Modelling HIV incidence and survival from age-
specific seroprevalence after antiretroviral
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Objective: Our study uses sex-specific and age-specific HIV prevalence data from an
ongoing population-based demographic and HIV survey to infer HIV incidence and
survival in rural KwaZulu-Natal between 2003 and 2011, a period when antiretroviral
treatment (ART) was rolled out on a large scale.

Design: Catalytic mathematical model for estimating HIV incidence and differential
survival in HIV-infected persons on multiple rounds of HIV seroprevalence.

Methods: We evaluate trends of HIV incidence and survival by estimating parameters
separately for women and men aged 15-49 years during three calendar periods (2003 -
2005, 2006-2008, 2009-2011) reflecting increasing ART coverage. We compare
model-based estimates of HIV incidence with observed cohort-based estimates from
the longitudinal HIV surveillance.

Results: Median survival after HIV infection increased significantly between 2003—
2005 and 2009-2011 from 10.0 [95% confidence interval (Cl) 8.8—11.2] to 14.2 (95%
Cl 12.6-15.8) years in women (P <0.001) and from 10.0 (95% Cl 9.2-10.8) to 14.0
(95% Cl 10.6-17.4) years in men (P=0.02). Our model suggests no statistically
significant reduction of HIV incidence in the age-group 15-49 years in 2009-2011
compared with 2003-2005. Age-specific and sex-specific model-based HIV incidence
estimates were in good agreement with observed cohort-based estimates from the
ongoing HIV surveillance.

Conclusion: Our catalytic modelling approach using cross-sectional age-specific HIV
prevalence data could be useful to monitor trends of HIV incidence and survival in other
African settings with a high ART coverage.
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Introduction

KwaZulu-Natal in South Africa has one of the highest
HIV prevalences in the world. Following the roll-out
of HIV care and antiretroviral treatment (ART) in 2004,
HIV-associated mortality decreased rapidly [1], leading to
a substantial rise in life expectancy from 49.1 years in
2003 to 60.5 years in 2011 in our demographic

surveillance site (DSS) in rural KwaZulu-Natal [2].
This rise in life expectancy is probably largely driven by
the fact that HIV-positive adults in South Africa can have
a near-normal life expectancy, provided that they start
ART early enough and adhere to treatment [3]. Whereas
in the initial phases of the ART programme, we observed
little change in HIV prevalence and incidence locally [4],
more recently, we observed both an increase of HIV
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prevalence in older age groups [5] and a decrease in risk of
HIV acquisition with high ART coverage [6].

In the most recent National Strategic Plan, the South
African National AIDS Council and the South African
government confirm their strong commitment to reduce
HIV incidence (the rate of new HIV infections) by 50%
between 2012 and 2016 [7]. However, unlike HIV
prevalence, which can be measured from nationally
representative cross-sectional serological surveys, measure-
ment of HIV incidence with any degree of accuracy and
reliability is much more challenging [8]. Direct estimation
of HIV incidence requires a cohort of individuals to be
followed up prospectively and tested multiple times. Not
only are such multiple measurements on the same
individuals logistically difficult to achieve at a regional
or national scale, butsuch data are also potentially subject to
biases due to low consent rates for repeat testing [9] and loss
to follow up due to migration. Although much effort has
gone into trying to develop and validate novel biological
assays that can reliably predict recent HIV infection
[8,10—13], such assays were often found to require local
calibration. An alternative approach to direct incidence
estimation is to use a ‘catalytic’ modelling technique pio-
neered in the 1950s [14], which can potentially be applied
to any age-stratified seroprevalence data sets, as long as
sample sizes are large enough over wide age ranges.

Although a modelling approach has been previously
applied to data from other sub-Saharan countries [15—23],
we apply it here for the first time to multiple rounds of
cross-sectional HIV surveys from rural KwaZulu-Natal,
and for the first time in the context of a large-scale ART
roll-out. Moreover, whereas previous work often relied on
using external sources for HIV-associated mortality [15],
we estimate differential HIV survival in parallel to HIV
incidence using seroprevalence data only.

