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Abstract: Neural stem cells (NSCs) are capable of producing a variety of neural cell types, 

and are indispensable for the development of the mammalian brain. NSCs can be  

induced in vitro from pluripotent stem cells, including embryonic stem cells and  

induced-pluripotent stem cells. Although the transplantation of these exogenous NSCs is a 

potential strategy for improving presently untreatable neurological conditions, there are 

several obstacles to its implementation, including tumorigenic, immunological, and ethical 

problems. Recent studies have revealed that NSCs also reside in the adult brain. The 

endogenous NSCs are activated in response to disease or trauma, and produce new neurons 

and glia, suggesting they have the potential to regenerate damaged brain tissue while 

avoiding the above-mentioned problems. Here we present an overview of the possibility 

and limitations of using endogenous NSCs in regenerative medicine. 

Keywords: subventricular zone; neuronal migration; regenerative medicine; neuronal 

regeneration; remyelination 

 

1. Introduction 

In mammalian brain development, neural stem cells (NSCs) produce neural cells, including various 

types of neurons and glia. NSCs are defined as being multipotent with the capacity for self-renewal. 
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With recent technological developments, NSCs can be induced in vitro from pluripotent stem cells, 

including embryonic stem cells (ESCs) and induced-pluripotent stem cells (iPSCs) [1–5]. The results 

of animal studies [6–11] support the possibility that the transplantation of these exogenous NSCs and 

their progeny will be a powerful strategy for regenerating nervous system tissues damaged by disease 

or trauma, for which no conventional treatment is available (Figure 1, left). Before this technology can 

be applied to patients, however, the following problems need to be resolved. First, allotransplantation 

provokes immunological responses to grafted donor cells, which need to be continuously suppressed. 

Second, pluripotent stem cells have the potential to generate tumors [10–12]. We previously 

established a method for isolating neural stem cells or their progenies labeled with cell-type-specific 

fluorescent reporters [13–15], which decreased the tumorigenicity of the transplanted cells in rats [16]. 

However, considering the long lifespan of humans compared with other animals, the tumorigenic risk 

from stem-cell transplantation should be carefully evaluated [17], particularly because, given the 

limited size of the intracranial cavity, a space-occupying tumor could be fatal. It was recently reported 

that neurons could be generated from fibroblasts by transdifferentiation without passing through the 

pluripotent state, which could be an efficient procedure for avoiding tumorigenic risk in  

cell-transplantation therapy [18]. Third, the transplantation procedure itself might injure the 

complicated neuronal circuitry, affecting neurological function. Furthermore, a fundamental ethical 

problem lies in the therapeutic use of ESCs, which are derived from blastocysts. Thus, there are serious 

problems associated with regenerative medicine using cell-transplantation therapy that need to be 

overcome before its clinical application. 

Figure 1. Therapeutic strategies using exogenous and endogenous neural stem cells 

(NSCs). Schematic drawing of a model for the therapeutic use of exogenous (left) and 

endogenous (right) NSCs. Exogenous NSCs derived from pluripotent stem cells including 

embryonic stem cells (ESCs) and induced-pluripotent stem cells (iPSCs) are transplanted 

into the damaged brain, and differentiate into mature neurons to replace damaged ones. 

Endogenous NSCs that reside in the subventricular zone of the adult brain continuously 

generate neurons, which migrate into the damaged area, where they replace 

damaged neurons.  
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Recent studies have revealed that NSCs also reside in the adult brain. They produce new neurons 

(neurogenesis) and glia (gliogenesis) throughout life in the subventricular zone (SVZ) at the lateral 

walls of the lateral ventricle, and in the subgranular zone (SGZ) in the dentate gyrus of the 

hippocampus [19–26]. The physiological significance of the endogenous NSCs and the mechanism that 

maintains functional NSCs in these specific regions of the adult brain are still unknown; however, they 

have the potential to regenerate lost neurons and glia in response to various pathological 

conditions [27,28] (Figure 1, right). This spontaneous regeneration is insufficient for structural or 

functional restoration of the injured brain. However, neuroregenerative therapy using endogenous 

NSCs is highly anticipated as an effective strategy for treating brain diseases, because it avoids the 

above-mentioned immunological and ethical problems and may reduce the risk of tumorigenesis. Here, 

we will present an overview of the function of endogenous NSCs in the adult brain and the possibility 

and limitations of using endogenous NSCs for brain repair. 

