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A single amino acid mutation in the mouse MEIG1 protein
disrupts a cargo transport system necessary for sperm
formation
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Mammalian spermatogenesis is a highly coordinated process
that requires cooperation between specific proteins to coordi-
nate diverse biological functions. For example, mouse Parkin
coregulated gene (PACRG) recruits meiosis-expressed gene 1
(MEIG1) to the manchette during normal spermiogenesis. Here
we mutated Y68 of MEIG1 using the CRISPR/cas9 system and
examined the biological and physiological consequences in
mice. All homozygous mutant males examined were completely
infertile, and sperm count was dramatically reduced. The few
developed sperm were immotile and displayed multiple ab-
normalities. Histological staining showed impaired spermio-
genesis in these mutant mice. Immunofluorescent staining
further revealed that this mutant MEIG1 was still present in the
cell body of spermatocytes, but also that more MEIG1 accu-
mulated in the acrosome region of round spermatids. The
mutant MEIG1 and a cargo protein of the MEIG1/PACRG
complex, sperm-associated antigen 16L (SPAG16L), were no
longer found to be present in the manchette; however, locali-
zation of the PACRG component was not changed in the mu-
tants. These findings demonstrate that Y68 of MEIG1 is a key
amino acid required for PACRG to recruit MEIG1 to the
manchette to transport cargo proteins during sperm flagella
formation. Given that MEIG1 and PACRG are conserved in
humans, small molecules that block MEIG1/PACRG interaction
are likely ideal targets for the development of male contra-
conception drugs.

Mouse Meig1 was originally cloned in a screen for genes
essential for meiosis (1). MultipleMeig1 transcripts are present
in different tissues encoding the same protein but differing in
their 50- or 30-UTRs (1, 2). MEIG1 protein is found in other
species, and the amino acid sequences are highly conserved
(2, 3). Even though Meig1 is expressed in multiple tissues, it is
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most abundantly expressed in tissues rich in ciliated cells.
Therefore, it is predicted to be important for cilia formation. In
mouse testis, Meig1 message is present in germ cells and
Sertoli cells (4–8). Global Meig1 knockout mice showed pure
male infertility due to impaired spermiogenesis, but no meiosis
defect was found (2, 3). Our laboratory further discovered
that MEIG1’s primary function is in germ cells, not in Sertoli
cells (9).

The mechanism of MEIG1’s function was further studied in
our laboratory. MEIG1 is present in cell bodies of spermato-
cytes and round spermatids, but it is translocated to the man-
chette in elongating spermatids (10). The manchette is a
transient structure only present in elongating spermatids. The
timing of manchette development is very precise (11, 12). Two
major functions of the manchette have been proposed: shaping
spermatid heads and sorting structural proteins to the centro-
some and the developing sperm tail through intra-manchette
transport (IMT) (13, 14). These proposed functions are sup-
ported by the characteristics of its structural proteins and
mutant mouse models. The manchette contains molecular
motor proteins and proteins used to build sperm tails (15, 16).
Disruption of motor proteins in male germ cells results in
spermiogenesis failure associated with a manchette defect (17).
Proteins that regulate motor protein function and localization
are also present in the manchette, and some of them have been
shown to be essential for spermatogenesis (18–36).

A yeast two-hybrid screen was conducted using full-length
mouse MEIG1 as bait to identify binding partners, and
PACRG was identified to be its major binding partner (10, 37,
38). Pacrg mutant mice showed a similar phenotype as the
Meig1 mutants (39–43). In germ cells, PACRG protein is not
translated until day 28 after birth when germ cells start to
elongate, and the translated protein becomes localized in the
manchette (10). Using mouse PACRG as bait for a yeast two-
hybrid screen, MEIG1 was found to be the major binding
partner (10). In elongating spermatids, PACRG determines
MEIG1’s localization in the manchette (10).
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Sperm formation requires Y68 of MEIG1
Sperm-associated antigen 16L (SPAG16L), a long isoform
translated from the Spag16 gene, is a protein localized in the
central apparatus of motile cilia (44–46). SPAG16L is localized
in the manchette of elongating spermatids of wild-type mice.
However, it is absent in the manchette of the remaining
elongating spermatids of MEIG1 or PACRG-deficient mice
(10), indicating that SPAG16L is a cargo of MEIG1/PACRG
complex. Thus, MEIG1 and PACRG appear to form a complex
in the manchette to transport cargo (SPAG16L) to build sperm
flagellum.