The aim of our study was thus to infer trends of HIV
incidence and survival in rural KwaZulu-Natal from HIV
prevalence data collected on a yearly basis between 2003
and 2011. This was achieved by applying a catalytic
modelling approach on age-specific and sex-specific HIV
seroprevalence patterns during three calendar periods
(2003—-2005, 2006—2008, 2009-2011), which coincide
with increasing ART coverage. We used the model to
simultaneously infer HIV incidence and survival during the
three calendar periods and validate model-based incidence
estimates with directly observed cohortincidence estimates
obtained in the same setting between 2003 and 2011.

Materials and methods

Study setting
Since 2003, consecutive annual HIV sero-surveys have
been conducted in the DSS in a rural subdistrict of

uMkhanyakude in northern KwaZulu-Natal with
a resident population of approximately 60000 Zulu-
speaking people. Although logistic details of the HIV
sero-surveys have been described elsewhere [24,25],
briefly, all adult persons eligible to participate on the basis
of age and residency status are attempted to be contacted
by a field team for participation in an HIV survey.
During the interview, written informed consent is
obtained before collecting information on health, sexual
behaviour and biomedical measures including a finger
prick sample for HIV assessment. In order to ensure
comparability over time and across sexes, the data used in
this analysis are restricted to persons aged 15—49 years
who participated in the HIV surveillance in 2003-2011,
as women aged 50 years or older and men aged 55 years or
older were only included in HIV surveillance from
2007 onwards. Ethical approval for the HIV surveys and
the Africa Centre Demographic Surveillance System
was obtained from the Research Ethics Committee at
the College of Health Sciences, University of KwaZulu-
Natal.

Mathematical model-based estimates of
incidence and survival

We apply a modified cumulative incidence and survival
model [16,18] to estimate simultaneously age-dependent
HIV incidence and differential mortality in HIV-infected
persons. We evaluate trends by estimating model
parameters (see below) separately for women and men
during three calendar periods (2003—2005, 2006—2008,
2009-2011), which coincide with increasing local ART
coverage by the local HIV treatment and care pro-
gramme, which was a partnership between the Depart-
ment of Health and the Africa Centre. The total number
of patients initiating ART in the six clinics serving the
DSS increased from 372 in 2003—2005 to 3528 in 2006—
2008 and attained 5573 in 2009-2011 (C. Newell,
personal communication). During 2011, it is estimated
that 30.7% of all HIV-infected adults aged 15—49 years in
the DSS were receiving ART [5].

We adapt the catalytic model of Gregson et al. [16],
first, by wusing a lognormal functional form of
incidence as proposed in Williams et al. [18] and,
second, by fitting one survival parameter and three
incidence parameters to yearly age-specific HIV-
seroprevalence profiles of persons aged 15—49 years
assuming homogeneity over time, grouped within three
calendar periods.

The incidence function fla) (i.e. the age-dependent
risk of acquiring HIV infection for a susceptible
person of age a years) is assumed to follow a scaled
offset lognormal distribution function [18] with
parameters mean [, standard deviation o and scale
6 and an offset corresponding to sexual debut fixed at
12 years:
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0 if a < 12years
fla) = 0 exp [ - (08(@—12) = w?
2no(a — 12) 202

The probability of survival s(x) after a duration of HIV
infection of x years was assumed to follow the Weibull
distribution,

S(x) = exp <— (;)) , @)

where « and B are the shape and scale parameters,
respectively. Unlike previous authors who fixed shape and
scale parameters on the basis of external sources [26—28],
we attempt to estimate the scale parameter B simul-
taneously from the seroprevalence data. We further
conduct a model sensitivity analysis by varying the shape
parameter ¢ in a plausible range from 2 to 5 to see the
effect of the shape parameter on incidence and survival
summary statistics. Model comparisons were performed
using Akaike information criterion (AIC). The results
presented in the abstract and figures are based on models
with the lowest AIC in the plausible range.

We obtain maximum likelihood estimates of the four
parameters B, w, o, 6 separately for men and women
during three calendar periods C; (2003—-2005), C,
(2006—2008) and Cj; (2009-2011) by minimizing the
negative binomial log likelihood [29]:

49
—log(L) == 3 llog(F(a)Ra(r)

teCja=15 G)
+log(1 — F(a))(Na(1) = Ra(1))]

where R, (f) and N,(f) are the observed number of
HIV-positive individuals and total number of individuals
who participated in HIV surveillance, respectively,
having age a (years) during calendar year t, C; is the
calendar period [[=1,2,3 and C;=(2003,2004,2005),
C,=(2006,2007,2008), C3=(2009,2010,2011)] and is

F(a) Jo S ()exp (= Jo £ (v)dy)s(a — x)dx

the estimated HIV prevalence at age a given as in ref.

