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Abstract: Systemic antibiotics are extensively used to control the papules and pustules of rosacea.
Hence, it is crucial to understand their impact on the rosacea skin microbiota which is thought to
be perturbed. The purpose of this study was to compare the makeup and diversity of the skin
microbiota in rosacea before and after taking oral antibiotics. We also compared the skin microbiota
at baseline according to age and rosacea severity. A longitudinal cohort study was performed on 12
rosacea patients with papules/pustules and no recent use of oral and topical antimicrobials/retinoids.
Patients were prescribed oral doxycycline, 100 mg, twice daily for six weeks. Skin areas on the cheek
and nose were sampled for 16S ribosomal RNA gene sequencing at baseline, and after six weeks
of doxycycline treatment. Eleven females and one male aged 20–79 (median 51) with a median
Investigator’s Global Assessment score of 3 (moderate) were enrolled. At baseline, Staphylococcus
epidermidis was the most dominant species followed by Cutibacterium acnes (formerly Propionibacterium
acnes). In the 60 Over-age group, the prevalence of Cutibacterium acnes was lower than that of the 60 &
Under-age group. Rosacea severity increased with age and was associated with a decrease in the
relative abundance of Cutibacterium acnes and an increase of Snodgrassella alvi. Across all subjects,
antibiotic treatment reduced clinical rosacea grades and was associated with an increase in the relative
abundance of Weissella confusa (P = 0.008, 95% CI 0.13% to 0.61%). Bacterial diversity (alpha diversity)
was not significantly altered by antibiotics treatment. Principal coordinates analysis showed mild
clustering of samples by patient (ANOSIM, Analysis of Similarity, R = 0.119, P = 0.16) and scant
clustering with treatment (ANOSIM, R = 0.002; P = 0.5). In conclusion, we believe that rosacea
has a unique age-dependent characteristic (i.e., severity). Although we were not able to pinpoint
a causative microbiota, our study provides a glimpse into the skin microbiota in rosacea and its
modulation by systemic antibiotics.
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1. Introduction

Rosacea is a chronic, inflammatory skin condition with diagnostic features of persistent facial
erythema and phyma. It typically affects the central face. A number of clinical phenotypes such
as fixed centrofacial erythema, phymatous changes, papules and pustules, flushing, telangiectasia,
ocular manifestations are recognized [1,2]. In terms of pathogenesis, neurovascular dysregulation and
aberrant innate immune response are two of the described abnormalities supposed to be involved
in rosacea development, both of which can lead to cutaneous inflammation [3]. Evidence that the
aberrant innate immune response plays a role in the pathogenesis of rosacea includes upregulation
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of LL-37 via enhanced processing of cathelicidin by the trypsin-like serine protease kallikrein 5 [4].
When injected to an animal model, cathelicidin peptides induced proinflammatory and angiogenic
activity [5], theorizing that dysfunction of the innate immune system causes the clinical features of
rosacea (i.e., inflammatory papulopustules).

Patients with rosacea who have papules and pustules are often treated with topical and/or
systemic antimicrobials (i.e., metronidazole, ivermectin, erythromycin) [6]. Those with a significant
number of papules and pustules require repeated courses of systemic antibiotics which are the same as
those applied to inflammatory acne (tetracyclines such as tetracycline, doxycycline, and minocycline).
The disappearance of rosacea papules and pustules with systemic antibiotics has been attributed to their
anti-inflammatory activity. However, antibiotics (1) leading to complete abolition of the lesions rather
than just blunting, and (2) being more effective than agents with much more potent anti-inflammatory
effect (i.e., steroids, nonsteroidal anti-inflammatory drugs) suggest that bacteria play a role in the
papules and pustules of rosacea.

Microbes such as Demodex folliculorum, Staphylococcus epidermidis, Bacillus oleronius, Helicobacter
pylori, and Chlamydia pneumonia have been addressed to take part in rosacea [7–11], but the results
have been inconsistent. As several of the identified microbes are skin commensals, it is difficult to
prove that their presence is associated with the disease.

