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Abstract: Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortal-
ity, particularly in hospital patients undergoing ventilation and in individuals with cystic fibrosis.
Although we and others have investigated mechanisms used by P.a to subvert innate immunity,
relatively less is known about the potential strategies used by this bacterium to fight the adaptive
immune system and, in particular, T cells. Here, using RAG KO (devoid of ‘classical’ αβ and γδ

TCR T lymphocytes) and double RAG γC KO mice (devoid of T, NK and ILC cells), we demonstrate
that the lymphocytic compartment is important to combat P.a (PAO1 strain). Indeed, we show that
PAO1 load was increased in double RAG γC KO mice. In addition, we show that PAO1 down-
regulates IL-23 and IL-22 protein accumulation in the lungs of infected mice while up-regulating their
RNA production, thereby pointing towards a specific post-transcriptional regulatory mechanism
not affecting other inflammatory mediators. Finally, we demonstrate that an adenovirus-mediated
over-expression of IL-1, IL-23 and IL-7 induced lung neutrophil and lymphocytic influx and rescued
mice against P.a-induced lethality in all WT, RAG γC KO and RAG γC KO RAG-deficient mice, sug-
gesting that this regimen might be of value in ‘locally immunosuppressed’ individuals such as cystic
fibrosis patients.

Keywords: IL-23; IL-17; lung; Pseudomonas aeruginosa; immunity; inflammation; cystic fibrosis;
inflammation

1. Introduction

Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mor-
tality, particularly in hospital patients undergoing ventilation and in patients with cystic
fibrosis (CF) [1,2]. We and others have investigated the mechanisms used by P.a to subvert
innate immunity. In particular, LasB, an important virulence factor with metalloprotease
activity, has been shown to hamper lung defenses by targeting lung macrophages and
epithelial cell responses, e.g., [3–8]. In addition, innate host mediators, such as neutrophil
elastase (NE), have also been shown to be instrumental in down-regulating innate immune
responses, including phagocytic and TLR receptors [1,2]. By contrast, relatively less is
known about the potential strategies used by this bacterium to fight the adaptive immune
system and, in particular, T cells.

Indeed, since ‘classical’ TCRαβ adaptive T cells [9,10], T cells with innate-like activities
(TCRγδ, NKT cells, MAIT cells, [11–16]) or innate lymphoid cells [10] activated by non-
cognate stimuli (NK cells, ILCs), have been shown to be able to control extra-cellular Gram
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bacteria (among which P.a.), it stands to reason that these pathogens may have, conversely,
developed mechanisms to counteract the lymphocytic defensive armamentarium. Here,
using RAG (recombination activated gene) KO (devoid of ‘classical’ αβ and γδ TCR T
lymphocytes) and double RAG γC KO (devoid of both classical T, NK and ILC cells),
we demonstrate that the lymphocytic compartment is indeed important to combat P.a.
Recently [3], we showed that in vitro P.a infection of MPI (a macrophage cell line) targets
the p40 chain common to IL-23 and IL-12 cytokines (both important cytokines known to
prime Th17 and Th1 pathways, respectively). In keeping with this, we show here that P.a
down-regulates IL-23 and IL-22 protein accumulation in the lungs of infected mice while up-
regulating their RNA production, thereby pointing towards a specific post-transcriptional
regulatory mechanism not affecting other inflammatory mediators. Finally, we demonstrate
that an adenovirus-mediated over-expression of IL-1, IL-23 and IL-7 rescued mice against
P.a-induced lethality in both WT and RAG-deficient mice.

Although cystic fibrosis patients are not bona fide immune-suppressed individuals,
their deficiency in clearing lung pathogens such as P.a clearly indicates that new strategies
are welcome to supplement already successful CFTR-targeted treatments. We, therefore,
suggest that innovative therapies such as local supplementation of ‘immune-boosting’
cytokines such as those described in our ‘adenovirus regimen’ might be of value for
these individuals.

2. Results
2.1. IL-17+, IL-22+ Tγδ and IL-17+ ILCs Increase Post Pseudomonas Aeruginosa Lung
Infection, and Lymphocytes Are Important to Modulate Lung Resistance to Pseudomonas
Aeruginosa Infections

FACS analysis was performed in the lungs of mice 16 h post P.a (PAO1) infection (see
Figure S1 and Table S1 for the FACS strategy). The most salient results are presented in
Figure 1: the total numbers of lung Tγδ cells and that of IL-17+, IL-22+ Tγδ producing cells
were increased (Panel A), as were those of total ILC3 and IL17+ ILC3s (Panel B).

Demonstrating the importance of these cells, we showed that RAG KO (devoid of
‘classical’ αβ and γδ TCR T lymphocytes) and double RAG γC KO (devoid of both classical
T, NK and ILC cells) were more sensitive to PAO1 infection, compared to C57/Bl6 control
mice (Figure 1C).