[16],

The functions f and s in Eq. (4) correspond to the
functions defined in Egs. (1) and (2). The numerator of
Eq. (4) represents individuals infected with HIV at age 4,
which is the integral of those initially infected at an earlier

T T exp (= J5f()dy)s(a — x)dx-rexp(— Jof(v)dy)

> if a > 12 years M

age who have survived to age a [16]. The denominator
represents the sum of the expression in the numerator and
the individuals who have not yet been infected by age 4,
so the denominator encompasses all individuals who have
survived to age a.

The HIV prevalence data used for fitting the incidence
and survival model thus consist of observed number
of HIV-positive and number of participants in HIV
surveillance stratified by year of age, by year of
surveillince and by sex (see Supplemental Digital
Content 1, http://links.Iww.com/QAD/A372).

Optimization was performed using the default Nelder-
Mead method of the mle function of the package stats4
in R [30]. Differences in parameter estimates between
calendar periods were assessed assuming that parameter
estimates are (asymptotically) normally distributed [31]
and that the standard error of the difference of two
parameter estimates is the sum of the squares of the
standard errors [32].

Observed cohort incidence

Observed cohort incidence was estimated from resident
persons in the demographic surveillance area who
participated at least twice in the annual HIV sero-
surveys, whose earliest HIV result was negative and who
were aged between 15 and 49 years at the time of the
survey [6]. A uniformly distributed random sero-
conversion date was assigned between the last negative
test and the first positive test. Incidence was calculated as
the number of seroconversions in a given age and sex
group divided by the total number of person-years of
observations in that age and sex group between 2003 and
2011. Estimates and 95% confidence intervals (Cls) were
obtained with Stata 11 (StataCorp, College Station,
Texas, USA) using stptime.

“)

Results

The age-specific observed and fitted model HIV
prevalence estimates in women and men during the
three calendar periods 2003-2005, 2006—2008 and
2009-2011 in Fig. 1 indicate a good visual model fit with
observed data. The higher dispersion of the observed
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Fig. 1. Observed and fitted HIV prevalence as a function of age, sex and calendar period. Each circle represents the observed HIV
prevalence estimate for a given survey year, a given year of age and sex. As each period contains three calendar years, there are
three prevalence estimates (circles) for each year of age. Solid lines refer to fitted model based estimates of HIV prevalence. The
shape parameter « of the Weibull survival distribution of HIV-infected individuals was fixed at a value of 5. Other parameters
correspond to those reported in Table 1.

prevalence in older age groups (most pronounced among This lower sample size is both a reflection of smaller
men) is indicative of lower numbers of HIV surveillance numbers of older men living in the DSS (see Fig. 2 in
participants in these age groups (see Supplemental Tanser et al. [25]) and lower participation rates of older
Digital Content 1, http://links.Iww.com/QAD/A372). men in HIV surveillance [4].
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Fig. 2. Fitted HIV prevalence in women (a) and men (b) as a function of age. The shape parameter « of the Weibull
survival distribution of HIV-infected individuals was fixed at a value of 5. Other parameter estimates correspond to those
reported in Table 1.
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Fig. 3. Fitted HIV incidence in women (a) and men (b) as a function of age (each line represents different calendar periods)
compared with observed cohort HIV incidence estimates (filled circles with 95% confidence bars) during the period 2003-
2011. The shape parameter o of the Weibull survival distribution of HIV-infected individuals was fixed at a value of 5. Other

parameter estimates correspond to those reported in Table 1.

‘When the HIV prevalence model fits of the three calendar
periods are compared (Fig. 2), we observe virtually
no change of HIV prevalence in younger women aged
15—24 years, but a substantial increase of HIV prevalence
in women aged 30—49 years in 2009-2011 compared
with the two earlier periods. In men, HIV prevalence in
2009-2011 is also higher than earlier periods, but the
increase occurs at a later age than in women. During
all three calendar periods, HIV prevalence in women is
generally higher than in men throughout all age groups,
with the exception of 45—49 year olds.

