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Epidermal growth factor receptor (EGFR) is a causal factor in
carcinoma, yet many carcinoma patients are resistant to EGFR
inhibitors. Potential insight into this resistance stems from
prior work that showed EGFR in normal epithelial cells docks
to the extracellular domain of the plasma membrane proteo-
glycan syndecan-4 (Sdc4) engaged with α3β1 and α6β4 integ-
rins. We now report that this receptor complex is modified by
the recruitment of syndecan-2 (Sdc2), the Recepteur d’Origine
Nantais (RON) tyrosine kinase, and the cellular signaling
mediator Abelson murine leukemia viral oncogene homolog 1
(ABL1) in triple-negative breast carcinoma and head and neck
squamous cell carcinoma, where it contributes to EGFR
kinase–independent proliferation. Treatment with a peptide
mimetic of the EGFR docking site in the extracellular domain
of Sdc4 (called SSTNEGFR) disrupts the entire complex and
causes a rapid, global arrest of the cell cycle. Normal epithelial
cells do not recruit these additional receptors to the adhesion
mechanism and are not arrested by SSTNEGFR. Although EGFR
docking with Sdc4 in the tumor cells is required, cell cycle
progression does not depend on EGFR kinase. Instead, pro-
gression depends on RON kinase, activated by its incorporation
into the complex. RON activates ABL1, which suppresses p38
mitogen-activated protein kinase and prevents a p38-mediated
signal that would otherwise arrest the cell cycle. These findings
add to the growing list of receptor tyrosine kinases that support
tumorigenesis when activated by their association with synde-
cans at sites of matrix adhesion and identify new potential
targets for cancer therapy.

It is well known that cooperative signaling between adhe-
sion receptors and receptor tyrosine kinases regulates
mechanosensing, cell migration, proliferation, and survival.
This cooperative signaling often emanates from adhesion sites
that incorporate receptor tyrosine kinases along with integrins,
cadherins, or other adhesion receptors, leading to clustering
and both ligand-dependent and ligand-independent activation
of the kinases (1–4). However, whereas there are numerous
reports of integrins associating with receptor tyrosine kinases,
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the means by which these individual receptors are recognized
and organized into signaling foci often remains obscure.

Syndecans contain docking sites in their extracellular do-
mains that assemble partner receptors into signaling com-
plexes (5–7). In addition to the syndecan, these receptor
complexes typically consist of one or more integrins together
with a receptor tyrosine kinase or phosphatase (5–11). Because
the docking motifs in the syndecans are extracellular, peptide
mimetics of these sites (called “synstatins”) can be used as tools
to competitively disrupt receptor assembly and probe the
importance of these specific receptor interactions. Such
studies have shown that receptors organized by syndecans
impact signaling critical for tumor cell migration/invasion,
proliferation, and survival and/or tumor-induced angiogenesis
(6–9, 12).

Syndecan-4 (Sdc4) mediates the assembly of the epidermal
growth factor receptor (EGFR) with the laminin-332 (LN332)–
binding α6β4 and α3β1 integrins (7, 13). Whereas the α6β4
integrin engages the Sdc4 cytoplasmic domain, coupling of
EGFR and the α3β1 integrin relies on a juxtamembrane site in
the Sdc4 ectodomain (amino acids 87–131 in humans), which
is blocked by a peptide mimetic now called “synstatin-EGFR”
(SSTNEGFR) (13). This peptide blocks the epidermal growth
factor (EGF)-stimulated migration of keratinocytes and
mammary epithelial cells on LN332 that the cells deposit as
they migrate (7, 13).

EGFR has been implicated in multiple human cancers,
including carcinomas of the head and neck and breast (14–16).
EGFR and its ligands (e.g., EGF, transforming growth factor-
alpha) are overexpressed in up to 90% of head and neck can-
cer patients (17–19), are further induced by standard of care
external beam radiation and DNA damaging agents (20–22),
and are strongly linked to tumor progression (23, 24). EGFR is
also a causal agent in triple-negative breast carcinoma
(TNBC), a highly malignant form that comprises 15% to 25%
of breast cancers (25, 26). Nonetheless, EGFR inhibitors,
including the EGFR-blocking antibody cetuximab or EGFR
kinase inhibitors, have had disappointing outcomes in the
clinic (17, 27), suggesting alternative mechanisms through
which EGFR promotes or sustains the progression of these
cancers. Accordingly, we subjected head and neck squamous
cell carcinoma (HNSCC) and TNBC cells for treatment with
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SSTNEGFR blocks carcinoma proliferation
SSTNEGFR to probe the involvement of Sdc4 as a partner in
EGFR signaling in these cancers. We find that SSTNEGFR in-
duces a rapid and global cell cycle arrest in HNSCC and TNBC
cells, including an S-phase arrest; this is unusual because,
although growth factor receptors may be required to enter
S-phase, their signaling is not thought to be required once
S-phase is begun. We also find that nontransformed oral or
mammary epithelial cells are refractory to proliferation arrest
by SSTNEGFR, making its inhibition highly specific for tumor
cells. Furthermore, although EGFR is required in this regula-
tory mechanism, its kinase activity is not. Instead, cell cycle
progression depends upon active recepteur d’origine nantais
(RON) (also known as macrophage stimulating protein-1 re-
ceptor (MST1R) (28–30)) and the cytoplasmic kinase ABL1
(31), which, along with the Sdc4 homolog syndecan-2 (Sdc2)
partners with Sdc4, EGFR, and the laminin-binding integrins
specifically in the tumor cells. When these kinases are inacti-
vated by their displacement from Sdc4 by SSTNEGFR, a cor-
responding increase in p38 mitogen-activated protein kinase
(p38MAPK) occurs, presumably constitutively activated by
metabolic, oncogenic, and/or genotoxic stress in the tumor
cells but held in abeyance by signaling from the Sdc4 receptor
complex. This suggests that an epithelial cell migration
mechanism that relies on Sdc4, EGFR, and the α3β1 and α6β4
integrins adopts a dual role by incorporating Sdc2, RON, and
ABL1 to sustain S-phase progression at times of cellular stress.
Results