The challenge to characterize the role of microbes in rosacea stems from to the limitations of
historic culture-dependent methods in identifying and studying microbes. In addition, rosacea, unlike
acne, is distributed across all ages, which makes the interpretation complex as the relative abundance
of dominant species varies among different age groups [12].

Amplification and sequencing of the 16S ribosomal RNA (rRNA) gene has been used to determine
bacterial communities in various body habitats, including the skin [13]. Using this culture-free method,
studies have looked into the action of antibiotics on gut microbiota, often describing changes in
bacterial composition following antibiotic treatment [14]. The purpose of this study was to provide
an overall picture of the influence of oral antibiotics on the composition and diversity of the rosacea
skin microbiota which is supposedly altered. Moreover, we compared the skin microbiota between
different age groups (Over 60 vs. 60 & Under) and rosacea severity (Investigator’s global assessment
(IGA) score 3 vs. IGA 4).

2. Materials and Methods

2.1. Study Design

Patients newly diagnosed with rosacea by a dermatologist, were enrolled August 2017–June
2018, at the Department of Dermatology, Incheon St. Mary’s Hospital, Korea. Inclusion criteria
were individuals over 18 with more than 10 inflammatory papules/pustules on the face (Grades 3
and 4 on the Investigator’s Global Assessment (IGA) grading scale), and willingness to avoid facial
washing and application of topical agents to the face for 12 h prior to skin sampling. Exclusion
criteria included history of systemic or topical antibiotic use within one month of the baseline study
visit, hypersensitivity to tetracyclines, systemic rosacea treatment within four weeks, topical rosacea
treatment within two weeks, significant facial hair interfering with sampling, pregnancy or breast
feeding status, and inability to provide an informed consent. The study was approved by Incheon St.
Mary’s Hospital (The Catholic University of Korea) Institutional Review Board (OC17TNSI0057), and
participants provided written informed consent prior to participation.

2.2. Antibiotic Treatment and Sample Collection

Participants were instructed to take doxycycline, 100 mg, twice daily for six weeks. Skin samples
were collected at two visits across six weeks, one before treatment initiation and another approximately
six weeks after the start of doxycycline therapy. Participants’ compliance to antibiotic treatment was
initially checked (by interviewing the patient) at a separate visit made two weeks after the start of
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doxycycline. Here, the possible side effects of doxycycline such as nausea and diarrhea were inquired.
Afterwards, all participants were asked to write a self-reported diary on the medication which was
checked six weeks after the starting doxycycline (at the time of visit for the second skin sampling).
At each visit (at baseline and after six weeks of doxycycline), skin samples were collected from the
cheeks (4 cm2 area per side) and nose with a single sterile cotton swab (EASY SWAB, Hanil-Komed
Inc., Seongnam, Gyeonggi-do, Korea). All sites (cheeks and nose) were rubbed 20 times with the cotton
stick: 10 times in one direction and 10 times perpendicular to this direction. Microbiota sampling was
conducted by the same investigator (H.S.K.) at all study visits.

2.3. DNA Extraction and 16S rRNA Gene Polymerase Chain Reaction Amplification and Sequencing

DNA was separated from the skin samples using an enzymatic lysis and bead-based tissue
homogenization protocol; the samples were incubated shortly in a lytic enzyme mixture of lysozyme,
mutanolysin, proteinase K, and lysostaphin, followed by mechanical lysis with silica beads (0.1 mm),
as published beforehand [15]. The DNA cleanup was then conducted with a fecal DNA extraction
kit (ZR Fecal DNA MiniPrep; Zymo Research (Irvine, CA, USA). After DNA extraction, the V3–V4
hypervariable region of the 16S rRNA gene was amplified by polymerase chain reaction and sequenced
using the Illumina HiSeq platform (250 base pairs, paired-end reads) as reported previously [16,17].