2. Endogenous NSCs in the Adult Brain 

In the adult brain, endogenous NSCs continuously generate new neurons in the SGZ of the 

hippocampal dentate gyrus and in the SVZ. Although there is no definitive marker protein that 

distinguishes adult NSCs [29,30], a significant portion of the NSCs express glial fibrillary acidic 

protein (GFAP), a marker for mature astrocytes. These NSCs have the morphological and 

electrophysiological characteristics of astrocytes, but they proliferate continuously and generate new 

granule cells in the dentate gyrus and interneurons in the olfactory bulb. In spite of their multipotency 

in early postnatal life or when cultured under specific conditions, adult NSCs mostly generate neurons 

under physiological conditions.  

2.1. The NSCs in the SGZ 

The hippocampus is part of the limbic system, which has important functions in learning and 

memory and in regulating emotion and mood. Neuronal input from the neocortex to the hippocampal 

circuitry passes through the dentate gyrus, which is largely composed of neurons called granule cells 

inhabiting the granule cell layer (GCL) (Figure 2a). NSCs, referred to as type-1 cells, reside in the 

SGZ, a thin cell layer between the GCL and the dentate hilus, and slowly proliferate to generate 

intermediate neuronal progenitors, type-2 and type-3 cells [31]; these cells produce new  

neurons [32–34] (Figure 2b). After a short-distance migration into the granule cell layer overlying the 

SGZ, the new neurons finally differentiate into mature granule cells, which are glutamatergic neurons, 

and are integrated into the neural circuitry [35]. 

A large number of the new neurons die before functional maturation, and only some of them are 

stably integrated into the neural network [36,37]. A recent study using a tamoxifen-induced 

recombination system to activate the expression of a reporter gene permanently in the progenies of 

NSCs showed that adult neurogenesis makes a relatively minor contribution to the neuronal population 

of the dentate gyrus [38]. However, notably, the newly generated immature neurons show unique 

electrophysiological activities, distinguishable from those of mature granule cells [39]. Their distinct 

electrophysiological characteristics may indicate that the new neurons play an important role in the 

hippocampal circuitry, despite their small numbers.  
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A number of studies have demonstrated that new neurons are involved in learning and  

memory [40–42]. Several hippocampus-dependent learning tasks increase the proliferation of neuronal 

progenitors in the SGZ and/or promote the survival of new neurons, and the performance of these tasks 

by animals correlates positively with the amount of new-neuron generation [40,43]. Moreover, 

suppression of the proliferation of NSCs and neuronal progenitor cells by irradiation or anti-mitotic 

drug treatment impairs the animals’ performance [42,44].  

In addition, a relationship between psychiatric symptoms and decreased hippocampal neurogenesis 

has been demonstrated in studies with rodents and primates [45,46]. Conversely, the chronic 

administration of therapeutic drugs used to treat mood disorders and anxiety disorders, including 

tricyclic antidepressants, serotonin-selective reuptake inhibitors, and mood stabilizers, increases 

neurogenesis [47,48]. The disruption of neurogenesis completely abolishes the behavioral effects of 

these drugs [49], indicating that the promotion of neurogenesis might be a common mechanism of 

action for these drugs. However, because it is difficult to establish good animal models for psychiatric 

diseases, and clinical studies have methodological limitations, it has not yet been possible to show 

directly that NSC function and hippocampal neurogenesis, or its suppression, are involved in the 

neuropathophysiology of these psychiatric diseases. 