SSTNEGFR impairs carcinoma cell proliferation

The proliferation of a panel of human TNBC and HNSCC
cell lines in the presence of SSTNEGFR was compared to
nontumorigenic breast, oral, and epidermal epithelial cells.
Whereas the proliferation of nontumorigenic, immortalized
normal oral keratinocytes (NOKs), human tonsillar epithelial
cells (HTEs), mammary epithelial cells (MCF10A), and
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Figure 1. Proliferation of nontransformed and transformed epithelial ce
epithelia (HTE), breast (MCF10A) epithelial cells, and human epidermal keratin
HNSCC cells (B), and MDA-MB-231 and -468 TNBC (C) cells undergoing loga
followed by quantification of cell number, expressed as a percentage of untreat
carcinoma; TNBC, triple-negative breast cancer.
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epidermal keratinocytes (HaCaT) are not affected by
SSTNEGFR (Fig. 1A), the peptide causes reduced proliferation
of HNSCC (Fig. 1B) and TNBC cells (Fig. 1C) with an IC50 that
falls with the range of 3 to 10 μM. This coincides with the
approximate concentration required to displace 90% of EGFR
and the α3β1 integrin from Sdc4 (13).

SSTNEGFR induces rapid cell cycle arrest

For the sake of simplicity, we elected to use a single cell line
(UWSCC47 cells) to conduct exploratory studies into this
growth mechanism and then extended our findings to the
other transformed cells. UM-SCC47 cells and normal NOKs as
a control were treated with SSTNEGFR, accompanied by la-
beling with the thymidine nucleoside analog 5-ethynyl-20-
deoxyuridine (EdU), to analyze DNA synthesis by flow
cytometry. As expected, treated NOKs showed no significant
change in EdU incorporation or in the distribution of cells
throughout the cell cycle when compared to untreated cells
(Fig. 2A). In contrast, an S-phase block after only 3 h treatment
of UM-SCC47 cells is indicated by a complete lack of EdU
incorporation (Fig. 2A), and the failure of the cells to show any
major change in their distribution in the G1-, S-, G2-, and M-
phases of the cell cycle suggests the peptide may induce a
global block to cell cycle progression. Shorter treatment times
utilizing in situ staining of fixed cells show that treatment with
SSTNEGFR for as little as 1 h reduces EdU incorporation by
well over 90% in HNSCC and TNBC cells, whereas NOKs and
MCF10A cells show no reduction (Fig. 2B). To verify the arrest
in S-phase, UM-SCC47 cells were synchronized in early S-
phase using a double thymidine block, then released for 2 h to
recover (Fig. 2C). Cells released for 2 h and chased for an
additional 12 h with the vehicle alone progress into late S-
phase/G2 or pass through G2/M and reenter G1 (Fig. 2C). In
contrast, cells released for 2 h then chased for 12 h in
SSTNEGFR remain entirely in S-phase and show little or no
EdU incorporation above background (Fig. 2C).
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Figure 2. Analysis of DNA synthesis and cell cycle progression in SSTNEGFR. A, NOK or UM-SCC47 cells were treated with or without 30 μM SSTNEGFR for
3 h or 16 h, labeled with EdU and DAPI and analyzed by flow cytometry; B, transformed (UM-SCC47, UM-SCC1, MDA-MB-231, and MD-MB-468) and
nontransformed (NOKs and MCF10A) epithelial cells were cultured with or without 30 μM SSTNEGFR for 1, 3, or 6 h and then labeled with EdU. EdU
incorporation is expressed as a percentage of NOKs grown in vehicle alone; C, UM-SCC47 cells were arrested at the G1/S phase interface using a double
thymidine block (24 h block, 16 h release, and 24 h block), released for 2 h then subjected to 12 h treatment with either 30 μM SSTNEGFR or vehicle alone.
Cells were then labeled with EdU and DAPI and analyzed by flow cytometry; D, UM-SCC47 cells are subjected to a double thymidine or double SSTNEGFR
block (24 h block, 16 h release, and 24 h block), then released and labeled with EdU to quantify cells in S-phase; ***p ≤ 0.001. EdU, 5-ethynyl-20-deoxy-
uridine; NOK, normal oral keratinocyte.