MEIG1’s structure was resolved by nuclear magnetic reso-
nance (NMR) (47). The shape of MEIG1 resembles a dumb-
bell, such that associated proteins can bind to either of two
opposing concave surfaces or the two convex ends of the
dumbbell. Twelve amino acids exposed on the protein surface
are believed to mediate interactions between MEIG1 and its
binding partners, particularly PACRG (47). We examined the
role of the 12 amino acids in MEIG1/PACRG interaction and
discovered that the four amino acids located on the same
surface, W50, K57, F66, and particularly Y68, mediate inter-
action between MEIG1 and PACRG (47). We mutated the Y68
amino acid using the CRISPR/cas9 system to study its role
in vivo. The single amino acid mutant MEIG1 was still present
in the cell bodies of spermatocytes and round spermatids, but
was no longer present in the manchette of the remaining
elongating spermatids. The MEIG1 mutation caused male
mice infertility associated with dramatically reduced sperm
counts and abnormal sperm morphology, including short tails,
vesicles in the flagella, and different thicknesses along the tails.
Most importantly, sperm were immotile. SPAG16L was not
present in the manchette in elongating spermatids of the
mutant mice. The phenotype was similar to the global Meig1
knockout mice. The study demonstrates that Y68 is a key
amino acid for PACRG to recruit MEIG1 to the manchette to
form the MEIG1/PACRG complex, which is essential for
transporting cargo proteins for sperm formation.
Results

Generation of MEIG1 single amino acid (MEIG1Y68A) mutant
mice

We previously discovered that four amino acids, W50, K57,
F66, and particularly Y68, mediate interactions between MEIG1
and PACRG in vitro (47). To test if these amino acids, partic-
ularly Y68, are important for MEIG1’s function in vivo, we
generated a mouse model replacing Y68 with alanine using the
CRISPR/cas9 system (Fig. S1A). DNA sequencing of the RT-
PCR product revealed that only Y68 amino acid was mutated
to A68 in the model (Fig. S1B). Western blot analysis using
testicular extracts demonstrated that the mutant MEIG1 pro-
tein was expressed in the testis (Fig. 1A). Localization of the
mutant MEIG1 was examined by immunofluorescence stain-
ing. As reported previously (10), the wild-type MEIG1 was
present in cell bodies of spermatocytes and round spermatids,
and it was translocated to the manchette of elongating sper-
matids (Fig. 1Ba–c). The Y68A mutant MEIG1 was still present
in cell bodies of spermatocytes and round spermatids.
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However, it was no longer present in the manchette. Interest-
ingly, the mutant MEIG1 appeared to accumulate in the
acrosome as an increased MEIG1 signal was observed here
(Fig. 1Bd–f).

Homozygous MEIG1Y68A mutant mice were infertile associated
with reduced sperm number, motility, and increased
abnormal sperm in mice

Homozygous mutant mice did not show any gross abnor-
malities. To test fertility of these mutant mice, 2 to 3 month-
old wild-type mice and homozygous mutant mice were bred
with 2 to 3-month-old wild-type mice for more than 2 months.
All the control mice, including wild-type and heterozygous
males and homozygous mutant females, showed normal
fertility. All homozygous mutant males examined were infer-
tile (Fig. 2A). There was no significant difference in testis/body
weight between the control and homozygous mutant mice
(Fig. 2B). Sperm number, morphology, and motility from the
control and homozygous mutant mice were examined (Fig. 2,
C–F). The sperm count was dramatically reduced in the
mutant mice (Fig. 2, C and D and Movie S1). Sperm from the
control mice showed normal morphology (Fig. 2C and Movie
S2, left panel). Multiple abnormalities in sperm were observed
in the mutant mice, including short tails, vesicles in the
flagella, and different thicknesses along the tails (Fig. 2C and
Movie S1, right panel), and percentage of abnormal sperm was
significantly increased in the mutant mice (Fig. 2E and Movie
S1). More than 70% of sperm from the control group were
motile and showed progressive motility (Fig. 2F and Movie S2);
No sperm were motile in the mutant mice (Fig. 2F and Movie
S1).