2.2. Lung IL-23 and IL-22 Protein Accumulation Is Down-Regulated Post PAO1 -Infection,
Revealing a Post-Transcriptional Regulation

C57/Bl6, RAG KO and double RAG γC KO mice were then infected with a sub-lethal
dose of PAO1 (or instilled with PBS as a Control), and lungs and BALs were collected
16 h later for BAL cell differential, RNA and ELISA analyses. We first performed, taking
into account all six experimental groups (three PBS/n = 3 mice per group and three
PAO1/n = 5 mice per group) an unbiased multivariate Principal component analysis
(PCA) with the following variables: ‘total BAL cell numbers’, ‘total neutrophils’, total
‘monocytes/macrophages’, and IL-1b, KC, IL-17, IL-23, IL-6, IL-22, TNF and IL-10 lung
RNA expression (Figure 2A). The three ‘PBS groups’ (C57/Bl6, RAG KO and RAG γc KO)
clustered together, and the correlation matrix (Figure 2B) demonstrated that ‘neutrophils’
and ‘total cells’ were highly correlated. So was the RNA expression of most mediators,
IL-1b, KC, IL-23, IL-6, TNF, Lcn-2 and IL-10 (red squares), with the notable exception of
IL-17 and IL-22, which correlated with each other (r = 0.7), but not with the other mediators,
suggesting a different activation pathway, likely due to their differential lymphoid cellular
source. Additionally, ‘total cells’ and ‘BAL neutrophils’ were highly positively correlated
with the ‘myeloid’ cytokines IL-1b, KC, IL-23, IL-6, TNF and IL-10 RNA expression (NB:
although positive, that correlation appears artefactually negative (purple color in the matrix),
only because the value of dCT, the chosen RNA expression unit, is inversely proportional
to gene expression). As shown in Figure 2C–F, RAG and RAG γc KO mice had lower
numbers of neutrophils and lymphocytes, in keeping with the notion that at that time point
(16 h), lymphocytes partially direct the neutrophil influx in the lungs of infected mice [11].
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Relatedly, reinforcing the lymphocyte–neutrophil axis, we showed that PAO1 clearance was
less efficient in RAG γc KO mice, as evidenced by higher oprL p.a expression (Figure 2G).

We then performed a similar analysis (Figure 3A) with the following variables: ‘total
cell numbers’, neutrophils, and IL-1b, KC, IL-6, IL-23, IL-17, IL-22 and Lcn-2 BALF protein
expression (instead of RNA expression as above). Notably, although IL-1b, KC, IL-6 and
Lcn2 protein expression still correlated closely, and positively, to each other (Figure 3A,
red/orange squares), akin to what was observed at the transcriptional level (see above
Figure 2), IL-23, IL-17 and IL-22 clearly behaved differently. Notably, IL-23 and IL-22
protein levels correlated negatively with all other mediators (Figure 3A, blue squares) but
positively with each other (Figure 3A, red square, and Figure 3B7).
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Figure 1. P. aeruginosa (PAO1) infection increases the levels of IL-17+ and IL 22+ Tγδ and ILCs.
Male C57/Bl6 mice were infected for 16 h with P. aeruginosa (PAO1 strain, 107 cfu = colony forming
units). Animals were then culled, lungs isolated and treated for FACS analysis (see Materials and
Methods, Figure S1 and Supplementary Table S1 for the list of antibodies used). Panel (A): shown
are the number of total Tγδ cells, IL-17+ Tγδ, and IL-22+ Tγδ cells (see Figure S1 for the FACS
gating strategy); Panel (B): shown are the number of total ILCs, ‘ILC3 ILCs’ (RORγt+), and IL-17
+ ILCs (see Figure S1 for the FACS gating strategy). Each symbol represents an individual mouse.
Unpaired t-tests have been performed to assess statistical significance (* p < 0.05, ** p < 0.01); Panel
(C): C57/Bl6 WT (n = 12), RAG KO (n = 5) and RAG γC double KO (n = 8) mice were infected
intra-nasally with 5.107 cfu and survival curves were plotted using Kaplan–Meier curves. Statistical
tests were performed using the Log-rank (Mantel–Cox) tests: C57/Bl6 PAO1 versus RAG KO:
p < 0.0001; C57/Bl6 PAO1 versus RAG γC double KO: p = 0.0010; RAG KO versus RAG γC double
KO: no statistical significance.