Figure 2. NSCs in the hippocampus. (a) Location, structure, and neuronal circuitry of the 

dentate gyrus in the hippocampus of the adult rodent brain. The input to the hippocampus is 

mainly provided by the entorhinal cortex through the perforant path (gray) to the granule 

cells (pink) in the dentate gyrus; (b) Neurogenesis in the dentate gyrus. NSCs (blue) and 

neuronal progenitor cells (light green) reside in the SGZ, where they proliferate, and 

generate immature new neurons (red) (left). The new neurons migrate into the granule cell 

layer (middle), where some of them differentiate into mature granule cells (pink), and the 

rest are eliminated by apoptotic cell death (gray) (right). 
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2.2. The NSCs in the SVZ 

The SVZ is a thin cell layer located in the lateral walls of lateral ventricles (Figure 3a). The NSCs in 

the SVZ are identified as a subpopulation of astrocytes [33,50] derived from radial glia, the embryonic 

NSCs of the ventricular zone [51]. Although adult NSCs are displaced from the ventricle by a line of 

ependymal cells, their apical membrane is in direct contact with the ventricle [52], which may have a 

role in maintaining or regulating NSC function. These NSCs also extend a long basal process that ends 

on blood vessels within the ventricular wall [53]. The SVZ is thought to provide a specific 

microenvironment, the so-called, “stem cell niche”, which enables the NSCs to maintain their  

self-renewing, multipotent state in the adult brain. Various proteins, including neurotrophic factors and 

paracrine signaling molecules, are reported to be involved in forming the niche. For example, basic 

fibroblast growth factor (FGF2), hepatocyte growth factor (HGF), Notch1, sonic hedgehog (SHH), 

Noggin, ciliary neurotrophic factor (CNTF), and a soluble carbohydrate-binding protein, Galectin-1, 

play important roles in stem-cell maintenance and/or self-renewal [54–59]. NSCs’ sustained 

proliferative capacity and sensitivity to proliferative stimuli have been proposed to be involved in 

tumorigenic transformation [60,61], although this idea is still controversial [62]. 

NSCs proliferate slowly and continuously, and they generate actively proliferating intermediate 

progenitors called “transit-amplifying cells”, which are committed to the neuronal linage (Figure 3b). 

The transit-amplifying cells proliferate quickly, and their progeny become immature new neurons. We 

identified the Wnt-β-Catenin signal as a regulator of the proliferation and differentiation of the  

transit-amplifying cells that increases the pool of these cells [63]. Therefore, the proliferation of SVZ 

cells is controlled by a cell-type-dependent mechanism. 

2.3. Migration of New Neurons from the SVZ 

Immature new neurons generated in the SVZ have a remarkable migration activity: They migrate to 

the olfactory bulb at the anterior tip of the telencephalon within a week, along a pathway called the 

rostral migratory stream (RMS) (Figure 3c–e). Recent imaging studies successfully showed the 

migration of micron-sized particles of iron-oxide-labeled new neurons in living animals [64,65]. 

Several types of factors that regulate embryonic neuronal migration are also involved in the migration 

of new neurons in the adult RMS. However, a distinct mechanism is needed to enable the rapid and 

long-distance migration of new neurons through the densely packed mature tissue of the adult brain.  

The migrating new neurons are typically bipolar, with extended leading and trailing processes, and 

they form elongated cell aggregates referred to as “chains”, within which new neurons can slide over 

and past one another [22,66]. Because the chain migration is a distinct characteristic that is not 

observed in the embryonic brain or anywhere else in the postnatal brain, it is important to elucidate its 

regulatory mechanisms. During migration in the chain, active cytoskeletal modification occurs in the 

new neurons. We found that cyclin-dependent kinase 5, which regulates the cytoskeleton in migrating 

cells in the embryonic brain, plays a crucial, cell-autonomous role in the chain formation of new 

neurons in the postnatal SVZ/RMS, and in the speed and direction of their migration [67]. Polysialic 

acid-neural cell adhesion molecule (PSA-NCAM) and β1-integrin expressed on the surface of new 

neurons [68,69], matrix metalloproteases produced by them, and extracellular matrix molecules 
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including tenascin-C, proteoglycans, and laminins, have all been shown to be involved in the migration 

of new neurons in the RMS [68,70,71]. These molecules may regulate the adhesion between the new 

neurons to enable them slide past one another within a chain, despite their attachment to each other. 