Abnormal spermiogenesis in the homozygous MEIG1Y68A

mutant mice

Significantly reduced and nonfunctional sperm suggests
impaired spermatogenesis in the mutant mice. To examine the
spermatogenesis process in the mutant mice, testes from 4 to
5 month-old control and homozygous mutant mice were
collected for HE staining. The control mice showed a normal
spermatogenesis process. However, the mutant mice showed
impaired spermiogenesis. Elongating spermatids lacking tails
or with short tails and deformed heads were frequently
observed in the seminiferous tubules of the mutant mice
(Fig. 3A). Histology of cauda epididymis of the adult control
and the mutant mice was also examined. The control mice had
highly concentrated normal sperm in the lumen (Fig. 3Ba).
However, the mutant mice had low sperm concentration with
multiple abnormalities, as observed in the seminiferous tu-
bules (Fig. 3Bb).

Ultrastructural changes in the seminiferous tubules of the
MEIG1Y68A mutant mice

To investigate the structural basis for the reduced sperm
number and spermmorphology changes, TEMwas conducted in
testis. In seminiferous tubules of the controls, normal spermio-
genesis process was observed, including chromatin
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Figure 1. Generation of MEIG1Y68A mutant mouse model. A, examination of testicular MEIG1 expression in the indicated mice. (a) Representative
Western blot results to examine testicular MEIG1 protein expression in the control, Y68A homozygous mutant, and global Meig1 knockout mice. MEIG1 is
missing in the global knockout mice, but is still present in the Y68A mutant mice. (b) Quantification of the relative MEIG1 protein expression normalized by
β-actin. Error bars represent the standard deviation (n = 3). (*), p < 0.05. B, mislocalization of Y68A mutant MEIG1 in round and elongating spermatids. The
testicular cells were double stained with MEIG1 antibody (red) and the acrosome marker lectin PNA (green), or a manchette marker α-tubulin (green). Wild-
type MEIG1 is localized in cell bodies of spermatocytes (panel a, arrow) and round spermatids (panel b, dashed arrows), and migrates to the manchette of
elongating spermatids (panel c, arrow head). Y68A mutant MEIG1 is still present in cell bodies of spermatocytes (panel d, f, arrows), but is highly
concentrated in the acrosome of round spermatids (panel e, dashed arrows); it is not present in the manchette of the remaining elongating spermatids
(panel f, arrow heads).

Sperm formation requires Y68 of MEIG1

J. Biol. Chem. (2021) 297(5) 101312 3



Figure 2. Y68 single amino acid defect in MEIG1 causes male infertility associated with abnormal sperm morphology, significantly reduced sperm
number and motility. A, fertility of control and MEIG1Y68A mutant mice. Ten controls and ten MEIG1Y68A mutant mice were examined. Fertility and litter size
were recorded for each mating. Notice that all mutant females had normal fertility; however, all mutant males were infertile. B, normal testis/body weight of
control and Y68A mutant mice. C, morphological examination of epididymal sperm from the control (left) and mutant (right) mice by light microscopy at low
magnification. Notice that sperm density of the control mice is higher than those observed in the MEIG1Y68A mice under the same dilution. Sperm in the
control mice showed normal morphology, but short tails (lower, left inset), vesicles in the flagella (lower, right inset), and different thicknesses along the tails
(upper, inset) were frequently observed in the mutant mice, Bar = 10 μm. D, sperm number was significantly reduced in the mutant mice. E, percentage of
abnormal sperm of control and the mutant mice. F, percentage of motile sperm of control and the mutant mice. “n” represents the number of mice
analyzed. Data are expressed as Mean ± SD. Statistically significant differences (*), p < 0.05.

Sperm formation requires Y68 of MEIG1
condensation, flagella formation, and numbers of elongated
spermatids released to the lumen (Fig. 4a). However, in the
MEIG1Y68A mutant mice, there were few sperm in the seminif-
erous tubules, and these developed spermhad abnormal flagellar
structure, chromatin condensation, and sperm head shapes. The
flagella with abnormal ‘‘9 + 2’’ axoneme arrangement were sur-
rounded by many lysosomes, which seemed to degrade the
abnormal sperm. They were also concentrated in Sertoli cells,
with evidence of Sertoli cell phagocytosis. What’s more, consis-
tent with the phenotype of MEIG1-deficient mice, flagellar
components such as microtubules and outer dense fibers could
be detected but were not assembled correctly (Fig. 4, b–h).
PACRG level and localization were not changed in the
MEIG1Y68A mutant mice