2.4. Data Analysis

After sequencing, de-multiplexing of the data based on the Illumina index reads was performed
and the raw data were converted to FASTQ files. Illumina adapters were removed using the FASTP
program [18] and error-correction was performed on the region where the two reads overlap. The paired
reads were merged using FLASH v1.2.11 (http://ccb.jhu.edu/software/FLASH/) [19]. For precise
Operational Taxonomic Units (OTUs) analysis, data containing sequence error (i.e., merged sequences
shorter than 400 bp, raw reads with ambiguous base cells, chimeric sequences) were removed.
The remaining representative reads from non-chimeric clusters were clustered de novo into OTUs
(97% similarity threshold) using a CD-HIT-EST-based OTU analysis program (CD-HIT-OTU) (http:
//weizhongli-lab.org/cd-hit-otu) [20]. Afterwards, taxonomic assignments were performed using
the basic local alignment search tool (BLASTN v2.4.0) (blast.ncbi.nlm.nih.gov/Blast.cgi) [21] and the
reference database (National Center for Biotechnology Information 16S, Bethesda, MD, USA). Observed
relative abundances were estimated by dividing the observed number of 16S rRNA amplicon reads by
the total number of reads per sample. Microbiota α diversity, representing microbial diversity within
an individual sample, was computed in QIIME v1.9 (http://qiime.org/home_static/dataFiles.html) [22]
through the whole tree phylogenetic diversity metric. Microbiota β diversity, which indicates the
inter-variability of microbial diversity between samples, was examined through principal coordinates
analysis of weighted UniFrac distances in QIIME and hierarchical clustering based on the unweighted
pair group method with arithmetic mean algorithm in the R statistical software (r-project.org) (R Core
Team). The flexible relationship between the samples were visualized through the PCoA and
UPGMA tree.

2.5. Statistical Analysis

Comparison α diversity and relative abundance of bacterial taxa between samples (complete
sample sets from pre- and post-treatment groups, sample sets taken before starting treatment based on
age (60 & Under vs. Over 60), and rosacea severity (IGA 3 vs. IGA 4)) were performed with Wilcoxon
signed rank test/Wilcoxon rank sum test in R package v3.0.1. (cran.r-project.org). All other analyses
and visualizations were performed with R and the boxplot package. Permutation tests were used to
calculate statistical differences in microbiota in PCoA. For all statistical analyses, two-sided P < 0.05
was considered statistically significant.

http://ccb.jhu.edu/software/FLASH/
http://weizhongli-lab.org/cd-hit-otu
http://weizhongli-lab.org/cd-hit-otu
blast.ncbi.nlm.nih.gov/Blast.cgi
http://qiime.org/home_static/dataFiles.html
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3. Results

Demographics and relevant clinical features of patients included in this study are shown in Table 1
and Table S1. Our study included 12 Asian subjects with skin phototype 3 (50%), and 4 (50%) on the
Fitzpatrick scale. One of the subjects (8.3%) was male and the mean age was 49.2 ± 18.6. In terms of
rosacea severity (IGA), six patients were IGA grade 3 and six were IGA grade 4 (median IGA: 3) at
baseline. After six weeks of oral doxycycline, seven patients were measured to be IGA grade 2 and
five patients IGA grade 3 (median IGA: 2). The mean number of papules/pustules was 22.8 ± 9.4 at
baseline and 8.6 ± 4.2 after six weeks of doxycycline treatment (P < 0.05).

Table 1. Demographic and clinical characteristics of the study participants.