SSTNEGFR blocks carcinoma proliferation
An S-phase arrest in response to EGFR inhibition is un-
common, as receptor signaling is typically required to bypass
the G1/S “start” point of the cell cycle but is thought to no
longer be required once DNA synthesis has begun (32).
Mechanisms that do cause S-phase arrest typically arise from
the DNA damage response (DDR), activated either by DNA
damage or replicative stress (33, 34). The DDR activates p53
and/or checkpoint kinases (e.g., Chk1 or Chk2) downstream of
the DNA damage sensors (e.g., ATM, ATR, and DNA-
dependent protein kinase) that phosphorylate cell cycle regu-
latory factors, among them the histone variant H2AX (33–35).
However, UM-SCC47 or MDA-MB-231 tumor cells arrested
in response to SSTNEGFR fail to activate either Chk1 or Chk2
or cause phosphorylation of H2AX (γH2AX) (Fig. S1). This
contrasts with the phosphorylation observed when they are
treated with ionizing radiation or hydroxyurea (HU) to induce
DNA damage or replicative stress that leads to DDR activation
(35) (Fig. S1).
J. Biol. Chem. (2022) 298(6) 102029 3



SSTNEGFR blocks carcinoma proliferation
The apparent failure of the SSTNEGFR-arrested cells to
accumulate in any one phase of the cell cycle suggests that the
block is global rather than focused on any one phase. To test
this, we compared the behavior of UM-SCC47 cells subjected
to either a double thymidine block or a double SSTNEGFR

block. The UM-SCC47 cells have a 24 h cell cycle, with an
approximate 8 h S-phase, 2 h G2/M, and 14 h G1. Thus, EdU
labels approximately one-third of the cells if they are not
synchronized (Fig. 2D). A 24 h thymidine block arrests the
one-third of the cells that are spread throughout S-phase,
whereas the rest progress to the G1/S start before arresting. A
subsequent 16 h release allows these and the cells arrested
throughout S-phase to progress through and exit S-phase and
enter G1. Reimposition of a second 24 h thymidine block at
this point prevents these cells from entering S-phase and they
arrest as a cohort at the G1/S interface. Cells labeled at this
point show no EdU incorporation (0 h), but cells released for 4
or 6 h transit partially through S-phase, as shown by extensive
(greater than 80%) EdU labeling (Fig. 2D). This contrasts with
the result seen if the cells are subjected to a 24 h double
SSTNEGFR block (Fig. 2D). The cells show no labeling for 1 h
after SSTNEGFR removal, but at 2, 4, or 6 h after release,
approximately one-third of the cells incorporate EdU, the
same as cells treated with vehicle alone, indicating that the
number of cells in S-phase at any of these time points remains
the same (Fig. 2D). There is no increase in cells entering S-
phase, suggesting that cells have not piled up at the G1/S-
phase boundary despite the ability of SSTNEGFR to arrest
cells in S-phase (Fig. 2C) nor have cells entering S-phase been
delayed by a block elsewhere. Instead, the cells appear to
globally arrest wherever they are in the cell cycle when
SSTNEGFR is applied and then recover and resume their transit
when SSTNEGFR is removed.
Cell cycle progression depends on active RON and ABL1
kinases

We have shown previously that EGFR-stimulated migration
of HaCaT and MCF10A epithelial cells on LN332 depends on
its coupling with the α3β1 and α6β4 integrins by Sdc4 and
requires EGF and active EGFR kinase (7, 13). Similarly, EGF-
stimulated migration of NOKs or UM-SCC47 cells through
LN332-coated filters is blocked by EGFR kinase inhibitors
(gefitinib or erlotinib), SSTNEGFR, or α3β1 integrin blocking
antibody (Fig. 3A). In contrast, the proliferation of NOKs or
UM-SCC47 cells is independent of EGFR kinase activity,
shown by the failure of gefitinib and erlotinib to block EdU
incorporation even when used at 100-fold over their IC50

(Fig. 3B). But, consistent with the proliferation inhibition
observed in Figure 1, the UM-SCC47 failed to incorporate EdU
in the presence of SSTNEGFR and the addition of EGF cannot
reverse the block to EdU incorporation by SSTNEGFR in the
UM-SCC47 tumor cells (Fig. 3B).

These findings prompted us to question the potential role of
other kinases in the arrest mechanism. Like EGFR (7, 13, 36),
RON is reported to associate with the α6β4 integrin (37, 38),
although whether this association is direct or mediated by a
4 J. Biol. Chem. (2022) 298(6) 102029
syndecan has not been investigated. Accordingly, we tested
kinase inhibitors specific for RON (CAS 913376-84-8 and
BMS-777607). We also tested GNF-5 and PPY-A, kinase in-
hibitors specific for ABL1, a cytoplasmic kinase known to be
activated by RON (39, 40) and found that inhibiting either
kinase mimics the effects of SSTNEGFR by significantly
reducing EdU incorporation in HNSCC and TNBC cells, but
not in NOKs or MCF10A cells (Fig. 3C). Focusing on the UM-
SCC47 cells, we find that RON and ABL1 are active in the
tumor cells, as evidenced by phosphorylation of Y1238/1239
and Y412 in their respective kinase domains, as well as Y245 in
the SH2-kinase linker of ABL1 (29, 41) (Fig. 3D). This phos-
phorylation is blocked by SSTNEGFR, and ABL1 no longer
associates with RON (Fig. 3D). This suggests that by inter-
acting with Sdc4, either directly or indirectly, RON is activated
via transphosphorylation when clustered, engages the ABL1
SH2 domain, and activates ABL1 by phosphorylation.