Testicular PACRG level and its localization in elongating
spermatids were examined in the MEIG1Y68A mutant mice.
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There was no difference in PACRG levels between the control
and MEIG1 mutant mice (Fig. 5A). However, co-IP experiment
showed that PACRG does not bind with the Y68A mutant
MEIG1 (Fig. 5B). We previously discovered that mouse PACRG
was present in the manchette of elongating spermatids of wild-
type and global Meig1 knockout mice (10). In the MEIG1Y68A

mutant mice, like in the control mice (Fig. 5C, top panels),
PACRG was still present in the manchette (Fig. 5C, bottom two
panels), even though the mutant MEIG1 was not present in the
manchette anymore (Fig. 1Bf), supporting our previous
conclusion that PACRG is an “upstream protein” of MEIG1.
SPAG16L, the cargo of MEIG1/PACRG complex, is absent from
the manchette of elongating spermatids of the MEIG1Y68A

mutant mice

SPAG16L is present in the cytoplasm of spermatocytes and
round spermatids and is recruited to the manchette by
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Figure 3. Spermiogenesis defect in the MEIG1Y68A mutant mice. A, testis histology of control (a–d) and homozygous Y68A mutant mice (e–h). (a)
Stage VII–VIII showing normal spermatogenesis with step 7 to 8 round spermatids. Step 16 spermatids are aligned by their heads (H) at the lumen,
with extensive tails (T). Bar = 25 μm (for all photos). (b) Stage X showing normal step 10 spermatids just beginning to show elongation of the nucleus.
(c) Stage XII showing normal meiotic division of spermatocytes (Me) and step 12 elongating spermatids, with their long tails (T) extending into the
lumen. (d) Stage I–III showing normal step 1 to 3 round spermatids and elongating spermatids with heads (H) aligned and tails (T) extending into the
lumen. (e) Mutant stage VII–VIII showing normal step 7 to 8 round spermatids, but abnormal elongating spermatids (Ab). The abnormal elongating
spermatid heads (H) are surrounded by cytoplasm and appear rounded without an extension of the tails (*). The heads of step 16 spermatids are seen
deep within the epithelium, where they have been phagocytized by the Sertoli cells. (f) Mutant stage IX–X showing disorganization of the step 9 to 10
spermatids, with possibly some abnormal shapes. Failure of spermiation is present with rounded cytoplasm of residual bodies (Rb) containing the
heads of sperm without tails. Some individual step 16 spermatid heads are also seen having been phagocytized by Sertoli cells. (g) Mutant stage XII
showing normal meiotic division (Me) of spermatocytes, but disorganization of the step 12 elongating spermatids. The elongating spermatids are
abnormal, lacking tails in many cases (*) and showing abnormal tails (Ab) with excessive cytoplasm in other cases. (h) Mutant stage I–III showing
normal step 1 to 3 round spermatids, but abnormal heads of elongating spermatids (Ab) and few tails extending into the lumen. B, the control mouse
cauda epididymis showing highly concentrated normal sperm in the lumen with heads (H) and tails (T) aligned (a). The MEIG1Y68A mutant cauda
epididymis (b) showing very low concentration of sperm, with high incidence of sperm abnormalities (Ab), including absent tails, excess cytoplasm,
and short tails. Round bodies (Rb) in the lumen appear to be larger residual bodies and smaller cytoplasmic droplets (Cd). Few sperm tails are present.
Bar = 20 mm (for all photos).

Sperm formation requires Y68 of MEIG1
MEIG1/PACRG complex (10). We therefore examined
testicular SPAG16L expression levels and localization in the
MEIG1Y68A mutant mice. The testicular SPAG16L expression
level was not changed as revealed by Western blot analysis
(Fig. 6A). In spermatocytes and round spermatids, SPAG16L
was still localized in the cytoplasm of the mutant mice, which
is consistent with the localization as seen in the control mice
(Fig. 6Ba–d). However, SPAG16L was no longer present in the
manchette in elongating spermatids of the mutant mice
(Fig. 6Bd). The results further support our conclusion that
J. Biol. Chem. (2021) 297(5) 101312 5