A comparison between fitted model-based and observed
cohort-based incidence estimates for the full calendar
period 2003—2011 is shown in Fig. 3. For women, the
model incidence estimates are in broad agreement and
overlap with the Cls of the observed cohort estimates,
particularly for the two later calendar periods 2006—2008
and 2009-2011. In men, except for teenagers, the
model-based incidence estimates tend to be considerably
higher than the observed cohort estimates during the
periods 2003—2005 and 2006—2008. For the latest period
2009-2011, the agreement between the two methods is
somewhat better with an overlap of Cls occurring for
four of the seven observed cohort age group estimates.

In women, incidence was marginally lower in the two
later calendar periods over all age ranges, although this
was not statistically difterent (P = 0.932 for parameter 0 in
Table 1). The age of peak incidence in women varied very
little between calendar periods ranging between 21.4 and
22.1 years, with peak incidence ranging from 0.064 to
0.075 per year. Similarly in men, the age of peak
incidence varied little ranging from 27.3 to 29.4 years,
with peak incidence ranging from 0.043 to 0.057 per year

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

(see Table 1). The age difference between men and
women at peak incidence ranged between 5.5 and
7.3 years during the three calendar periods.

The cumulative incidence by age 50 years, which is
equivalent to the probability of having acquired HIV by
the age of 50 (assuming current age-specific incidence
and in the absence of mortality), varied very little by
calendar period, ranging from 0.713 to 0.768 in women
and from 0.663 to 0.717 in men (Table 1 and Fig. 4).
Although incidence in younger men was lower than in
women, a higher incidence during middle ages translates
into a similar cumulative incidence by the time men turn

50 years old.

For women, median survival after HIV infection was
estimated at 10.0 (95% CI 8.8—11.2), 12.6 (95% CI 10.9-
14.3) and 14.2 (95% CI 12.6—15.8) years during the
calendar periods 2003—-2005, 2006—2008 and 2009-11,
respectively (Table 1). The difterence of the survival scale
parameter B between the first and last calendar period was
highly significant (P < 0.001). For men, the respective
median survival after HIV infection was estimated at
10.0 (95% CI 9.2-10.8), 9.8 (95% CI 6.4—13.2) and
14.0 (95% CI 10.6—17.4). The difference of the survival
scale parameter 8 between the first and last calendar was
borderline significant (P=0.03).

Table 2 provides details of a sensitivity analysis of model
estimates when varying the shape parameter o« from 2 to 5.
Higher values of o make the survival distribution more
rectangular-shaped by lowering the variance. Although
previous authors have tended to use values ranging from
2 to 2.5 on the basis of observed mortality in sero-
converters prior to ART [15], our results suggest that a
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Fig. 4. Fitted cumulative incidence in women (a) and men (b) as a function of age. The shape parameter o of the Weibull
survival distribution of HIV-infected individuals was fixed at a value of 5. Other parameter estimates correspond to those reported

in Table 1.

in which the largest proportions of HIV-infected people
received ART [5].

Our study confirms previous findings of age-mixing
patterns in this [6,9,37] and other sub-Saharan settings
[38], particularly in that the peak of HIV incidence occurs
approximately 5—7 years earlier in women than in men.
In this rural setting in KwaZulu-Natal, recent work has
suggested that age-disparity within a sexual partnership
(i.e. ‘sugar-daddies’) did not increase the risk of
HIV acquisition among young women (Harling et al.,
unpublished observation). Although our model allowed
incidence functions to vary between sexes, for future
work, it would be interesting to extend our modelling
framework to directly estimate sexual mixing patterns
(‘who acquires infection from whom’), which was a
popular approach for respiratory infections [39,40] prior
to the availability of empirical social contact data [41].

From a public health perspective, our modelled incidence
estimates were not suggestive of a major decrease of HIV
incidence, which is one of the major goals set by
the South African government in the years to come [7].
One possible reason for this is that our model could have
been underpowered to detect a small reduction of
incidence [42]. A review of several transmission models
has predicted that an incidence decrease in South Africa is
likely to fall in the range of 15-25% by 2010 following
the roll-out of ART [43]. Moreover, a recent study [36] in
our setting has shown that treatment levels have to reach a
relatively high coverage (between 20 and 30% of all
HIV-positive individuals on treatment) to have a
significant effect on reducing the risk of acquiring
HIV infection at the population level. Coverage levels of
30% in adults aged between 15 and 49 years were only
obtained in 2011 [5]. It should be noted that the study by
Tanser et al. [6], which also included individuals older

than 50 years, found that the decline in the risk of
acquisition of HIV infection with increasing ART
coverage was more pronounced in the older age groups
(>35 years of age). Taken together, this might suggest that
incidence reductions are more likely to have occurred
in older age groups due to higher access and uptake

of ART.