Further confirming the specificity of IL-23/IL-22 expression, for each cytokine taken indi-
vidually, IL-1, KC, IL-6, Lcn-2 RNA and protein levels correlated positively (Figure 3B1–B4),
and IL-23 RNA, IL-22 RNA and their respective protein expression, by contrast, correlated
negatively (Figure 3B5,B6). This suggested an important post-transcriptional regulation of
IL-23 and IL-22 following PAO1 infection.
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Figure 2. Cytokine RNA expression and lung inflammation post-P. aeruginosa infection.
(A) C57/Bl6 WT, RAG KO and RAG γC double KO mice were infected intra-nasally with
1.4.107 cfu of PAO1 (n = 5 in each group) or mock-treated with PBS (n = 3 in each group); 16 h
later lungs were recovered for RNA assessment (RT-qPCR) and BAL performed for differential cell
analysis (cytospins). An unbiased multivariate principal component analysis (PCA) global analysis,
encompassing all 24 mice, was performed with the following variables: ‘total BAL cell numbers’, ‘total
neutrophils’, total ‘monocytes/macrophages’, and IL-1b, KC, IL-17, IL-23, IL-6, IL-22, TNF, IL-10 lung
RNA expression. (B) A correlation matrix was analyzed, plotting cytokine RNA levels (expressed as
dCt. = Ct ‘mediator’-Ct 18S) and BAL cellularity. NB: the correlations between cytokine RNA
levels and cells, although positive, appear artefactually negative (blue/purple color in the matrix)
only because the value of dCT, the chosen RNA expression unit, is inversely proportional to gene
expression. The numbers in the squares represent the r correlation value. (C–F) BAL cell cellularity
is shown in each individual experimental group. (G) PAO1 load was assessed by RT-qPCR, using
oprL (peptidoglycan associated protein) primers, a method previously validated (see Materials and
Methods). NB: to reflect that dCT, the chosen RNA expression unit, is inversely proportional to gene
expression, the units of the Y axis have been reversed for a more intuitive representation (dCT 34 to
28). Statistical significance was assessed with ANOVA test, followed by Tukey post hoc multivariate
analysis. * p < 0.05; *** p < 0.005.

When the six different experimental groups were then split and compared with each
other, the most salient results concerned IL-1b, IL-23, IL-17 and IL-22. Indeed, whereas
IL-1b protein accumulation was not impacted by the absence of lymphocytes and was
up-regulated by PAO1 infection (Figure 3C1), IL-23 and IL-22 were down-regulated by
PAO1 treatment (Figure 3C2,C3). Furthermore, IL-17 and IL-22 levels were much less
induced by PAO1 in RAG and RAG γc KO mice (IL-22 was indeed indetectable in RAG γc
KO mice (Figure 3C3,C4), strengthening the notion that the latter two cytokines are mainly
produced by lymphocytes during the infection, and at least in part (for IL-17) explaining
the neutrophil influx at that time point (16 h).

Correlations between the BAL protein levels of all mediators with neutrophils in PAO1
WT-infected mice were then specifically assessed and plotted in an X/Y format (Figure 4C).
Of all the mediators (Figure 4A–G), IL-23 and IL-22 protein levels were the only ones
inversely correlating with neutrophil influx (Panels F–G) and with neutrophil elastase
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proteolytic activity, which we used as an index of neutrophil activity (r= −0.60, p = 0.0018
and r = −0.56, p = 0.040, respectively, Figure 5F,G. This, and the uncoupling between IL-23
and IL-22 RNA and protein levels (see above), strongly suggested that this phenomenon
was linked to neutrophilic inflammation, at least at this time point.
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Figure 3. Cytokine protein expression reveals a post-transcriptional regulatory mechanism for
IL-23 and IL-22 following P. aeruginosa infection. The same 6 groups (same 24 mice) as in
Figure 2 were analyzed together, but at the cytokine protein levels (instead of RNA gene expression).
(A) A correlation matrix was performed between cytokine protein levels (as assessed by ELISA)
and between cytokine protein levels and BAL cellularity. (B1–B7) The positive and negative correla-
tions between cytokine RNA and protein levels (B1–B6) and between IL-23 and IL-22 protein levels
(B7) are plotted. All correlations (Pearson) and p values (two-tailed) were calculated with Prism 9.
(C1–C4) BAL cytokine levels of IL-1b, IL-23, IL-22 and IL-17 are shown in each experimental group.
Statistical significance was assessed with ANOVA test, followed by Tukey post hoc multivariate
analysis. * = p < 0.05.

Correlations (Pearson, p values (two-tailed)) between BAL cytokine protein levels and
neutrophil elastase (NE) activity (expressed in nM equivalent) from the same six groups
(B6 PBS; RAG 1 KO PBS; RAG GC KO PBS; B6 PAO1 WT; RAG 1 KO PAO1 WT; RAG GC
PAO1 WT, see Figure 2) are plotted.

Because the previous analysis had only been performed at a single time point
(16 h), and because we and others have shown that neutrophils come as early as 3–4 h
in PAO1 murine infections [11], we further analyzed the modulation of cytokine mRNA
IL-23 and protein accumulation in an independent kinetic study studying both BAL and
lung compartments, following PAO1 infection. These experiments demonstrated (Figure 6)
differential effects of infection on cytokine levels, both in lung extracts and in BALF. At the
RNA level (upper panels), all cytokines were induced at an early time point (3–6 h). In
keeping with the described myeloid source of IL-1b, TNF and IL-23, the PAO1-mediated
induction was much higher in BAL cells (mainly consisting of alveolar macrophages and
neutrophils at 3–6 h) than in total lung cells.
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Figure 4. The BAL protein levels of IL-1b, KC, IL-6 and Lcn-2 correlate positively with BAL neutrophil
influx, but not those of IL-23 and IL-22.
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Figure 5. The BAL protein levels of IL-1b, KC, IL-6 and Lcn-2 correlate positively with neutrophil
elastase activity, but not those of IL-23 and IL-22.

By contrast, IL-17 mRNA was much more induced in lung cells (Panel 6I) than in BAL
cells (Panel 6D), in keeping with the notion that IL-17 is mainly produced by ‘lung-residing
cells’ such as innate or adaptive lymphocytes.