Figure 4. TEM images of seminiferous tubules of a control mouse and MEIG1Y68A mutant mice. A number of normally developed sperm were
released to the lumen of the seminiferous tubules of a control mouse. Normal chromatin condensation (dotted arrow), well-condensed head (arrow), and
normally developed flagella can be observed. The arrow heads point to the middle piece (right, inset) and the principle piece (left, inset) in (a). (b) shows
few sperm present in the lumen in the MEIG1Y68A mutant mice. Abnormal “9 + 2” axoneme structure surrounded by abnormally accessory structures
(arrow heads in b–e) were frequently observed. Increased number of the lysosomes were seen in the degrading abnormal flagellum (stars, b). Multiple
elongating spermatids in the seminiferous tubule were wrapped in 1 cell membrane, indicating phagocytized by Sertoli cells (arrowheads, e). Abnormal
condensed head (triangles, f) and chromatin can be seen in the mutant mice (arrows, in g and h).

Sperm formation requires Y68 of MEIG1
the manchette localization of SPAG16L is dependent on
MEIG1 (10).

Discussion

Our lab previously resolved MEIG1’s structure by NMR.
Twelve amino acids exposed on the protein surface are believed
tomediate interactions betweenMEIG1 and its binding partners
(47). We further examined the role of the 12 amino acids on
MEIG1’s surface in MEIG1/PACRG interaction and discovered
that the four amino acids located on the same surface,W50, K57,
F66, and especially Y68, are involved in interactionwith PACRG
(47). In this study, we demonstrated that Y68 is essential for
MEIG1’s function in vivo. We discovered that the male repro-
ductive phenotype of MEIG1 Y68A mutants is consistent with
what was observed in global Meig1 KO mice. Homozygous
mutantmice did not show any gross abnormalities. However, all
homozygous mutant mice were infertile associated with multi-
ple defects in spermiogenesis.

Although the Y68A mutant MEIG1 was still in cell bodies of
spermatocytes and round spermatids, it was no longer present
in the manchette. This is consistent with our previous
conclusion that MEIG1 localization in the manchette is
dependent on PACRG (10). During the first wave of sper-
matogenesis, PACRG is expressed at postnatal day 28, when
germ cells start to condense and the manchette is formed (10).
PACRG recruits MEIG1 through binding to the Y68 amino
acid to form a MEIG1/PACRG complex in the manchette.
When Y68 on the MEIG1 is mutated, PACRG is unable to
bind to MEIG1, and therefore the mutant MEIG1 is no longer
6 J. Biol. Chem. (2021) 297(5) 101312
present in the manchette. Interestingly, even though MEIG1 is
not concentrated in the acrosome region of round spermatids
in the wild-type mice, the mutant MEIG1 seems to accumulate
there. It has been proposed that acrosome-derived vesicles
contribute to the manchette components (14, 15). Accumu-
lation of the mutant MEIG1 in the acrosome suggests that
partial wild-type MEIG1 is recruited to the manchette through
the acrosome–manchette pathway. When the MEIG1 is
mutated, this pathway is disrupted, and the mutant MEIG1
stays in the acrosome.

It is not surprising that PACRG was still present in the
manchette of remaining elongating spermatids when MEIG1
was mutated. This result further confirms that PACRG is an
“upstream protein” of MEIG1 (10). We previously discovered
that SPAG16L, a component of the central apparatus of
motile cilia, is a cargo protein of MEIG1/PACRG complex.
SPAG16L is localized in the manchette of elongating sper-
matids of wild-type mice, and the localization is MEIG1 or
PACRG dependent (10). Similar localization was observed in
the present model: when MEIG1 was mutated, SPAG16L was
still present in the cytoplasm of spermatocytes and round
spermatids, but not in the manchette. This again confirms
that SPAG16L localization in the manchette depends on the
correct localization of MEIG1 in the manchette. These re-
sults highlight the function of the MEIG1/PACRG complex
in the manchette for transporting cargo proteins for sperm
flagella formation.

According to the above results, we propose a working model
of MEIG1/PACRG complex in transporting cargo in the
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Figure 5. The localization and expression of PACRG were not changed in the MEIG1Y68A mutant mice. A, examination of testicular PACRG expression
in the indicated mice by Western blot analysis. (a) Representative Western blot results to examine testicular PACRG protein expression in the control and
Y68A homozygous mutant mice; (b) Quantification of the relative PACRG protein expression normalized by β-actin. Error bars represent the standard
deviation (n = 3). There was no significant difference in PACRG level between the control and the MEIG1Y68A mutant mice. B, PACRG binds to wild-type
MEIG1 but not the Y68A mutant MEIG1 in the testis. Co-IP experiment was conducted using testicular lysates from the control and Y68A mutant mice.
The PACRG antibody pulled down wild-type MEIG1 but not the mutant MEIG1. C, localization of PACRG in germ cells of MEIG1Y68A mutant mice. PACRG is
present in the manchette of elongating spermatids in wild-type mice (upper panel). In MEIG1Y68A mutant mice, the localization of PACRG was not changed
(middle and bottom panels).

