancers (179).
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