General Characteristics (n = 12)

Sex (M/F), n (%) 1/11 (8.3%)
Age (years), median (range) 51 (20–79)

Fitzpatrick Skin Type, median (range) 3 (3–4)
Duration of Rosacea (years), median (range) 2 (less than a year–10)

Baseline Rosacea severity (IGA), median (range) 3 (3–4)
Rosacea severity (IGA) after 6 weeks of oral doxycycline, median (range) 2 (2–3)

3.1. Taxonomic Assignment

Our data set involved 24 samples across 12 patients sequenced to a mean (SD) read count of
156,699 (17,769) (Table S2). We identified 16 phyla, 22 classes, 65 orders, 149 families, 390 genera, and
998 species that were unique and present in at least one sample. There was dominance of Staphylococcus
(24.7%), Cutibacterium (10.5%), Corynebacterium (7.8%), Pseudomonas (5.7%), and Snodgrassella (5.6%) at
the genus level across all samples (Figure 1).

Figure 1. Taxonomy plot of the microbial communities of rosacea patients before (B) and after (A) six
weeks of doxycycline.

3.2. Relative Abundance of Individual Bacterial Taxa Pre- and Post- Doxycycline Treatment

We focused on the species level when assessing changes in abundance of individual bacterial taxa
relative to the entire bacterial community in samples. Figure S1A,B provide results of the main bacterial
phyla, genus, and species in our 12 subjects at baseline and after six weeks of doxycycline, respectively.
Staphylococcus (28%), Cutibacterium (13%), Pseudomonas (9%), Corynebacterium (8%), Acinetobacter (7%),
and Snodgrassella (6%) were the main bacterial genera found in untreated rosacea skin. The most
dominant taxonomic groups at the species level in rosacea skin were: Staphylococcus epidermidis
(S. epidermidis) (28%), followed by Cutibacterium acnes (C. acnes) (13%), Pseudomonas koreensis (8%),
Actinetobactor haemolyticus (7%), and Snodgrassella alvi (S. alvi) (6%) (Figure 2). After six weeks of oral
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antibiotics, the predominant genera were as follows: Staphylococcus (22%), Stenotrophomonas (33%),
Corynebacterium (8%) and Cutibacterium (7%). Among the bacterial species, S. epidermidis (22%) was
most commonly found in the skin samples followed by Stenotrophomonas rhizophila (8%), C. acnes (7%),
Corynebacterium tuberculostearicum (7%), etc. (Figure 2).

Figure 2. Bar graph on skin microbiota in rosacea patients Before treatment, and after six weeks
of doxycycline.

We identified one genus (with relative abundance of greater than 0.1% across all samples) and one
species with statistically significant changes in relative abundance upon treatment with doxycycline
(Table S3). Weissella confusa increased 3.43-fold (P = 0.008, 95% CI 0.13% to 0.61%) following treatment
with doxycycline (Figure 3).

Figure 3. Weissella confusa showing a significantly higher relative abundance upon doxycycline
treatment.
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3.3. Relative Abundance of Individual Bacterial Taxa at Baseline According to Age, and Rosacea Severity

The study participants were divided into two age groups: the young and middle-aged adult
group (ages 60 years and under, mean age: 42, n = 9), and the elderly group (ages over 60 years,
mean age: 70, n = 3). Figure S2A,B provide results of the main bacterial phyla, genus, and species
in our 60 & Under, and Over 60 subjects, respectively. Staphylococcus (32%), Cutibacterium (18%), and
Snodgrassella (6%) were the main bacterial genera found in the 60 & Under age group skin. The most
dominant taxonomic groups at the species level in 60 & Under skin were: S. epidermidis (31%), followed
by C. acnes (17%), and S. alvi (6%) (Figure 4). In the Over 60-age group, the predominant genera
were as follows: Pseudomonas (33%), Corynebacterium (17%) and Staphylococcus (16%). Among the
bacterial species, Pseudomonas koreensis (33%) was most commonly found in the skin samples followed
by Corynebacterium tuberculostearicum (17%), S. epidermidis (10%), S. alvi (5%) etc. (Figure 4).

Figure 4. Bar graph on baseline skin microbiota in rosacea patients according to age (60 & Under, and
Over 60).