Probing Sdc4 immunoprecipitates from UM-SCC47 cells
confirms that active RON and active ABL1 coprecipitate with
Sdc4 (Fig. 4A), along with EGFR, the α3β1 integrin, phos-
phorylated α6β4 integrin, the CD151 tetraspanin known to
associate with the α3β1 and α6β4 integrins (42–48), and Sdc2–
Sdc4 homolog (49). All are displaced by SSTNEGFR with the
exception of the α6β4 integrin, which remains engaged with
Sdc4 via its cytoplasmic domain (13) but is no longer phos-
phorylated (Fig. 4A). This recapitulates prior findings that
phosphorylation of the α6β4 integrin depends on kinases in
the receptor complex that are activated by syndecan clustering
(13, 36, 50). Immunoprecipitation of Sdc2 captures the same
cohort of receptors (Fig. 4A), strongly suggesting that they are
all in a single receptor complex. SSTNEGFR displaces all but
RON from Sdc2 (Fig. 4A), although RON is no longer phos-
phorylated, explaining the loss of ABL1 as well. This suggests
that RON relies on Sdc2 for its linkage to the receptor com-
plex, potentially via an interaction involving the Sdc2 extra-
cellular domain. To confirm this, the receptors that assemble
together by docking, either directly or indirectly, with the Sdc4
extracellular domain (namely, Sdc2, EGFR, CD151, α3β1
integrin, and RON) were captured using GST-S4ED, a re-
combinant Sdc4 extracellular domain fusion protein (Fig. 4B);
performing this capture in the presence of recombinant His-
tagged Sdc2 extracellular domain as a competitor prevents
capture of Sdc2 and RON (Fig. 4B).

The incorporation of Sdc2, RON, and ABL1 into the re-
ceptor complex in tumor cells contrasts with the makeup of
the complex in nontumorigenic cells; originally defined in
HaCaT cells, Sdc4 immunoprecipitates contain EGFR and
α6β4 and α3β1 integrins that the HaCaT cells use for migra-
tion on LN332 (7, 13). These precipitates do not contain Sdc2
and RON, although these receptors are expressed by the cells
(Fig. 4C). These findings suggest that in tumor cells, Sdc2
becomes incorporated into the receptor complex involved in
cell adhesion and migration and extends its activity to a
mechanism that sustains cell proliferation as well (model
Fig. 4D).

The lack of a requirement for EGFR kinase activity in the
cell proliferation mechanism raises the question of what role, if
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SSTNEGFR blocks carcinoma proliferation
any, EGFR has in this receptor complex. Silencing EGFR
expression blocks assembly of the entire complex with Sdc4
except for the α6β4 integrin that remains bound via its cyto-
plasmic domain and CD151 that is known to associate with the
integrin (Figs. 4E and S2B), revealing a major structural role
for EGFR. Silencing α3β1 integrin expression does not affect
the assembly of this core set of receptors, but it does prevent
the capture of Sdc2 and Sdc2-associated RON kinase (Figs. 4E
and S2B). Furthermore, silencing either CD151 or α6β4
integrin has no effect on EGFR engaging Sdc4 but does block
the assembly of the adhesion receptor complex consisting of
α3β1, α6β4, and CD151 with EGFR (Figs. 4E and S2B). Control
siRNA has no effect on the assembly of the receptor complex
(Fig. S2B) or expression of the complex’s component receptors
(Fig. S2A). Moreover, each receptor siRNA is target-specific
with no off-target effects on expression of other components
within the complex (Fig. S2A). These findings provide a gen-
eral order of assembly as shown in Figure 4D, with EGFR
J. Biol. Chem. (2022) 298(6) 102029 5
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with UM-SCC47 whole-cell lysates overnight in the presence or absence of 30 μM His-tagged S2ED and the receptors captured by S4ED were analyzed by
Western blot; C, Sdc4 immunoprecipitates from HaCaT whole-cell lysates were probed for associated α3 integrin (ITGA3), β4 integrin (ITGB4), EGFR, RON,
and Sdc2 via Western blot. RON and Sdc2 levels in the total lysate are shown. D, model showing proposed order of receptor complex assembly. E, UM-
SCC47 cells transfected for 72 h with siRNA specific for human EGFR (30UTR), α3 integrin (ITA3; s7543), CD151 (s194332), or β4 integrin (ITGB4; s7584) before
performing Sdc4 immunoprecipitation and probing for associated receptors. Protein expression in starting cell lysates is shown in Fig. S2A. Results are
representative of duplicate experiments with cells transfected with two different siRNA oligos for each targeted protein (see Fig. S2B); F, UM-SCC47 cells
were treated for 72 h with either control siRNA (AM4635) or siRNA-specific anti-human Sdc4 (12434), β4 integrin (ITGB4; s7584), α3 integrin (ITGA3; s7543),
EGFR (30 UTR), CD151 (s194332), Sdc2 (s12635), RON (s8996), or ABL1 (s865), then labeled with EdU to quantify DNA synthesis; ***p ≤ 0.001. Western blot
inset shows individual receptor expression 72 h after siRNA transfection. Results are representative of duplicate experiments with cells transfected with two
different siRNA oligos for each targeted protein. EGFR, epidermal growth factor receptor; RON, recepteur d’origine nantais; Sdc2, syndecan-2; Sdc4, syn-
decan-4.
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providing a link between Sdc4 and a complex of CD151 and
the integrins and Sdc2 linking RON to this complex via an as-
yet undefined interaction of the Sdc2 extracellular domain.
Each member of the receptor complex appears to play an
essential role either in assembly of the receptor complex or in
signaling because silencing expression of any one of the re-
ceptors or kinases (e.g., Sdc4, Sdc2, EGFR, RON, α3β1 integrin,
α6β4 integrin, CD151, or ABL1) results in cessation of DNA
synthesis by well over 90% in UM-SCC47 cells (Fig. 4F).
6 J. Biol. Chem. (2022) 298(6) 102029
Cell surface expression of cell cycle regulatory receptors is
upregulated by carcinoma cells