Sperm formation requires Y68 of MEIG1
manchette for normal spermiogenesis and sperm formation.
PACRG recruits MEIG1 to the manchette through binding
with specific amino acids. The MEIG1/PACRG complex then
associates with cargo proteins including SPAG16L. Disruption
of interaction between PACRG and MEIG1, for example,
mutating the key amino acids that mediate MEIG1/PACRG
interaction, shuts down the transport system in the manchette,
which will ultimately result in failure of sperm flagella for-
mation and impaired spermiogenesis (Fig. 7).
In this study, we only mutated Y68. Even though the ho-
mozygous males were completely infertile, the sperm number
was higher than that in the global Meig1 knockout mice (2),
suggesting that other amino acids also play a role in vivo. Some
amino acids, including W50, might function through forming
the MEIG1/PACRG complex for cargo transporting in the
manchette. However, it remains unknown if other amino acids
that do not mediate MEIG1/PACRG interaction are also
essential for spermatogenesis.
J. Biol. Chem. (2021) 297(5) 101312 7
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Figure 6. MEIG1Y68A mutation changes localization of SPAG16L in elongating spermatids. A, examination of testicular SPAG16L expression in the
indicated mice by Western blot analysis. (a) Representative Western blot results to examine testicular SPAG16L protein expression in the control and Y68A
homozygous mutant mice; (b) Quantification of the relative SPAG16L protein expression normalized by β-actin. Error bars represent the standard deviation
(n = 3). There was no significant difference in SPAG16L level between the control and the MEIG1Y68A mutant mice. B, localization of SPAG16L in germ cells of
wild-type and MEIG1Y68A mutant mice. In control mice, SPAG16L staining (red) was observed in the cytoplasm of spermatocytes (panel a, b, arrows) and
round spermatids (panel a, dotted arrows), and the manchette of elongating spermatids (panel b, arrow heads), as evaluated by double staining with an anti-
α-tubulin antibody (green). In MEIG1Y68A mutant mice, SPAG16L is still present in cytoplasm of spermatocytes (panel c, arrow) and round spermatids (panel
c, dotted arrows); however, it is not present in the manchette of elongating spermatids (panel d, arrow head).

Sperm formation requires Y68 of MEIG1
It has been shown that acrosome-derived vesicles contribute to
the manchette components transport (14). Even though the
manchette backbone is still present in the mutant mice, only few
sperm are formed in the mutant mice. We expect that the man-
chette transport of most MEIG1-dependent acrosome-derived
vesicles was affected. However, some vesicles not dependent on
MEIG1 might still be transported in the manchette. Further
studies need to be conducted to investigate MEIG1-dependent
and independent manchette transport in the future.
8 J. Biol. Chem. (2021) 297(5) 101312
The interaction between MEIG1 and PACRG is conserved
in humans. The structure of human MEIG1/PACRG complex
has been recently solved, including identification of the key
amino acids on PACRG protein that mediate the MEIG1/
PACRG interaction (48). Variation in the PACRG promoter
has been shown to be a risk factor associated with azoospermia
(49). A recent exome sequencing study revealed that PACRG is
a novel candidate gene for severe sperm motility disorders
(50). However, no human MEIG1 mutations have been



Figure 7. Working model of MEIG1/PACRG complex in transporting cargo in the manchette. MEIG1 is recruited to the manchette by PACRG. SPAG16L,
a sperm structure protein localized in the central apparatus of axoneme is a cargo of MEIG1/PACRG complex. Disruption of MEIG1/PACRG complex, such as
mutation of Y68 on the MEIG1 protein shuts down the transport system.

Sperm formation requires Y68 of MEIG1
reported to be associated with infertility. Though the MEIG1/
PACRG complex has not been implicated in male infertility, it
is known that asthenozoospermia, or low sperm motility, is
found in 80%, to varying degrees, of infertile men (51).
Asthenozoospermia is caused, to a large extent, by morpho-
logical or functional defects in the sperm flagella. Almost 40%
of genes that cause isolated male infertility are related to
flagella function, with 18 monogenic disease genes having been
identified to date (52). These genes that affect the development
of the sperm flagella, such as the MEIG1/PACRG complex,
would likely have an impact on human fertility.