We identified one genus (with relative abundance greater than 0.1% across all samples) and one
species with statistically significant difference in relative abundance between the two age groups (Table
S4). C. acnes showed a higher relative abundance in the 60 & Under-age group (Figure 5).

Figure S3A,B provides results of the main bacterial phyla, genus, and species according to rosacea
severity (IGA 3 and IGA 4) at baseline. Staphylococcus (38%), Cutibacterium (22%), and Acinetobacter
(10%), were the main bacterial genera found in the IGA 3 group skin. The most dominant taxonomic
groups at the species level in IGA 3 skin were: S. epidermidis (38%), followed by C. acnes (22%),
and Acinetobacter haemolyticus (9%) (Figure 6). In the IGA 4 group, the predominant genera were as
follows: Pseudomonas (18%), Staphylococcus (17%), and Snodgrassella (12%). Among the bacterial species,
S. epidermidis (17%) and Pseudomonas koreensis (16%) were most commonly found in the skin samples
followed by S. alvi (12%), etc. (Figure 6).
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Figure 5. C. acnes showing a significantly higher relative abundance in the 60 & Under-age group
at baseline.

Figure 6. Bar graph on baseline skin microbiota according to rosacea severity (IGA 3 and IGA 4).

We identified two genera (with relative abundance greater than 0.1% across all samples) and two
species with significant difference in relative abundance between rosacea severity groups IGA 3 and
IGA 4 (Table S5). Among these species, C. acnes (Figure 7) showed a higher mean relative abundance in
IGA 3 skin. In contrast, the relative abundance of S. alvi (Figure 7) was higher in the IGA 4 population.
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Figure 7. C. acnes showing a significantly lower relative abundance in the IGA 4 rosacea severity group
at baseline. Snodgrassella alvi with a higher relative abundance in the IGA 4 group at baseline.

3.4. α Diversity

α diversity between the before treatment and after treatment group was compared using the
inverse Simpson and Shannon indices. α diversity over treatment failed to reach statistical significance.
Changes in α diversity with age (60 & Under vs. Over 60) and rosacea severity (IGA 3 vs. IGA 4) too
were not significant.

3.5. β Diversity

We also assessed inter-sample diversity, or β diversity, based on principal coordinates analyses of
weighted UniFrac distances. Similarity between samples across the three principal coordinates (PC1,
PC2, and PC3) with samples that cluster close to one another indicates similar bacterial composition
between those samples. The ANOSIM which generates an R test statistic stretching from −1 to 1 was
used to measure clustering of samples by patient, and treatment (Figure 8). A positive R value indicates
greater within-group similarity than between-group similarity, with greater magnitudes of the R value
suggesting stronger clustering of samples. An R value of 0 indicates no clustering of samples, whereas
a negative R value suggests greater between-group resemblance than within-group similarity. There
was mild clustering of samples by patient (ANOSIM, R = 0.119, P = 0.16). Clustering by treatment
(ANOSIM, R = 0.002; P = 0.5) was minimal.
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Figure 8. Microbiota β diversity (between-sample microbial diversity) based on principal coordinate
analysis (PCoA) of weighted UniFrac distances. Two-dimensional PCoA plots display inter-sample
distances by three principal coordinates (PC1, PC2, and PC3) with labeling of individual samples by
patient (A) and treatment (B), for patients 1 to 12. Principal coordinates, calculated from a distance
matrix of weighted Unifrac distances and have no units.

4. Discussion

The role of skin microbiota in rosacea is of great interest to clinicians, patients, and researchers.
This interest originates from the fact that microbes have long been addressed to take part in rosacea
pathogenesis [23–26] and the efficacy of oral and topical antimicrobials in controlling the papules and
pustules of rosacea. Our longitudinal cohort study examined the skin microbiota of untreated patients
and the influence of systemic antibiotics on the skin microbiota. Through 16s rRNA gene sequencing,
we found S. epidermidis and C. acnes to be prevalent in the untreated rosacea skin samples, consistent with
prior findings [27–30]. Present in healthy and diseased skin, their roles as commensals or opportunistic
organisms are not completely understood. Corynebacterium kroppenstedtii was also reported to be
abundant in patients with rosacea [30] but was surprisingly scarce in our study population.