Relatedly, the protein accumulation of IL-17 in BALs (Panel N) and lungs (Panel S)
occurred at a later time point (16 h onwards), again in accordance with the likelihood
that T cells are responsible for this ‘late’ wave of IL-17 production [11]. Again, IL-23 and
IL-22 mRNA and protein levels were shown to be uncoupled, both in BALF and lung
extracts, with both proteins being down-regulated (panels M, R and O, T, respectively),
and importantly, their reduction occurred at an early time point, coinciding with the influx
of neutrophils.
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Figure 6. A kinetic study shows that IL-23 and IL-22 protein levels are down-regulated at an early
time point following PAO1 lung infection.

Male C57/Bl6 WT mice were infected with 107 cfu (n = 7 for each time point). At
each time point, mice were culled, and their lungs were recovered. One lobe of the lung
was homogenized in PBS in FastPrep-24 D tubes. After centrifugation, supernatants were
recovered for ELISA analysis of cytokines. The other lobe was used for RNA preparation
and cytokine gene expression. In parallel, BAL was performed, and after centrifugation, the
cell pellet was used for RNA cytokine gene expression, while the supernatant was analyzed
for cytokine protein content (ELISA). Each point represents the mean (n = 7) +/− SD.

Whether this was caused directly by neutrophils or P.a virulence factors was then
investigated. Indeed, we and others have previously shown that virulence factors, including
LasB (a metalloprotease secreted by the type 2 secretion system of P.a), can target innate
immunity [3,4,17–23]. Firstly, we demonstrated that MPI alveolar macrophages treated with
PAO1 WT secretome (SEC) down-regulated IL-23 accumulation in supernatants compared
to cells treated with PAO1 ∆LasB SEC (Figure 7A). A similar picture was obtained when
BMDMs were treated with either WT or ∆LasB PAO1 SECs or when these cells were infected
with live WT or mutant bacteria (Figure 7B). Expectedly, IL-22 was detected neither in MPI
macrophages nor in BMDMs (not shown). To further assess whether IL-22 and IL-23 could
be targeted by either LasB or NE, we used an artificial adenovirus (Ad)-mediated system of
IL-23 and IL-22 over-expression in a Clara epithelial cell line (DJS-2, [24]). By doing so, we
confirmed that IL-23 is not only a target of LasB (Figure 7C1) but also of NE since purified
NE could significantly decrease IL-23 accumulation in DJS supernatants (Figure 7C2). By
contrast, neither LasB nor NE affected IL-22 accumulation (Figure 7C3,C4).
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Figure 7. PAO1 LasB and neutrophil elastase down-regulate IL-23, but not IL-22 protein accumulation.
(A) 0.5.106 MPI cells (in P24 wells) were either mock (serum-free RPMI)-treated or incubated with
either WT-PAO1- or ∆LasB-PAO1 secretomes (SEC, 5%) during 6 h. Cell media were collected,
centrifuged, and supernatants were assessed by ELISA for IL-23 content. (B) Bone-marrow-derived
macrophages (BMDMs, seeded at 2.106 cells/P24 plate) were either treated in serum-free RPMI with
WT-PAO1- or ∆LasB-PAO1 secretomes (SEC, 1%) or infected with either WT- or ∆LasB-PAO1 (moi 1);
4 h later, cell media were collected, centrifuged, and supernatants were assessed by ELISA for IL-23
content. (C) 0.5.106 cells DJS Clara cells (in P24 wells) were infected in serum-free with either Ad-null,
Ad-23, or Ad-IL-22 (moi 50); 16 h later, cells were either mock-treated, or treated with WT-PAO1-SEC,
∆LasB-PAO1 SEC (5%, (C1–C3)), or increasing concentrations of purified neutrophil elastase (NE,
(C2–C4)). After a further 24 h, cell media were collected, centrifuged, and supernatants were assessed
by ELISA for IL-23 and IL-22 content. Statistical significance was assessed with ANOVA test, followed
by Tukey post hoc multivariate analysis. * = p < 0.05. ** = p < 0.01; *** = p < 0.005; **** = p < 0.001.

2.3. In Vivo Over-Expression of IL-23 Alone Does Not Rescue Mice from a Lethal PAO1 Infection

Because IL-23 can be targeted by both a bacterial product (LasB) and a host inflamma-
tory marker (NE), we hypothesized that over-expression of this cytokine might rescue mice
from a lethal dose of PAO1 (108 pfu, a dose that we showed previously in a pilot experi-
ment (not shown) to be equally lethal for WT C57/Bl6, RAG KO and RAG γC double KO).
However, we showed that Ad-mediated over-expression of IL-23 alone was not sufficient
to improve mice survival (Figure S2).