Analysis of receptor expression on representative carcinoma
cell lines demonstrates that all express the critical signaling
and adhesion receptors of the Sdc4-organized complex at the
cell surface (Fig. 5A). This contrasts with nontransformed
epithelial cells. HaCaT cells express cell surface Sdc4, EGFR,
α3β1 integrin, and α6β4 integrin but have undetectable levels
of cell surface RON and Sdc2 despite the presence of these



Figure 5. Relative expression of members of the Sdc4:RTK:ITG complex on nontumorigenic and neoplastic epithelial cells. Cell surface of expression
of Sdc4 (mAb 8G3, red), Sdc2 (mAb 305515, orange), α3β1 (mAb P1B5, blue), α6β4 (mAb 3E1, green), EGFR (mAb EGFR.1, black), and RON (FAB6647F, purple)
were analyzed by flow cytometry compared to nonspecific IgG (gray profile) on A, HNSCC (UM-SCC47, UM-SCC1) and TNBC (MDA-MB-231) cells or B,
nontransformed HaCaT, HTE, or NOK epithelial cells. EGFR, epidermal growth factor receptor; HNSCC, head and neck squamous cell carcinoma; HTE, human
tonsillar epithelial cell; NOK, normal oral keratinocyte; RON, recepteur d’origine nantais; Sdc2, syndecan-2; Sdc4, syndecan-4; TNBC, triple-negative breast
cancer.

SSTNEGFR blocks carcinoma proliferation
receptors in HaCaT cell lysates (cf. Fig. 4C). NOK and HTE
cells express EGFR and the integrins but have undetectable
levels of the Sdc2 and RON, as well as Sdc4, at the cell surface
(Fig. 5B).
RON and ABL1 suppress activation of p38MAPK

In the course of these studies, we probed an antibody array
looking for signaling markers that change in SSTNEGFR-treated
tumor cells but not normal epithelial cells. This revealed an
upregulation of stress-activated p38MAPK (Fig. 6A) in the
tumor cells treated with SSTNEGFR for 24 h. A time course of
SSTNEGFR treatment from 15 min to 16 h confirms that
HNSCC and TNBC cells all activate p38MAPK within 15 min
of peptide addition and that activation persists throughout the
entire time course examined, whereas NOKs and
MCF10A cells fail to activate the kinase (Fig. 6, B and C). To
test if activated p38MAPK is responsible for the S-phase arrest
observed when SSTNEGFR causes inactivation of RON and
ABL1, UM-SCC47 cells were treated with either SSTNEGFR,
RON kinase inhibitor (BMS-777607 or CAS 913376-84-8), or
ABL1 kinase inhibitor (PPY-A or GNF-5) for 3 h in the
presence or absence of p38MAPK inhibitor BIRB-796 (dor-
amapimod). Treatment with either RON or ABL1 kinase in-
hibitor alone activates p38MAPK (Fig. 6A, In-Cell Western)
and blocks EdU incorporation (Fig. 6D), which is fully rescued
by the addition of BIRB-796 (Fig. 6, A and D). Arrest caused by
activating the DDR using HU is not reversed by BIRB-796
J. Biol. Chem. (2022) 298(6) 102029 7
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Figure 6. SSTN-induced cell cycle arrest depends on activated p38MAPK. A, quantification of p38MAPK activation by antibody array (pT180/pY182) in
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(Fig. 6D). This reversal extends to each of the representative
HNSCC and TNBC cell lines treated with SSTNEGFR, all of
which are rescued (Fig. 6E) either with BIRB-796 or another
p38MAPK inhibitor, losmapimod (also known as
GW856553X, SB856553, or GSK-AHAB).

Discussion

We have defined a novel signaling apparatus organized by
Sdc4 that suppresses cell cycle arrest in carcinoma cells, thus
allowing their continued proliferation. Disruption of the Sdc4-
organized signaling mechanism using a competitor SSTNEGFR

peptide leads to a rapid and global arrest of the carcinoma cells
throughout the cell cycle. The signaling mechanism builds on
a previously described receptor complex found on migrating
epithelial cells comprised of the α3β1 integrin and EGFR
docked to a juxtamembrane site in the Sdc4 ectodomain and
the α6β4 integrin engaged by the Sdc4 cytoplasmic domain (7,
13). Whereas the cells rely on active EGFR kinase within this
receptor complex to drive cell migration (36, 50), the prolif-
eration regulatory mechanism described here is independent
of EGFR kinase and depends on the incorporation of addi-
tional components into the complex, namely, Sdc2, RON, and
the RON-associated kinase ABL1. These components appear
to be critical for suppressing p38MAPK activity in order to
sustain the proliferation of transformed epithelial cells.
Although not examined in this study, it is likely that this
mechanism is a normal response of epithelial cells to changes
in their environment, perhaps coupled to stress signals
encountered during migration and wound healing. For
example, suspension of epidermal keratinocytes activates
p38MAPK, which is suppressed if the cells are allowed to
readhere to LN332 via the α3β1 and α6β4 integrins (51).