Some of the chains of new neurons in the RMS were extended along and closely associated with blood 

vessels (Figure 3d), suggesting that the blood vessels may act as a scaffold for their migration [72]. 

Figure 3. NSCs in the SVZ. (a) Location and structure of the SVZ. The SVZ is located at 

the lateral wall of the lateral ventricle and consists of four types of cells: ependymal cells 

(purple), which have multiple motile cilia that lie over the surface of the SVZ; multipotent 

and self-renewable NSCs, which have an astrocytic morphology (blue); neuronal progenitor 

cells (light green); and migratory new neurons (red). NSCs have an apical membrane that 

makes direct contact with the ventricle, and extends its processes onto the blood vessels 

(orange); (b) Generation of new neurons in the SVZ. NSCs (blue) slowly and continuously 

proliferate to generate new NSCs (self-renewal) and neuronal progenitor cells called 

“transit-amplifying cells” (light green). The transit amplifying cells proliferate quickly and 

produce immature new neurons (red); (c) Rapid and long-range migration of new neurons. 

Newly generated new neurons (red) in the rodent SVZ migrate rapidly and reach the 

olfactory bulb within a week, where they differentiate into mature interneurons. In the 

migratory path, called the rostral migratory stream (RMS), the new neurons form an 

elongated chain-like cluster, and move inside a tunnel formed by astrocytic processes 

(blue), which sometimes occur along a blood vessel (orange); (d) Chains of new neurons 

along blood vessels in the RMS. Sagittal brain sections were immunostained with the new 

neuron marker Dcx (red) and endothelial marker CD31 (light blue). Some of the chains of 

new neurons were extended along and closely associated with blood vessels; (e) Chains of 

new neurons surrounded by astrocytic processes in the RMS. Sagittal brain sections were 

immunostained with Dcx (red) and the astrocytic marker GFAP (light blue). GFAP+ 

astrocytic processes tightly enclosed the chains of new neurons. 
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New neurons are guided by various microenvironmental cues to undergo directional migration. We 

found that the rostral migration of new neurons occurs in parallel with the directional flow of 

cerebrospinal fluid (CSF) in the lateral ventricle [73]. This directional migration is disrupted by a 

genetic mutation that causes defective ependymal cilia development and thus a lack of normal CSF 

flow. Normal CSF flow creates a concentration gradient of diffusible proteins, including 

chemorepellents for new neurons that are secreted from the choroid plexus in the lateral ventricle, 

which help guide the rostral migration of new neurons against the concentration gradient. On the other 

hand, new neurons are attracted toward the olfactory bulb by factors including netrin1 [68], 

prokineticin2 [74], glial cell-line derived neurotrophic factor (GDNF) [75], and brain-derived 

neurotrophic factor (BDNF) [76]. 

Notably, the chains of new neurons move inside tunnels formed by astrocytes, referred to as “glial 

tubes” [66,71] (Figure 3c, e). In several lines of mutant mice, aberrant astrocytic tunnel formation is 

accompanied by a disruption in the chain migration of new neurons [77–81], suggesting that the 

interaction between the new neurons and astrocytes is important for neuronal migration in the adult 

brain. In addition to physically separating the chains of new neurons from the surrounding tissue, 

which consists of a dense meshwork of neuronal fibers, astrocytes in the RMS control the migration of 

new neurons by taking up GABA secreted by the migrating neurons [82], trapping endothelial  

cell-derived BDNF [83], and secreting soluble and non-soluble factors [84,85]. We recently discovered 

the mechanism that forms and maintains the tunnel of RMS astrocytes: new neuron-derived soluble 

protein Slit1 acts on RMS astrocytes expressing Slit1’s receptor Robo, which regulates the distribution 

and morphology of the astrocytes to form the tunnels [86] (Figure 4). Taken together, these results 

show that new neurons migrating in the adult RMS interact with each other and with the astrocytic 

tunnels, and are guided by microenvironmental cues toward the olfactory bulb.  