2.4. In Vivo Over-Expression of an IL-23, IL-1β and IL-7 Cocktail Protects against PAO1
Lethal Infection

We then hypothesized that IL-23 activity might be revealed if used in synergy with
other cytokines. We, therefore, tested an Ad-mix including IL-23 and IL-1 since we and oth-
ers showed that IL-1 is not targeted by P.a (Figure 3C1, [3,25]) and that it is important in the
protection against this bacterium [11,26,27]. In addition, we included IL-7, a lymphocytic
‘homeostatic’ cytokine that has been shown to activate resident lymphocytes with ‘innate
immune activities’ [28–30].
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We first validated in WT C57/Bl6 mice this Ad-mix by showing that it could up-
regulate BAL IL-23, IL-17 and IL-22 protein levels (Figure 8), and functionally, this treatment
induced both a neutrophilic and lymphocytic influx in treated lungs.
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Figure 8. Intra-pulmonary instillation of Adenovirus (Ad)-IL-1β + Ad-IL-23 + Ad-IL-7 up-regulates
BAL IL-17, IL-22 accumulation with concomitant BAL neutrophilic and lymphocytic influx. Male
C57/Bl6 WT mice were treated intratracheally, through the oro-pharyngeal route at day 0 with either
PBS (n = 3), with Ad-null (9.107 pfu, n = 3) or Ad-mix (3.107 pfu Ad-L1β + 3.107 pfu Ad-IL-23 + 3.107

pfu Ad-IL-7, n = 5). Forty-eight hours later, mice were culled, BAL were performed for differential
cell analysis (cytospins) and for cytokine measurements (ELISA). Statistical significance was assessed
with the ANOVA test, followed by Tukey post hoc multivariate analysis. * p < 0.05; ** p < 0.01;
*** p < 0.005; **** p < 0.001.

We then tested in WT C57/Bl6, RAG KO and RAG γc double KOs the potential
prophylactic protective effect of Ad-mix against a high dose PAO1, which, as indicated
above (not shown), is similarly lethal for C57/Bl6 WT and RAG double KO mice (Figure 9).
We showed that this Ad-mix was indeed efficient since all groups receiving the latter
survived more than the groups receiving the Ad-null control. Indeed, and somewhat
surprisingly, this Ad-mix was efficient in rescuing even RAG KO and RAG γC double KO,
therefore making, in this protocol, lymphocytes redundant in the protective process against
PAO1 (even though there was a trend for double KO mice surviving less), suggesting
instead that lung mucosal stromal and innate myeloid cells (including AMs) may be
additional targets of the over-expressed IL-1, IL-23 and IL-7 proteins.
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Figure 9. Intra-pulmonary instillation of Adenovirus (Ad)-L1β + Ad-IL-23 + Ad-IL-7 rescues C57/Bl6
WT, RAG KO and RAG γC double KO mice from a lethal PAO1 lung infection. C57/Bl6 WT, RAG KO
and RAG γC double KO mice were infected intratracheally, through the oro-pharyngeal route, at day
0 with Ad-null (9.107 pfu) or Ad-mix (3.107 pfu Ad-L1β + 3.107 pfu Ad-IL-23 + 3.107 pfu Ad-IL-7),
and 72 h later, mice were infected intra-nasally with 5.107 cfu PAO1 and survival was monitored.
Numbers in parenthesis represent the number of mice at the start of the experiment. Survival curves
were then plotted using Kaplan–Meier curves. Statistical tests were performed using the Log-rank
(Mantel–Cox) tests: C57/Bl6 + Ad-null + PAO1 versus C57/Bl6 + Ad-mix + PAO1: p = 0.0005; RAG
KO + Ad-null + PAO1 versus RAG KO + Ad-mix + PAO1: p = 0.017; RAG γC double KO + Ad-null +
PAO1 versus RAG γC double KO + Ad-mix + PAO1: p = 0.08.

3. Discussions

Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mor-
tality, in particular in hospital patients undergoing ventilation and in patients with cystic
fibrosis (CF, [1,2]). Indeed, the WHO has recently described P.a as one of the most critical
pathogens for which new treatment options are urgently required [31]. Although the
use of CFTR correctors and potentiators is having a very significant clinical impact in CF
patients [32,33], their effect on the long-term resolution of P.a-induced lung inflammation
and immune responses is still largely unknown. It is therefore important, in the CF context,
to pursue mechanistic studies to further understand the basic events underlying lung
responses to this bacterium. In that context, it is known that alveolar macrophages (AMs),
neutrophils, and epithelial cells are essential in the defense against P.a (and broadly speak-
ing, pathogens causing pneumonia, [3,26,27,34–37]), but less emphasis has been put on the
role of the lymphoid lineage compartment, encompassing either ‘classical’ adaptive T cells
(TCRαβ, [9,10]), T cells with innate-like activities (TCRγδ, NKT cells, MAIT cells, [11–16]),
or innate lymphoid cells activated by non-cognate stimuli (NK cells, ILCs, [10,38,39]).