In males, hormone-based contraceptives can have
numerous adverse side effects, necessitating the identification
and validation of new molecular targets for male contraceptive
drugs. One attractive strategy is to target the unique biologic
processes that are required for spermatogenesis. Compounds
that target these processes would be expected to have
improved specificity, efficacy, and onset of action with fewer
side effects compared with hormonal contraceptives. Our data
provide compelling genetic validation for the MEIG1/PACRG
complex as a novel target for nonhormonal contraceptive
drugs. The fact that this essential interaction depends on the
single amino acid Y68 in the interaction interface strongly
suggests that the interaction could be disrupted by small
synthetic molecules.
Experimental procedures

Ethics statement

Animal research were performed in accordance with Federal
and local regulations regarding the use of nonprimate verte-
brates in scientific research and approved by Wayne State
University Institutional Animal Care and Use Program Advi-
sory Committee (Protocol number: IACUC-18-02-0534).
Generation of MEIG1Y68A mutant mouse model

To introduce the Y68A mutation into Meig1, single guide
(sg) RNA 50- CTT CTA CTA CAA CAA AGA GA was
selected because of its high score with minimum off-target
effects. This sequence was designed to cleave in exon 4 of
Meig1 with adjoining GGG, a protospacer adjacent motif
(PAM) and encompassing the site of Y68A knockin. An
ssDNA donor with sequences encodingMeig1 with the TAC >
GCC: Y68A mutation and a silent mutation AGG > AGA
together with 50 and 30 homology arms was used as a template
for homology-directed repair to knock-in the mutation. The
donor sequence to be used is: 50- G*G* A*AA AGG TCA GTA
GAC GTA AAC CTT CAC TTT GTG GAC CTC CTT GTC
CTC GCA CTC TCT CTC TTT GTT GTA GGC GAA GAA
AGT ATT GTC CCT CCG CTG AAG TTT CTT CAC GTA
CCC TGT CTC TGG CCA TCG GTC GAC CTG CA*C* C*G,
where GC is the TAC > GCC knock-in mutation and T is the
AGG > AGT silent mutation, which was introduced to
eliminate the PAM site to prevent recleavage of knockin alleles
by the CRISPR RNP. * denotes phosphorothioate linkage to
prevent exonuclease-mediated degradation. The donor ssDNA
and sgRNA were ordered from IDT.

The injection mix, which consists of 30 ng/μl of Cas9
protein, 50 ng/μl of sgRNA, and 50 ng/μl ssDNA donor, was
microinjected into the pronucleus of C57BL6 one-cell em-
bryos and then transferred to pseudopregnant females for
subsequent development. Live born pups were initially
screened by PCR using primers: Meig1 I3F 50- GTC AGA
J. Biol. Chem. (2021) 297(5) 101312 9
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CGG TGA AAC GTG ACG and Y68Ar 50- CAC TCT CTC
TCT TTG TTG TAG GC to amplify a fragment of 158 bp
specific to the Y68A knockin allele. Potential founders were
further screened by PCR using primers: Meig1 I3F 50- GTC
AGA CGG TGA AAC GTG ACG and Meig1 3UTRR 50- GCT
GCC TGG AGC ACA AAT GTG to amplify a fragment of
526 bp encompassing the TAC > GCC: Y68A knockin mu-
tation. The PCR products were sequenced to confirm the
identity of the founders.

Western blots analysis and coimmunoprecipitation

For Western blot analysis, freshly excised or frozen whole
testes were collected from 4 to 5-month-old mice and ho-
mogenized in buffer supplemented with 50 mM Tris-HCl, pH
8.0, 170 mM NaCl, 1% NP40 (Sigma-Aldrich, 127087-87-0),
5 mM EDTA, 1 mM DTT and protease inhibitors (Complete
mini; Roche diagnostics GmbH, 11836170001). Protein was
quantified using Bio-Rad DCTM protein assay kit (Bio-Rad,
5000121) and normalized to equal concentration in SDS
loading buffer. Protein electrophoresis was performed, and the
protein was transferred to PVDF membranes (Millipore/EMD)
using the wet transfer system. Then, PVDF membranes were
incubated with the following antibodies: MEIG1 (1:10,000
dilution); ACTB/β-actin (1:2000; Cell Signaling Technology,
4967S); SPAG16L (1:2000 dilution); PACRG (1:2000 dilution).
Finally, Western blot was developed using Super Signal West
Pico chemiluminescent substrate.