2.4. Neurogenesis in the Olfactory Bulb 

New neurons that reach the olfactory bulb detach from the chain, and the individual cells migrate 

radially into the granule cell layer (GCL) and the glomerular layer (GL), where they differentiate into 

olfactory interneurons, granule cells and periglomerular cells, respectively (Figure 3c). Reelin, a 

secreted glycoprotein, and extracellular matrix tenascin-R are involved in this process [87,88]. 

About a half of these new neurons are eliminated within six weeks of their birth [89], but some 

remain longer than a year, depending in part on the olfactory input [89,90]. The olfactory bulb is the 

first relay station in the olfactory system, where odor information from the olfactory epithelium is 

transferred to higher centers in the brain. Interneurons there modulate the activity of glutamatergic 

projection neurons. Although it is reported that newly added interneurons are involved in odor 

discrimination [91], their actual function in the olfactory circuitry remains unclear [92]. Considering 

that the projection neurons are never replaced, the turnover of interneurons is likely to be responsible 

for the plasticity of the olfactory system. 
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Figure 4. Interaction between migrating new neurons and the surrounding astrocytes. 

(modified from Kaneko et al., Neuron, 2010 [76]). (a) Expression patterns of Slit1 and 

Robos in the RMS; (b) Disrupted migration of new neurons in a Slit1-defficient (Slit1
−/−

) 

brain slice. Representative paths of new neurons migrating in cultured brain slices obtained 

by time-lapse imaging were drawn with colored dots and lines. Compared with those of the 

wild-type (top) slice, the migration of new neurons in the Slit1
−/−

 RMS was irregular and 

slower (bottom, b’). Scale bars: 200 μm; (c) Slit repels SVZ/RMS astrocytes. Purified 

astrocytes dissociated from the SVZ and RMS were co-cultured with either Slit-expressing 

or control HEK cells mixed into collagen gel pieces (top). After 4 days of co-culture, 

significantly fewer astrocytes stained with GFAP (red) were observed on the  

Slit-containing gel (bottom right) compared with the control gel (bottom left). Scale bars:  

200 μm; (d) Disruption of astrocytic tunnels in the Slit1
−/− 

RMS. Sagittal brain sections 

containing wild-type
 
or Slit1

−/−
 RMS were immunostained with Dcx and GFAP (left). In 

the wild-type RMS, GFAP+ (green) astrocytic processes were extended along the chains of 

new neurons (red), whereas in the Slit1
−/−

 RMS, the arrangement of astrocytic processes 

was irregular. Electron micrographs (right) reveal an abnormal distribution of astrocytic 

processes (arrowheads) among the chain-forming new neurons in the Slit1
−/−

 RMS. Scale 

bars: 50 μm (white); 5 μm (black); (e) Schematic drawings of the Slit-Robo-mediated 

interaction between new neurons and tunnel-forming astrocytes. The new neuron-secreted 

Slit1 and astrocyte-expressed Robo receptor control the distribution and arrangement of 

astrocytes to maintain the migratory path of new neurons, which assists their rapid 

migration through the RMS. 
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3. Regeneration of Neurons by Endogenous NSCs 

Following the loss of neurons in various pathological conditions, including stroke, 

neurodegenerative diseases, and trauma, the proliferation activity of NSCs increases, and newly 

generated neurons appear in and around the damaged area. Recent studies on the human post-mortem 

brain revealed that cerebral infarction patients produce new neurons following the insult [93–95]. 

These findings indicate that there is a potential for neuronal regeneration in the mammalian brain, 

although the spontaneous regeneration is insufficient to compensate for the lost neurons, either 

histologically or neurologically. 