We showed here that both TCR-bearing T cells and innate lymphocytes are important
at homeostasis to protect against PAO1 (Figure 3), presumably, as demonstrated by others
(e.g., [11,12]), through the production of TCRγδ-derived IL-17 and IL-22 (Figure 4A,B). In an
unbiased analysis, C57/Bl6 WT mice infected with a sub-lethal dose of PAO1 demonstrated,
expectedly, a lung neutrophilic inflammation, correlating with increased RNA levels of
IL-1b, IL-23, IL-6, KC, TNF and Lcn-2 (Figure 4A). In the lungs of both RAG KO and
double RAG γc chain KO mice, the main difference with C57/Bl6 WT mice was a reduction
in IL-17 and IL-22 protein levels (Figure 4B), associated with a decrease in neutrophilic
influx, underlying the role of IL-17 in this process at this time point. Also notable was the
increase in PAO1 load in the lungs of double RAG γ chain KO mice, hinting at a potential
role of ILCs in controlling this bacterium (Figure 1B). Interestingly, we observed a clear
uncoupling between IL-23 and IL-22 RNA and protein levels, suggesting an important post-
transcriptional regulation of these specific cytokines following PAO1 infection (Figure 4C).
Furthermore, IL-23 and IL-22 protein levels were the only ones inversely correlating with
neutrophil influx (Figure 4C) and neutrophil elastase activity (Figure 4D). Relatedly, we
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demonstrated mechanistically that the ‘IL-23 uncoupling’ was likely caused by both a
bacterial product (the metalloprotease LasB) and a host factor (neutrophil elastase) through
proteolytic inactivation (Figure 7).

Regarding IL-22, interestingly, Guillon et al. [40] showed that out of the three main
serine proteases found in human neutrophils, PR-3 and NE were mostly able to degrade
human recombinant IL-22 in vitro, whereas we found that murine IL-22 was resistant
to both NE and PAO1 secretomes (Figure 7). The differences can likely be ascribed to
species differences and/or the models used (in vitro for Guillon et al. and in cellulo in the
present study).

Since IL-23 is a factor probably indispensable for downstream lung IL-22 produc-
tion [36,37], the ‘IL-22 uncoupling’ demonstrated in vivo here is likely a consequence of
IL-23 protein regulation rather than that of IL-22 proteolytic degradation.

Because IL-23 is, with IL-1b, a key developmental/survival cytokine for both ILCs
and adaptive γδ T lymphocytes [27–29,38,39,41] and has been shown to be essential for
the induction of IL-22 in Klebsiella pneumoniae and Streptococcus.pneumoniae lung infection
models [9,38], we hypothesized that over-expression of IL-23, through an adenovirus-
mediated strategy would rescue mice against a lethal dose of PAO1. However, the lung
overexpression of Ad-IL-23 alone did not confer any protection, neither in RAG KO simple
or double KO, nor in C57/Bl6 mice (Figure S2), probably, as suggested previously [11], be-
cause of potential ineffective compartmentalization of this cytokine in the luminal alveolar
compartment, or the need for co-stimulation with other factors, notably IL-1b.

Indeed, by contrast, the use of an Ad-IL-1b-IL-23-IL-7 mix (IL-7 used as a lymphocyte
homeostatic factor able to activate innate T cells production of IL-17 [30]) was able to protect
all mice strains (C57/Bl6 WT, RAG KO and double RAG γ chain KO mice), irrespective
of the presence of lymphocytes. Although at first sight surprising since IL-23 and IL-7
have been considered to have lymphocytes as main targets, it is likely that in our setup,
lung mucosal stromal and innate myeloid cells (including AMs) may be the targets of the
over-expressed IL-1, IL-23 and IL-7 proteins. Indeed, the extensive literature shows that
stromal cells (epithelial cells and fibroblasts) are established targets for IL-1b, but more
interestingly, Sun et al. have also shown that IL-23 promotes antimicrobial pathways in
macrophages [42,43]. Similarly, lung epithelial cells have also been shown to be able to
produce IL-7 [44], and the latter is also considered a potential adjuvant in the gut [45] and
vaginal [46] mucosae.

In conclusion, we demonstrate here that both adaptive and innate lymphocytes are
important to control P.a infection in a model of acute lung inflammation and that specific
post-transcriptional regulation of the IL-23-IL-22 pathway is at play in the lung mucosa
following P.a infection. Furthermore, we showed that a local administration of an Ad-
mediated ‘IL-1b-IL-23-IL-7 mix’ was highly efficacious against P.a acute infection (see
Figure S3 for a summary of the findings). However, given the well-known activation of the
IL-23/IL-17 pathway in autoimmune chronic diseases such as Crohn’s or psoriasis [47,48],
further studies will be needed to determine whether a local administration of this ‘cytokine
mix’ might be desirable in more chronic lung conditions, such as cystic fibrosis, where lung
pathogens such as P.a are also prominent.

4. Materials and Methods
4.1. Recombinant Proteins and ELISA Assays

Murine recombinant proteins (IL-23, IL-22, IL-1b and IL-7) were all from Biolegend
(San Diego, CA, USA). ELISAs kits (DuoSet) for IL-22, IL-23, IL-1b, IL-7, IL-17A/F, IL-6,
KC, TNF-α and Lcn-2 were all from R&D Systems (Minneapolis, MN, USA).