By suppressing p38MAPK, the syndecan-organized receptor
complex may ensure continued DNA synthesis in the tumor
cells that are undergoing oncogenic, metabolic, or genotoxic
stress (see model, Fig. 7). Increasing evidence suggests that
p38MAPK and c-Jun N-terminal kinase stress kinases have
significant roles in cell cycle arrest, whether caused by DNA
damage or other types of stress (52–54). Although their targets
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Figure 7. Model. Model showing the role of the syndecan-organized multi-
receptor complex in promoting EGFR kinase–dependent cell invasion and
EGFR kinase–independent suppression of stress-induced S-phase arrest in
tumor cells. EGFR, epidermal growth factor receptor.
are only now being identified, p38MAPK is known to target
p38MAPK-activated protein kinase-2 (MAPK-APK2) that in-
activates the cdc25A phosphatase and causes G1- and S-phase
arrest (55). Interestingly, prior studies have shown that pro-
liferation of prostate and breast carcinoma cells is enhanced by
RON activation of ABL1, which is proposed to phosphorylate
tyrosine 211 in proliferating cell nuclear antigen (PCNA), the
sliding clamp that assembles the replisome engaged in DNA
synthesis (39, 40, 56). Disruption of this event by SSTNEGFR

may also have a role in the overall arrest mechanism, although
how p38MAPK would be involved in this mechanism is not
clear.

How these newly identified receptors are incorporated into
the receptor complex remains unknown, but our current data
provide a plausible order of assembly (Fig. 4D). The α6β4
integrin binds a motif in the C-terminus of the Sdc4 cyto-
plasmic domain and there is no evidence to date for an
extracellular interaction between this integrin and the synde-
can (13, 57). But all of the remaining receptors are displaced
from Sdc4 by SSTNEGFR, indicating that they all rely either
directly or indirectly on the docking site comprised by amino
acids 87 to 131 in the Sdc4 extracellular domain. Sdc4’s
interaction with EGFR is direct, as it is known that purified
recombinant EGFR and Sdc4 extracellular domains interact
directly via this site (7). EGFR, in turn, may recruit the α3β1
integrin contained in a subcomplex consisting of the α3β1 and
α6β4 integrins and the tetraspanin CD151 (Fig. 4D), most
likely in a specialized, tetraspanin-enriched membrane
microdomain (58, 59). Other examples where integrins and
kinases are coupled by docking sites in syndecan extracellular
domains (e.g., α3β1 and HER2 (7), α4β1 and VEGFR2 (6), αvβ3
and IGF1R (5)) all involve some recognition of the syndecan by
both the integrin and the kinase, which suggests α3β1 may
depend on a bipartite interaction with EGFR and Sdc4.

Our current evidence strongly suggests that ABL1 engages
the cytoplasmic domain of activated RON, which in turn en-
gages a site in the extracellular domain of Sdc2. What remains
unknown is the interaction that links Sdc2 to amino acids 87
to 131 in the extracellular domain of Sdc4. The most likely
scenario is that Sdc2 also interacts with the α3β1 integrin,
perhaps stabilized by an interaction between the α3β1 integrin
and RON. This would explain why Sdc2 and its associated
kinases are lost from Sdc4 when α3β1 integrin expression is
silenced (Fig. 4D). There are likely to be other stabilizing in-
teractions as well. Sdc2 and Sdc4 are known to heterodimerize
via interactions within their transmembrane domains (60).
RON may also form heterodimers with EGFR (61, 62),
potentially further stabilizing the incorporation of Sdc2, RON,
and ABL1 into the receptor complex.

RON is activated when incorporated into the receptor
complex, presumably by clustering, leading to phosphorylation
of ABL1 and the α6β4 integrin. This mimics the activation of
HER2, IGF1R, and VEGFR2 when they become engaged with
syndecans (5–7). The exception appears to be EGFR, which
requires EGF ligand rather than clustering for activation when
associated with Sdc4 and integrins (13). Future studies will be
required to identify the target of ABL1 that restricts p38MAPK
J. Biol. Chem. (2022) 298(6) 102029 9
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activation, presumably an upstream enzyme in the MAPK
signaling cascade, as well as the target of p38MAPK that
causes the global arrest.

Experimental procedures

Reagents

SSTNEGFR peptide consists of amino acids 87 to 131 of
human Sdc4 and was from LifeTein LLC. Antibodies include
anti-human Sdc4 (F94-8G3) provided by Dr Guido David
(University of Leuven) and integrin α6β4 (3E1) from Memorial
Sloan-Kettering. Anti-Sdc4 (AF2918), EGFR (AF231), RON
(AF691 and FAB6647F), pY1238/1239 RON (AF1947), ITGB4
(mAb 422325) Sdc2 (305515) were from R&D Systems . Anti-
ITGA3 (NBP2-48514) was from Novus Biologicals. Rabbit
mAbs 73E5 (pY245-ABL1), 247C7 (pY412-ABL1), D13E1
(p38MAPK), 11H10 (tubulin), 133D3 (pS345-CHK1), 2661S
(pT68-CHK2), D3H8P (PCNA), 1B1B2 (histone H3), 28B10
(pT183/Y185-p38MAPK), and E4I9J (CD151) were from Cell
Signaling Technology. Anti-MCM2 (A300-191A) was from
Bethyl Laboratories. 8E9 (ABL1), TU-01 (tubulin), and 36-
6200 (Sdc2) were from Invitrogen/ThermoFisher Scientific.
DO-1 (p53) and H-7 (Sdc2) were from Santa Cruz Biotech-
nology. JBW301 (pS139-γH2AX), AC-74 (β-actin), and P1B5
(integrin α3β1) were from MilliporeSigma. Antibodies to Sdc2
were produced against GST-S2ED in rabbits and affinity-
purified as described (63).

Erlotinib and gefitinib, BMS-0777607, BIRB-796 (Dor-
amapimod), and Losmapimod were from Selleck Chemicals.
Cetuximab was provided by Dr Paul Harari (University of
Wisconsin-Madison). CAS 913376-84-8, actinomycin D, HU,
and propidium iodide were from MilliporeSigma; GNF5 and
PPY-A are from R&D Systems. EdU and Click-IT EdU-labeling
reagents were from Click Chemistry Tools and Milli-
poreSigma. CellTiter-GLO was from Promega.