One of the pioneer studies of insult-induced neurogenesis showed that transient global ischemia 

causing the death of pyramidal neurons in the CA1 region in the hippocampus of the adult gerbil 

activates the proliferation of NSCs in the SGZ, increasing the number of new granule neurons in the 

GCL; however, the lost CA1 neurons are never replaced [96]. Another study using an adult rat model 

of transient global ischemia showed that NSCs/progenitors in the caudal extension of the SVZ close to 

the hippocampus migrate and regenerate CA1 pyramidal neurons there [97]. In addition, after focal 

ischemia induced by middle cerebral artery occlusion (MCAO), the most common model for ischemic 

stroke that causes infarction of the lateral striatum and adjacent neocortex, a small number of striatal 

projection neurons are regenerated [98]. That study showed that, within a week after the lesion, NSCs 

and progenitor cells in the SVZ begin to proliferate, and new neurons with a migratory morphology and 

newly generated mature neurons appear at the boundary of the damaged area in the striatum (Figure 5), 

but the origin of these cells was uncertain. Using viral infection-mediated cell-specific introduction of 

GFAP expression, we showed that these neurons are generated by GFAP-expressing NSCs in the SVZ 

and migrate radially into the damaged striatum, where they differentiate into mature neurons [99] 

(Figure 6). Thus, NSCs in the SVZ provide new neurons with a remarkable migration capacity, which 

may compensate for neurons lost to insult, and help regenerate the neuronal circuitry. These findings 

further imply that the SVZ could be an important therapeutic target for various pathological conditions.  

Insult-induced alterations in the microenvironment play an important role in NSC activation. 

Among neurodegenerative conditions, ischemic stroke causes especially drastic biological responses 

soon after the lesion, due to its sudden onset. First, immune responses, including the activation of 

microglia and astrocytes around the infarcted area and T-lymphocyte infiltration into the damaged 

brain, begin [100–102]. These cells produce cytokines and other molecules that promote or inhibit the 

neurogenic function of the NSCs [103]. At the same time, the expression of angiogenesis-related 

genes, including vascular endothelial growth factor (VEGF), FGF2, and epidermal growth factor 

(EGF), is markedly increased in the damaged region [104]. These factors are also known to stimulate 

the proliferation of NSCs/progenitor cells in the SVZ [59,105,106]. Angiogenesis in the ischemic 

region precedes neurogenesis, and vascular endothelial cells release soluble factors that promote the 

self-renewal of neural stem cells in the SVZ. Notably, recent studies have shown that the vasculature in 

the SVZ is an important component of stem-cell niches [53,107,108], suggesting that angiogenesis 

plays a critical role in activating NSCs after stroke. 
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Figure 5. Migration of new neurons to an injured area. (a) Schematic drawings of SVZ 

new neurons migrating toward an infarcted area; (b) Mouse brain section 18 days after 

experimental ischemic stroke stained with the new neuron marker Dcx (brown). Transient 

middle cerebral artery occlusion (MCAO) caused infarction (white broken line). Eighteen 

days later, new neurons generated in the SVZ migrated toward the infarcted area. b’ shows 

a higher-magnification image of the boxed area in b; (c) Association of migrating new 

neurons with the vasculature. A brain section 18 days after MCAO was immunostained 

with Dcx (green) and the endothelial marker CD31 (red). Many of the new neurons 

migrating toward the infarcted area were closely associated with blood vessels;  

(d) Vascular scaffold for new neurons migrating toward the infarcted area. Time-lapse 

imaging of a cultured brain slice after MCAO. New neurons were labeled by lentivirus 

injection into the lateral ventricle of Flk1-EGFP mice. A new neuron (green) extended 

leading process (arrows) and migrated along a blood vessel (red).  