4.2. Adenovirus Constructs and Adenovirus Infection

The control Adenovirus (Ad)- Null [49], Ad-IL-1b (a gift from Dr. C. Richards, Mc-
Master University, Hamilton, Canada), Ad-IL-7 (Applied Biological Materials, Richmond,
BC, Canada) and Ad-mIL23 [50], constructs are replication-deficient Ad vectors. Bone-
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marrow-derived macrophages (BMDMs, see below) were washed 3 times with sterile PBS
and infected for 6 h with the different Ad constructs with an MOI of 25 in serum-free RPMI-
Glutamax. Supernatants from these infected cells were then assessed by ELISA for cytokine
output. In vivo, Ad constructs were instilled intratracheally through the oropharyngeal
route, as described [4].

4.3. Pseudomonas Aeruginosa O1 Strain, Secretome Production, and Bacterial Load Measurement

PAO1 WT (ATCC 15692) and the PAO1∆LasB strains [3] were kept in a freezing
medium (50% Luria broth [LB], 50% glycerol) and stored at −80 ◦C until use. Before
infection experiments, the PAO1 strain was grown overnight in LB in a rotating incubator
(200 rpm, 37 ◦C). The bacterial suspension was then diluted in serum- and antibiotic-free
RPMI medium and the optical density (OD) was measured at 600 nm every 2 h until
the logarithmic growth phase was reached (0.1 < OD < 0.3; an OD of 0.1 is equivalent
to a bacterial concentration of 7.7 × 107 colony forming units (CFU)/mL). Bacteria were
instilled in the lungs of mice at the desired concentration. At the end of the experiment, the
bacterial load was measured in the lungs by qPCR, using the P.a oPRL gene as a reference,
as described [51] and as also validated previously in our hands [37,52]. For experiments
requiring the use of PAO1 secretomes, these were prepared as described in [3].

4.4. Cells, Cell Cultures, and Protocols
4.4.1. Primary Alveolar Macrophages

Primary AMs were isolated from WT by BAL as described previously [3]. BALFs
were centrifuged (2000 rpm, 10 min, 4 ◦C), and cell pellets were re-suspended in RPMI-
Glutamax (10% fetal calf serum [FCS], 1000 U/mL penicillin, 100 µg/mL streptomycin).
Cells were cultured for 16 h (37 ◦C, 5% CO2) in 48-well Corning Costar culture plates
(250,000 cells/well) prior to stimulation or infection with PAO1.

4.4.2. Bone Marrow-Derived Macrophage Generation

Bone marrow was extracted from mice femurs, and cells were washed with PBS
and centrifuged at 1400 rpm for 7 min (4 ◦C). Pelleted cells were then resuspended with
lysis buffer (Gibco) for 2 min at room temperature to lyse red blood cells. After another
wash, cells were seeded in a complete DMEM medium (10% FCS, 1000 U/mL penicillin,
100 µg/mL streptomycin) containing 30 ng/mL of mouse macrophage colony-stimulating
factor (M-CSF) (PeproTech). After two successive medium replacements (on day 3 and
day 6), macrophages were detached, washed, and re-suspended in cold sterile PBS on day 9
and kept on ice before further use. For in vitro experiments, cells were seeded in 24-well
culture plates (500,000 cells/well) in RPMI-Glutamax (10% FCS, 1000 U/mL penicillin,
100 µg/mL streptomycin) for 12 h prior to stimulation or infection.

4.4.3. Cell Lines

mtCC-DJS2, an SV40T antigen immortalized epithelial Clara cell line [24], a kind gift
from Dr. DeMayo (Baylor College of Medicine, Houston, TX, USA), were cultured in
DMEM-Glutamax (10% FCS, 1000 U/mL penicillin, 100 µg/mL streptomycin). Cells were
placed for 12 h (37 ◦C, 5% CO2) in 24-well Corning Costar culture plates (500,000 cells/well)
prior to stimulation.

Alveolar macrophages MPI cells [53] were cultured in RPMI-Glutamax (10% FCS,
1000 U/mL penicillin, 100 µg/mL streptomycin) supplemented with 30 ng/mL GM-CSF
(PeproTech). Cells were placed for 16 h (37 ◦C, 5% CO2) in 48-well Corning Costar culture
plates (250,000 cells/well) prior to stimulation or Ad-infection.