Cyclines are broad-spectrum bacteriostatic antibiotics and are commonly prescribed for those
who have significant number of papules and pustules [31]. Tetracyclines have multiple mechanisms of
action including antibacterial effect, inhibition of pro-inflammatory mediators and tissue destructive
enzymes, and modulation of innate immunity, but it is not known which mechanism is the most
relevant in attenuating the papules/pustules. As for our study, treatment with doxycycline clearly led
to a decrease in rosacea severity (IGA) and the number of inflammatory papules/pustules.

Our findings of significant changes in relative abundance (%) of Weissella confusa may have
important clinical implications. As for the bacteria, we observed a 3.43-fold increase after six weeks of
doxycycline treatment. Weissella spp. are Gram-positive, catalase-negative, alpha hemolytic bacteria
that appear as short rods or coccobacilli in pairs and chains [32]. Based on their unusual Gram stain
morphology, they have often been confused with Lactobacillus spp. or viridans streptococci [33]. Weissella
is a common inhabitant of the gut flora but not a part of the normal skin flora [33]. The clinical
significance of Weissella confusa remains unclear in the setting of polymicrobial infections. Weissella
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confusa is found in fermented foods and has been suggested as a probiotic [34]. In particular, the cell-free
culture supernatant of Weissella confusa carries various beneficial characteristics such as antibacterial
potential and anti-inflammatory efficiency [35]. However, one should carefully interpret its increase
as Weissella confusa has also been associated with sepsis and other serious infections in humans [36].
In fact, the abundance of Weissella genera showed positive correlation with rosacea severity in a twin
study [27] (univariate random effect Poisson regression), which contradicts our findings.

Prior studies on skin disease (i.e., atopic dermatitis and inflammatory acne) have shown
less bacterial diversity in the disease state [37] which was restored after systemic antimicrobial
treatment [38,39]. As for our study, the α diversity (within-sample microbial diversity) failed to reach
statistical significance over treatment. This may be due to the small number of our study participants
(n = 12), but also suggests that an altered collective skin microbiota rather than a single culprit is
involved in rosacea pathogenesis.

As for β Diversity, which is the inter-sample diversity, there was mild clustering of samples by
patient (ANOSIM, R = 0.119; P = 0.16), indicating a distinctive microbial signature for each person.
On the other hand, clustering by treatment (ANOSIM, R = 0.002; P = 0.5) was minimal, which is
consistent with the knowledge that the skin microbiota is highly individualized with specific bacterial
taxa persisting on a given person for months to years. The finding emphasizes the importance of
taking paired samples from the same patient.

Age is known to influence skin microbiota composition, which partially explains the difference in
microbial pathogenesis (C. acnes involvement) between acne and the papules and pustules of rosacea.
As for our rosacea study population (mean age 49.2 ± 18.6), S. epidermidis (28%) was most prevalent
followed by C. acnes (13%). This strikingly differs from our acne population data (n = 20, mean
age 19.6 ± 7.5) where the most dominant taxonomic groups at the species level were: C. acnes (25%)
followed by S. epidermidis (19%) (unpublished data). The relative abundance of C. acnes in our Over 60
age group (mean age: 70) was lower than that of the 60 & Under age group (mean age: 42) (0.9% vs.
17%) which is compatible with prior study results. Bensaleh et al. have associated changes in hormonal
levels during menopause to the decrease of Cutibacterium species observed in the older age group [40].
Zhai et al. Ref. [12] have reported that C. acnes evolves with age, showing the lowest abundance in
childhood (four–six years) (2.1%), a dramatic increase at puberty (11–13 years) (13.5%), a peak in
young adults (25–34 years) (40.3%) and a subsequent decline with age (Middle age adults (37–53 years)
(27.2%), and elderly (62–74 years) (8.7%)). It is notable that there is a sharp decline in C. acnes after the
age 60. The elderly population were also reported to have more bacterial diversity than the other age
groups [12,41], but we could not confirm this due to the small number of study participants.