 

 

New neurons generated by activated NSCs in the SVZ migrate in the striatum toward the infarct 

area, frequently forming chain-like structures similar to those observed in the RMS. We found that 

these aligned cells are closely associated with astrocytic processes and blood vessels [99,109]  

(Figure 5c, d). Migration of these new neurons is controlled by stroma cell-derived factor 1 (SDF1) and 

angiopoietin 1 (Ang1), which are produced by vascular endothelial cells and by monocyte 

chemoattractant protein 1 (MCP1), which is expressed by activated microglia and astrocytes in the 

damaged area [109–113]. The signals of these molecules are mediated by their respective receptors, 

CXCR4, Tie2, and CCR2, which are expressed on migrating new neurons. Therefore, the migration of 

new neurons in the injured brain is regulated by interaction with their surroundings, which include 

activated glia and vasculature.  
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Figure 6. Endogenous NSC-derived neuronal regeneration. (a) Schematic drawing of the 

experimental procedure. The pxCANCre plasmid was injected into the lateral ventricle  

5 days before MCAO, then the fate of GFP-labeled new neurons generated in the SVZ was 

detected 90 days after MCAO; (b) Confocal 3D reconstruction image of a GFP  

(green)-labeled cell expressing the mature neuronal marker, NeuN (red). Ninety days after 

MCAO, 29% of the SVZ-derived GFP-positive cells around the infarcted area expressed 

NeuN, a specific marker for mature neurons. Scale bar: 20 µm; (c) A GFP-positive cell 

exhibiting a neuronal morphology. Scale bar: 20 µm; (d) An electron micrograph showing 

a GFP-positive axon (asterisk) containing presynaptic vesicles. A higher-magnification 

view of the region of the boxed area (d’) shows the postsynaptic density (arrowheads).  

Scale bar: 0.5 µm. 

 

 

Previous reports have described BrdU-labeled newborn cells that express markers for mature 

neurons within the damaged striatum as early as 30 days after the induction of ischemia. We examined 

the phenotype of SVZ-derived GFP-labeled cells after an extended survival period by light and electron 

microscopy [99]. The labeled cells were found to possess long processes, express NeuN, and form 

synaptic structures in the damaged striatum 90 days after ischemia induction (Figure 6). These results 

strongly suggest that SVZ cells have the ability to generate functional mature neurons that survive in 

the damaged striatum for considerable periods.  

On the other hand, studies have also suggested that the capacity of endogenous NSCs to compensate 

for lost cells is limited. In spite of the active proliferation of NSCs after insult, they become more 

gliogenic than neurogenic [114]. In addition, most of the new migrating neurons in and near the injured 

area die before differentiating into functional neurons, possibly because of a lack of factors and 

stimulation to support their survival and differentiation; thus, only 0.2% of the dead neurons are 

replaced [98]. NSCs in the SVZ do not show a neurogenic response to infarction that is within the 

cortex and does not involve the striatum [115,116]. Moreover, recent studies suggest that these NSCs 

cannot alter the types of neurons they generate depending on the context: they produce only  



Genes 2011, 2             

 

 

118 

calretinin-expressing interneurons, a subtype of interneuron that is continuously replaced in the 

olfactory bulb under physiological conditions, and they do not produce striatal neurons [117,118].  

A similar limitation was reported in an animal model of Parkinson’s disease: After the specific 

elimination of dopaminergic neurons by injecting 6-OHDA, the proliferation of NSCs in the SVZ was 

dramatically increased by treatment with transforming growth factor α, but these cells never 

differentiated into the neuronal lineage [119].  

However, in spite of these apparent limitations to the regeneration of damaged brain tissue by 

endogenous NSCs, accumulating studies show beneficial effects of interventions that promote 

neurogenesis, including treatment with erythropoietin [120], statins [121], activated protein C [122], 

HDAC inhibitors [123], and EGF/FGF-2 [124], on their functional recovery following a lesion. It has 

not been determined whether these effects depend directly on the promotion of neuronal regeneration 

by NSCs, or whether accompanying events, such as enhanced glial regeneration and other types of 

trophic support, are more important. Moreover, a key issue in the field of neuronal regeneration is that 

newly generated neurons need to make the appropriate connections, although the details of this process 

are still largely unknown. Further studies are needed to clarify how newly generated neurons are 

associated with neurological improvement and to elucidate the comprehensive mechanism regulating 

the endogenous regeneration system.  