For coimmunoprecipitation assay, freshly excised whole
testes from 4 to 5-month-old control or MEIG1Y68A mutant
mice were used following the same procedure as described
previously (2) except that a monoclonal anti-PACRG antibody
was used for the pull-down process (10).

Sperm counts and morphology analysis

After euthanasia, the cauda epididymis was immediately
removed from each mouse and placed in 1 ml of warm
phosphate-buffered saline (PBS) solution (Thermo Fisher Sci-
entific, 10010023) at 37 �C. Two openings were cut in each
epididymis to allow sperm to swim out. Sperm were collected
and fixedwith 4% formaldehyde for 10min at room temperature
(Sigma-Aldrich, 252549). Sperm number was counted using a
hemocytometer chamber under a light microscope. To analyze
sperm morphology, images were taken with a ProgRes C14
camera (Jenoptik Laser) under a BX51 Olympus microscope.

Tissue histology

For histology analysis, testis and cauda epididymis of adult
mice were fixed in 4% formaldehyde prior to embedding in
paraffin wax. The tissues were sectioned at 5 μm and stained
with hematoxylin and eosin (HE, Abcam, ab245880). Images
were taken as described above.

Isolating spermatogenic cells and immunofluorescence
staining

Testes from 4 to 5-month-old mice were dissected and
placed in cold 1× PBS to wash off any contaminates. The
10 J. Biol. Chem. (2021) 297(5) 101312
tunica albuginea was discarded and the seminiferous tubules
were released in 5 ml DMEM containing 0.5 mg/ml collage-
nase IV (Sigma-Aldrich, c1889-50mg) and 1.0 mg/ml DNase I
(Sigma-Aldrich, dn25-1g). Afterward the seminiferous tu-
bules were incubated, with constant shaking, at 32 �C for
30 min. After the testicular cells were dissociated, they were
centrifuged at 160g for 5 min. Supernatant was poured out
and washed three times with 5 ml cold 1× PBS each time. The
dispersed mixed testicular cells were fixed in 4% para-
formaldehyde/PBS (containing 4% sucrose), shaken for
15 min at room temperature, then washed three times with
cold 1× PBS. Cells were resuspended in 1 ml cold 1× PBS and
plated on SuperFrost/Plus microscope slides (Thermo Fisher
Scientific, 22-037-246). After air-drying, the cells were per-
meabilized with 0.1% Triton X-100 at 37 �C for 5 min on a
wet box and then washed with 1× PBS three times. Cells were
blocked with 10% goat serum in PBS at 37 �C for 30 min.
Then the following primary antibodies were incubated at 4 �C
overnight: anti-MEIG1 (1:1000, dilution), SPAG16L (1:200
dilution); PACRG (1:200 dilution); Peanut-lectin (2 μg/ml,
Invitrogen, L21409). The primary antibodies were removed
and washed with 1× PBS three times. The slides were
incubated with Cy3-conjugated anti-rabbit IgG secondary
antibody (1:5000; Jackson ImmunoResearch Laboratories,
111-165-003) for 1 h at room temperature. The secondary
antibodies were discarded and washed three times with
1× PBS. Finally, the antibodies were mounted with Vecta-
Mount containing DAPI (Vector Laboratories, h-1800) and
sealed with a coverslip. Images were taken at the Wayne State
University Microscopy Core facility by using a confocal
microscopy.

Transmission electron microscopy

Adult testes were fixed with 3% glutaraldehyde in 0.1 M
sodium cacodylate (pH of 7.4) at 4 �C overnight and processed
for electron microscopy analysis. Images were taken by using a
Jeol JEM-1230 transmission electron microscope.

Statistical analysis

All data were presented as mean ± SEM. Graphs were
created using Microsoft Excel. The statistical significance
of the difference between the mean values for the different
genotypes was examined using Student’s t test. p > 0.05
was considered as not significant and by convention
*p < 0.05.

Data availability

The location of the data described in the manuscript is
indicated and all data are contained within the manuscript.
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