Sex is also thought to influence the composition and diversity of the bacterial communities but
to a lesser extent compared to age [12]. We were unable to personally look into this because of our
predominantly female study population (11 females vs. one male). Still, we found a high relative
abundance of Pseudomonas (33%) in the Over 60-age group at baseline, which is in line with findings
from a prior study where elderly females had a greater abundance of Pseudomonas, Kocuria, and
Flavobacterium than their male counterparts [12]. This variation is thought to rise from the difference in
sebum level as well as the habitual use of cosmetics and moisturizers among the female population.

As for rosacea severity, disease severity was associated with higher age (mean age of the IGA
3 group: 36 vs. mean age of the IGA 4: 63 years, P < 0.05). Unlike acne, rosacea usually progresses
over time. The age-dependent severity of rosacea has also been reported by Zaidi et al. [27] where
rosacea was found to be more severe in the 30–60 age group compared to the 0–30 group. Although
rosacea can develop in many ways and at any age, patient surveys indicate that it typically begins any
time after age 30 as flushing or redness on cheeks, nose, chin or forehead that come and go. There is
progression of the disease with time which likely explains the higher severity of rosacea in older ages.
The prevalence of C. acnes and S. alvi was associated with the severity of rosacea (C. acnes: negative
association and S. alvi: positive association). S. alvi, a species known as gut symbiont of bees has been
identified as a core microbiota of Demodex mites from rosacea patients [24] and was also prevalent
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(6%) in our untreated skin samples. Interestingly, S. alvi has also been associated with inflammatory
acne, with a significant decrease in its relative abundance after six weeks of doxycycline treatment (our
study, data not shown). Although our findings suggest a subtle link between rosacea and demodex
infestation, there is some doubt on the origin of S. alvi. Since Demodex mites usually reside in the hair
follicles and sebaceous glands, they would not have been thoroughly collected through skin swabbing.

A negative correlation between C. acnes and rosacea severity was also observed by Rainer et al. [30],
and though we underrated its significance, the protective role of C. acnes in maintaining healthy
skin [42] should be appreciated. C. acnes can prevent other microbes from colonizing the skin by
breaking down sebum into free fatty acids [43]. The lack of C. acnes in patients with rosacea [44] has
been suggested as evidence that C. acnes does not play a major role in the pathogenesis of rosacea,
but perhaps it is the deficiency of C. acnes compared to the healthy (or younger) population that is
significant. C. acnes abundance has, in fact, been found to be decreased in certain skin diseases such as
atopic dermatitis and psoriasis [45,46].

A potential limitation of our study is the low sample size. Moreover, the use of swabs for skin
sampling may have failed to capture the bacterial community of the pilosebaceous unit. Although a
recent study by Hall et al. [47] showed no difference in C. acnes-associated factors between surface and
follicular sampling methods, simultaneous examination of the follicular microbiota may add insights
on shifts in the skin microbiota observed in the present study.

Our study did not include further follow-up, but it would be interesting to explore what happens
to the skin microbiota in rosacea after completion of the treatment course, and how quickly the bacterial
communities return to their initial state, may this happen.

Finally, we were unable to obtain strain-level resolution of the bacteria. As the pathogenicity
of different strains within the same bacterial species can vary, it would be valuable to identify the
bacterial strains in rosacea and examine their alteration with antibiotic treatment.

5. Conclusions

We find rosacea to have a unique age-dependent characteristic (i.e., severity). Although we were
not able to pinpoint a causative microbiota, our study provides a glimpse into the skin microbiota in
rosacea and its modulation by systemic antibiotics.
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