4. Regeneration of Myelin by Endogenous NSCs 

In the central nervous system, oligodendrocytes form the myelin sheath, an important structure for 

nerve conduction that wraps around axons to facilitate the rapid, saltatory conduction of electrical 

impulses. Demyelination is observed in both oligodendrocyte-specific degeneration diseases, such as 

multiple sclerosis (MS), and non-specific insults, including severe ischemia. Demyelination causes 

conduction block, leading to a variety of neurological impairments. Compared with neurons, 

oligodendrocytes are intensively regenerated by an endogenous pool of NG2 chondroitin  

sulfate-expressing oligodendrocyte progenitor cells, which are broadly distributed in the adult 

brain [125,126]. Moreover, recent studies suggest that NSCs in the SVZ are also involved in this 

process [127–129]. Thus, NSCs in the SVZ are considered a potential target for regenerative strategies 

to treat demyelination-associated pathophysiologies.  

Even under physiological conditions, a small subpopulation of NSCs and progenitors in the SVZ 

express the oligodendrocyte lineage transcription factor, Olig2, generate oligodendrocyte progenitors. 

These cells express PSA-NCAM but not the neuronal lineage marker, beta3 tubulin, and migrate into 

the corpus callosum, striatum, and fimbria fornix, where they differentiate into nonmyelinating 

progenitors and mature myelinating oligodendrocytes [127,128]. Chemically induced demyelination in 

rodents markedly promotes this process [127,129]. Mitogens such as FGF-2 increase the production of 

oligodendrocyte progenitors and neuronal progenitors, whereas PDGF-AA and EGF stimulate NSCs to 

specifically produce NG2+ oligodendrocyte progenitors [130–132]. After their migration, the 

oligodendrocyte progenitors differentiate into mature oligodendrocytes and regenerate myelin on the 

affected axons. Recent studies have identified factors involved in this process, which include 

EGF [131,133,134], insulin-like growth factor-1 [135], Wnt-β-catenin mediator Tcf4 [136], 

Notch1 [137], and erythropoietin [120,138]. 
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Notably, there are several limitations to the regeneration of myelin by endogenous cells. The 

maturation and myelination steps have been suggested to be particularly vulnerable; for example, 

remyelination is disturbed in both an animal demyelination model [120,139] and patients with chronic 

MS [140,141]. The spontaneous regeneration of myelin by endogenous cells is insufficient to 

completely restore the injury. However, efficient interventions that promote this process have yet to be 

established. Moreover, for hereditary dysmyelinating diseases in which myelin formation is 

developmentally disturbed, endogenous cell-based regeneration is not available. In animal models of 

such diseases, the allotransplantation of exogenous cells has resulted in successful myelination [142,143]. 

Myelination is a critical step for restoring neuronal function, not only for the demyelinated axons of 

surviving neurons but also for the new neurons regenerated after a lesion. Thus, for successful neuronal 

regeneration, the appropriate regeneration of oligodendrocytes is also needed.  

5. Conclusion 

NSCs in the SVZ are the main source of new neurons that migrate toward a lesion site, where they 

differentiate into mature neurons. Moreover, they might produce a small but significant number of 

oligodendrocytes, which contribute to remyelination. There are many challenges to overcome before 

the regeneration or repair of neuronal circuitry can be achieved. However, considering the fundamental 

advantages of endogenous NSCs for therapeutic use, free from immunological and ethical problems, 

the mechanisms of insult-induced neuronal regeneration and remyelination described here are of 

fundamental importance for understanding the molecular mechanisms that control endogenous NSCs 

and their progeny. For future clinical applications, interventions that regulate the migration, 

differentiation, survival, and functional maturation of newly generated cells to promote efficient 

regeneration, without over-activating the NSCs (a speculated tumorigenic risk), should be particularly 

important for developing novel and reliable neuronal self-repair strategies. 
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