One of the innovative aspects of our modelling approach
is that we were able to estimate the increase of survival
after HIV acquisition without having to rely on external
mortality sources. Although previous authors have fixed
both shape and scale parameters on the basis of observed
survival in HIV-infected cohorts, we were able to
estimate one of these, the scale parameter. Although it is
possible in principle to simultaneously fit the shape and
scale parameters, in practice, we found that the maximum
likelihood estimates of the shape parameter tended
to infinity whereas the likelihood converged to a finite
value. This could be due to insufficient sample sizes at
older ages, so that our data did not contain enough
information to successfully estimate all parameters.
The problem is likely to be amplified by correlation
among parameters, which is why we decided to keep the
shape parameter constant and estimate the remaining
parameters as other researchers have done.

One limitation of our study is that our catalytic model
does not take advantage of the longitudinal set-up of our
HIV-surveillance, but rather treats yearly cross-sectional
sero-surveys as independent data points. Obviously, this is
a crude simplification and other authors have proposed
more complicated models with a demographically
correlated period/cohort or serial approaches [15,44].
However, we do take advantage of the longitudinal set-up
in our model validation exercise. For future work, it
would be of great benefit to refine model estimates within
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Table 2. Sensitivity analysis of shape parameter « on median survival, age at peak incidence and peak incidence estimates.

Difference
Women Men early — late®
2003-2005 2006-2008 2009-2011 2003-2005 2006-2008 2009-2011 Women Men
a=2
Median survival after HIV infection 6.7 8.9 9.7 6.8 6.9 9.6 3 2.8
Age at peak incidence 22.7 22.0 23.0 28.0 29.2 30.8 0.3 2.8
Peak incidence 0.098 0.079 0.087 0.073 0.072 0.055 —-0.012 -0.018
Akaike information criterion 13269.5 14596.3 15719.0 5208.6 5040.0 5201.4
a=3
Median survival after HIV infection 8.7 11.2 12.6 8.8 8.8 12.2 3.9 3.4
Age at peak incidence 222 21.6 22.4 27.6 28.8 30.0 0.2 2.4
Peak incidence 0.083 0.069 0.075 0.062 0.062 0.047 —-0.012 -0.015
Akaike information criterion 13262.5 14587.1 15709.4 5204.9 5037.1 5195.7
a=4
Median survival after HIV infection 9.6 12.1 13.7 9.7 9.5 13.4 4.1 3.7
Age at peak incidence 21.9 21.5 222 27.4 28.7 29.6 0.3 2.2
Peak incidence 0.077 0.066 0.071 0.058 0.058 0.044 —0.006 —-0.012
Akaike information criterion 13258.5 14582.0 15704.2 5202.8 5035.6 5192.4
a=5
Median survival after HIV infection 10.1 12.6 14.2 10.1 9.8 14.0 4.1 3.9
Age at peak incidence 21.8 21.4 22.1 27.3 28.6 29.4 0.3 2.1
Peak incidence 0.075 0.064 0.069 0.056 0.057 0.043 —.006 —-0.013
Akaike information criterion 13256.1 14579.0 15701.3 5201.5 5034.7 5190.5

“Difference between 2003-2005 and 2009-2011.

a Bayesian framework by integrating other existing data
sources such as age-specific HIV-associated mortality that
can provide additional information on the underlying
relevant age-dependent epidemiological processes.

Our modelling study thus provides further evidence of
the substantial demographic impact of ART scale-up
between 2004 and 2011 in our rural community in South
Africa in terms of improving survival of HIV-infected
persons. If current trends of local ART coverage are
maintained or increased, we will expect survival of
HIV-infected persons to increase further, as predicted by
mathematical modelling [43]. Because our modelling
approach is based on cross-sectional seroprevalence data
rather than longitudinal cohort data, it could prove useful
to monitor trends of HIV survival and incidence in other
African settings with increasing ART coverage.
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