Cell culture

Parental telomerase reverse transcriptase–immortalized
human NOKs and HTEs were described previously (64, 65).
HaCaT keratinocytes (CVCL 0038) were provided by Dr Peter
LaCelle (Roberts Wesleyan College). Human mammary
MCF10A (CVCL 0598), MDA-MB-231 (CVCL 0062), MDA-
MB-468 (CVCL 0419) cells, and human SCC25 HNC (CVCL
1682) cells were from ATCC. UM-SCC47 (CVCL 7759), UM-
SCC1 (CVCL 7707), TU-138 (CVCL 4910), and 93-VU-147T
(CVCL L895) HNC cells were provided through the auspices
of the Wisconsin Head and Neck Cancer SPORE. All cells with
the exception of the NOKS and HTEs were STR profiled by
Genetica LabCorp within 6 months of use. Cells were cultured
at 37 �C and 92.5% air/7.5% CO2. NOKs and HTEs were
cultured in complete Keratinocyte Serum-Free medium con-
taining 100 units/ml penicillin and 100 μg/ml streptomycin
(Life Technologies). All other cell lines were cultured as pre-
viously described (5, 7–9). New cultures were reestablished
from frozen stocks after a maximum of 3 to 4 months of
passage, and all cultures were screened for mycoplasma
approximately every 6 months by the Small Molecule
10 J. Biol. Chem. (2022) 298(6) 102029
Screening Facility in the University of Wisconsin Carbone
Cancer Center using the R&D Systems MycoProbe Myco-
plasma Detection Kit (Cat. # CUL001B).

Flow cytometry

To measure cell surface receptor expression, suspended
cells were incubated for 1 h on ice with 1 μg of primary
antibody per 5 × 105 cells, washed, counterstained with
Alexa-488-conjugated goat secondary antibodies, and scan-
ned on a Thermo Fisher Scientific’s Attune NxT bench top
cytometer. Cell scatter and PI staining profiles were used to
gate live, single-cell events. For cell cycle analysis, asyn-
chronous or synchronous (double thymidine block: 4 mM
thymidine for 24 h, followed by 16 h release in culture
medium supplemented with 30uM deoxycytidine (D3897,
MilliporeSigma), followed by an additional 24 h with 4 mM
thymidine) were released from the double thymidine block
and treated with SSTNEGFR after cells recovered from the
block and entered S-phase. Cells were labeled with 100 μM
EdU for 1 h prior to being suspended and fixed in ice-cold
70% ethanol. Cells were first stained using a Click-IT EdU-
labeling reaction for 1 h (1.3 mM THPTA/CuSO4 mix,
20 μM AF488 picolyl azide, and 2.5 mM ascorbic acid in
0.1% Triton X-100) followed by DAPI (D1306) staining for
4 h (5 μg/ml in the presence of 1 μg/ml DNAse-free RNase
A (Thermo Fisher Scientific) in 0.1% Triton X-100). Cells
were then analyzed by flow cytometry to assess levels of
AF488-EdU and DAPI staining on a ThermoFisher Attune
NxT bench top cytometer.

Immunoprecipitations and Western blotting

Immunoprecipitation of the Sdc–receptor tyrosine kinase:
ITG complex in the presence or absence of competing
SSTNEGFR peptide was carried out using antibodies to Sdc4 or
Sdc2 mAb (or mouse IgG1 as a negative control), GammaBind
PLUS Sepharose (GE Healthcare Life Sciences), and 1 mg of
precleared whole cell lysate (WCL)/sample in the presence of
protease and phosphatase inhibitors as previously described (8,
9). For p38MAPK and DDR effector blots, equal amounts of
total protein (20–40 μg depending on the target protein and
cell line being probed) were loaded per lane. All samples were
resolved on 10% Laemmli gels prior to transfer to Immobilon-
FL PVDF (MilliporeSigma). Visualization of immunoreactive
bands was performed using ECF reagent or direct excitation of
fluorescent secondary antibodies on either a GE Healthcare
Life Sciences Typhoon Trio or a LI-COR Odyssey Fc Imaging
System. For the in-cell western of active p38MAPK, cells were
fixed (4% paraformaldehyde), permeabilized (0.3% TX-100),
blocked (5% normal goat serum), and then stained for phos-
phorylated (28B10) and total (D13E1) p38MAPK followed by
IR secondary (Li-COR) 800CW for phosphorylated and 680RD
for total p38MAPK. Cells were then scanned on a Li-COR
Odyssey Aerius flat-top scanner and each cohort was quanti-
tated for the ratio of phosphorylated to total p38MAPK as the
fold change (minus background isotype-matched, nonspecific
IgG staining) relative to vehicle-treated, control cells.
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siRNA design and transfection