4.5. Animals Procedures

Seven- to ten-week-old male C57BL/6 WT were purchased from Janvier Labs (Le
Genest-Saint-Isle, France). Rag1 KO were obtained from the CDTA (Orléans, France), and
RagγC double KO mice were a gift from Dr. J. di Santo (Institut Pasteur, Paris, France).
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Animals were kept in a specific pathogen-free facility under 12-h light/dark cycles, with
free access to food and water. Procedures were approved by our local ethical committee
and by the French Ministry of Education and Research (agreement number 04537.03).
Mice were anesthetized with an intraperitoneal injection of 100 µL of ketamine 500 and
xylazine 2% in 0.9% NaCl (10:10:80). They were then treated with Ad-constructs (Ad-
null, Ad-IL-1b, Ad-IL-7, Ad-IL-23) prior to PAO1 infection, or only infected with PAO1,
depending on the experiments. Instillations were performed intranasally or intratracheally
(through the oropharynx) with an air-filled syringe (500 µL), as described previously [3,4].
At the end of the experiment, mice were then euthanized with pentobarbital, tracheae
were cannulated, and a BAL (2 mL of total volume) was performed. BALF supernatant
was kept at −80 ◦C until further use, e.g., for cytokine/chemokine measurement, with
DuoSet enzyme-linked immunosorbent assay (ELISA) kits (R&D Systems). For neutrophil
elastase (NE) activity, BAL fluid samples (diluted in Tris 50 mM; NaCl 0.5 M; Triton X-100;
0.1%; pH 8.0) were incubated at room temperature in the presence of 0.1 mg/mL NE
substrate (Methoxysuccinyl-Ala-Ala-Pro-Val-7-amido-4-methylcoumarin, Sigma, excitation
and emission wavelength being 460 and 370 nm, respectively), and fluorescence was read
over a 3 h period in a TECAN microplate reader. In parallel, the BAL cell pellet was
resuspended in 400µL of PBS for cell type analysis using cytospin centrifugation and Diff-
Quik staining (Medion, Diagnostics, Plaisir, France). In parallel, mice lungs were recovered
in 1 mL of PBS and homogenized with a FastPrep-24 (MP Biomedicals, Illkirch, France)
during two cycles (speed 6, 45 s). Homogenates were then used for cytokine/chemokine
measurements or FACS analysis (see below).

4.6. Flow Cytometry Analysis

PBS-perfused mice lungs were cut into small pieces and digested with collagenase
(1mg/mL) and DNAse (0.01%) (Sigma, Saint-Quentin Fallavier, France) in RPMI media
for 30 min at 37 ◦C under agitation. Lung homogenates were filtered through a 100µm
cell strainer. After centrifugation, the pellet was resuspended in 1–2 mL of lysis buffer
(ACK lysing buffer, Gibco, Dardilly, France). After further centrifugation and filtration of
the resuspended pellet, cells were counted and submitted to FACS analysis. Briefly, cells
were first incubated with a cocktail of a viability dye and Fc Block antibody (CD16/32
antibody, 15 min, 4 ◦C), then washed with FACS buffer (PBS-2% FCS) and incubated (30 min,
4 ◦C) with a cocktail of cell surface conjugated antibodies (see Supplementary Table S1).
For intracellular staining, cells were permeabilized with a mix of GolgiPlug (Brefeldin A,
1/1000) and GolgiStop (Monensin, 1/1500) and incubated at 37 ◦C for 2 h. After washing,
cells were treated as above with specific antibodies (see Supplementary Table S1). Data
were acquired the same day with an LSR Fortessa cytometer (BD Biosciences) with BD
FACSDiva software and analyzed with FlowJo (Tree Star, Ashland, OR, USA).

4.7. RNA Extraction, Reverse Transcription, and qPCR

RNA isolation from cells or tissues was performed with the PureLink RNA Mini
Kit (12183018A, Ambion, Life Technologies, Asnières sur Seine, France), following the
manufacturer’s instructions and as described previously [3]. qPCR primers were m18S: F:
5′-CTTAGAGGGACAAGTGGCG-3′, R: 5′-ACGCTGAGCCAGTCAGTGTA-3′; mTNF: F:
5′-AGCCGATGGGTTGTACCTT-3′, R: 5′-CAGGGTAATGAGTGGGTTGG-3′; mLcn2: F: 5′-
CCAGTTCGCCATGGTATTTT-3′, R: 5′-CCAGTTCGCCATGGTATTTT-3′; mS100A9: F: 5′-
AAAGGCTGTGGGAAGTAATTAAGA-3′, R: 5′-GCCATTGAGTAAGCCATTCCC-3′; mIL-1
β: F: 5′-ATGCCACCTTTTGACAGTGATG-3′, R: 5′-GCTCTTGTTGATGTGCTGCT-3′; mIL-
6: F: 5′-GCACCAAGACCATCCAATTC-3′, R: 5′-ACCACAGTGAGGAATGTCCA-3′; mIL-
10: F: 5′-AAGGCAGTGGAGCAGGTGAA-3′, R: 5′-CCAGCAGACTCAATACACAC-3′;
mIL-22: F: 5′-TTCCAGCAGCCATACATCGTC-3′, R: 5′-TCGGAACAGTTTCTCCCCG-3′;
mIL-23: F: 5′-AATCTCTGCATGCTAGCCTGG-3′, R: 5′-GATTCATATGTCCCGCTGGTG-
3′; KC: F: 5′-GCTGGGATTCACCTCAAGAA-3′, R: 5′-TCTCCGTTACTTGGGGACAC-3′;
mIL-17A: F: GCTCCAGAAGGCCCTCAGA, R: 5′- CTTTCCCTCCGCATTGACA-3′.
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4.8. Statistical Analysis

Data were analyzed with GraphPad Prism Software 9.0.2. Statistical analysis was
performed with either a non-parametric test (Kruskal–Wallis and Dunn’s posttest) or
one-way or two-way ANOVA followed by the appropriate multi-comparison post hoc
Tukey’s test. Survival curves in murine model experiments were plotted with Kaplan–
Meier curves, and statistical testing was performed with the log-rank (Mantel–Cox) test.
PCA and correlation matrix graphs were generated with the same software. Differences
were considered statistically significant when p was < 0.05 and are labeled as follows:
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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