Two different siRNAs were used for all treatments with
equivalent results, paired with a scrambled siRNA control:
Silencer Select control (AM4635) and target-specific siRNA oli-
gos directed against human Sdc4 (siRNA ID# 12434, Target
Sequence: 199(ca)GGAATCTGATGACTTTGAG217 and siRNA
ID# s12638, Target Sequence: 536CTACTGCTCATGTACCG-
TA(tt)554; GenBank Accession number NM_002999.4), Sdc2
(siRNA ID# s12635, Target Sequence 996TGACCTTGGA-
GAACGCAAA(tt)1014 and siRNA ID# 12636 868GACAGTC
TGTTTAAACGGA(tt)886; GenBank Accession Number
NM_002998.4), ITGB4 (siRNA ID# s7584, Target Sequence:
658GCGACTACACTATTGGATT(tt)676 and siRNA ID# s7585,
Target Sequence: 580CCAACTCCATGTCCGATGA(tt)598;
GenBankAccessionNumberNM_001005731.3), ITGA3 (siRNA
ID# s7543, Target Sequence: 1026GGACTTATCTGAGTA-
TAGT(tt)1044 and siRNA ID# s7541, Target Sequence: 2629GTA
AATCACCGGCTACAAA(tt)2647;GenBank Accession Number
NM_002204.4), EGFR (30UTR Target Sequence: 4905TGCTC
TGAAATCTCCTTTAtt4923, GenBank Accession Number
NM_005228.5) and human EGFR-specific siRNA oligo (sc-29
301) acquired from Santa Cruz Biotechnology, MST1R (siRNA
ID# s8996, Target Sequence: 3576GGCCCAGAATCGAAT
CCAA(tt)3594 and siRNA ID# s8998, Target Sequence:
3065GCGTAGATGGTGAATGTCA(tt)3084; GenBankAccession
Number, NM_002447.4), ABL1 (siRNA ID# s865, Target
Sequence 2030CGACAAGTGGGAGATGGAA(tt)2048 and siRNA
ID# s864, Target Sequence: 1836GAAGGGAGGGTGTAC-
CATT(tt)1854; GenBank Accession Number NM_007313.3), and
CD151 (siRNA ID# s2728, Target Sequence: 409CTGCTGCGC
CTGTACTTCA(tt)428 and siRNA ID# s194332, 30UTR Target
Sequence: 935CCCAACTACTGAGCTGAGA(tt)953; GenBank
Accession Number NM_004357.5)are from Life Technologies.
UM-SCC47 cells (0.35 × 106 per 35 mm well) were transfected
with 100 nM siRNA using Lipofectamine RNAiMAX and Opti-
MEM I transfection medium (from Life Technologies) at 1:1 ra-
tio (μg siRNA:μl RNAiMAX). At 6 h post-transfection, the wells
were supplemented with 10% fetal bovine serum and 3 ml of
complete culture medium. At 24 h post-transfection, the cells
were suspended and plated on either acid-etched 18mm-#1 glass
coverslips in 12-well plates or in 60mm tissue culture plates. Cells
were then harvested at 72 h post-transfection and analyzed by
Western blot (for receptor expression levels loading equal cell
equivalents per sample) or AF488-EdU staining (for active DNA
synthesis).
Immunofluorescence

Cells were plated on glass coverslips overnight and then
treated with or without SSTNEGFR peptide in the presence or
absence of the indicated inhibitors for the times indicated. For
EdU labeling, cells were incubated with 100 μM EdU 45 min
prior to fixation. Cells were fixed in 4% paraformaldehyde,
permeabilized in 0.5% Triton X-100 in 1× CMF-PBS (pH 7.4),
and blocked for 1 h at RT in a 3% bovine serum albumin
(BSA)/CMF-PBS solution. The cells were then stained using a
Click-IT EdU-labeling reaction for 30 min at RT (1.3 mM
THPTA/CuSO4 mix, 20 μM AF488 picolyl azide and 2.5 mM
ascorbic acid in a 1% BSA/CMF-PBS solution) prior to
washing with PBT solution (CMF-PBS containing 1% BSA and
0.2% Tween-20) and mounting in ProLong Diamond Antifade
Mountant with DAPI (Life Technologies). For PCNA staining,
cells were first hypotonically lysed in a buffer containing
10 mM Tris (pH 7.4), 2.5 mM MgCl2, 0.5% NP-40, HALT
protease and phosphatase inhibitor cocktail, and 1 mM DTT
for 15 min under constant agitation. The cells were then
washed with 1× CMF-PBS (pH 7.4), then blocked in a 3% BSA/
CMF-PBS solution for 1 h prior to Click-IT EdU AF488-
labeling, as described previously. Cells were then stained
mAb D3H8P (1:800) for 1.5 h followed by Alexa546-
conjugated secondary antibody prior to mounting. Fluores-
cent images (six representative fields from duplicate wells/
experiment) were acquired using either a Zeiss PlanAPO-
CHROMAT 10× (0.45 NA) or 20× objective (0.8 NA) and a
Zeiss AxioCam Mrm CCD camera on a Zeiss Axio Imager.M2
microscopy system. Stained cells were quantified using ImageJ
(https://imagej.nih.gov/ij/) using threshold limits based on
controls.

Cell proliferation assays

Cells (1–2 × 103/well) were plated in 96-well plates in
complete culture medium in the presence or absence of
SSTNEGFR peptide or EGFR kinase inhibitors for 72 h. Cell
numbers were measured using CellTiter-GLO against a stan-
dard curve in accordance with the manufacturer’s instructions.

Cell stress and apoptosis marker array

Screening for stress markers activated in cells treated with
SSTNEGF1R peptide for 24 h relative to vehicle-treated (50 mM
Hepes, pH 7.4) control cells was conducted as previously
described (9) using the PathScan Stress and Apoptosis
Signaling Antibody Array Kit (Cell Signaling Technology).

Statistical analyses

Statistical analyses using a two-tailed Student’s t test were
performed using Excel (Microsoft Office 365). Data that satisfy
confidence levels of p ≤ 0.05, 0.01, or 0.001 are noted. Data are
presented as means ± SEM, unless otherwise noted.

Data availability

All data described in the article are contained herein.
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