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Electroretinogram (ERG) is a time-varying potential which arises from different layers of retina. To be specific, all the physiological
signals may contain some useful information which is not visible to our naked eye. However this subtle information is difficult
to monitor directly. Therefore the ERG signal features which are extracted and analyzed using computers are highly useful for
diagnosis. This work discusses the chaotic aspect of the ERG signal for the controls, congenital stationary night blindness (CSNB),
and cone-rod dystrophy (CRD) classes. In thiswork, nonlinear parameters likeHurst exponent (HE), the largest Lyapunov exponent
(LLE), Higuchi’s fractal dimension (HFD), and approximate entropy (ApEn) are analyzed for the three different classes. It is found
that the measures like HE dimension and ApEn are higher for controls as compared to the other two classes. But LLE shows no
distinguishable variation for the three cases.We have also analyzed the recurrence plots and phase-space plots which shows a drastic
variation among the three groups. The results obtained show that the ERG signal is highly complex for the control groups and less
complex for the abnormal classes with 𝑃 value less than 0.05.

1. Introduction

All physiological signals exhibit complex behavior which
reflects the nonlinear dynamic properties of a biological
system. Considering this, the use of nonlinear tools to exhibit
the chaotic behavior may be a better approach to explore the
nature of the electroretinographic signal. The randomness
of the ERG signal does not allow any form of time-series
prediction. The study of nonlinear dynamics can contribute
to the understanding of the ERG signal and the underlying
retinal processes [1, 2].

1.1. Electroretinogram (ERG). Electroretinogram is the time-
varying potential which arises from different retinal layers
and is elicited by a brief flash of light stimuli. Contact lens
type electrode which carries a silver chloride wire is used
to record ERG clinically. The electrode is placed on the
cornea and is in the shape of a cup filled with saline. The
reference electrode is placed either on the earlobe, temple, or
forehead.The amplitude of the ERG waveform is in the range

of tenths ofmillivolt which depends upon the stimulating and
physiological conditions [3].

Figure 1 shows the cross-sectional view of human retina
and the origin of signals from different layers of the retina.
An ERG signal comprises of early receptor potential (ERP)
𝑅
1
and 𝑅

2
, 𝑎-wave (𝑎

1
and 𝑎

2
), oscillatory potentials, 𝑏-

wave (cone 𝑏-wave and rod 𝑏-wave), and 𝑐-wave. The initial
changes in the photo pigmentmolecules of the photoreceptor
cells (cone cells and rod cells) due to the brief flash of light
stimulus will give rise to a positive 𝑅

1
deflection followed by

𝑅
2
deflection which forms the ERP. It is then followed by a

late receptor potential (LRP) after a 2ms delay which forms
the main portion of the 𝑎-wave and is a corneo-negative
wave. The 𝑎-wave comprises of two negative dips 𝑎

1
and 𝑎

2

which shows the contribution of cone cells and rod cells,
respectively. It lasts for about 30ms. These cone cells and
rod cells can be separated by applying appropriate stimuli. A
dim-blue light with the dark background extracts a rod ERG
and a bright red light with the light adapted background will
give a cone ERG. The Muller cells in the inner retina which
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Figure 1: The cells of retina and the standard ERG waveform (courtesy: Jaakko Malmimo and Robert Plonsey, “Bioelectro-magnetism-
Principles and Applications of Bioelectric and Biomagnetic fields”).

contribute to the 𝑏-wave are a corneo-positive wave. Muller
responses can be obtained either from the cone cells or from
the rod cells separately.Theoscillatory potentials which occur
in the rising edge of the 𝑏-wave are small amplitude wavelets
that reflect the activity of amacrine cells of the inner retinal
layers. The 𝑐-wave which is generated by the retinal pigment
epithelium (RPE) as a result of interaction with the rod cells
is a slower positive wave [3].

1.2. Recording of the ERG Signal. International Standards
for Clinical Electrophysiology of Vision (ISCEV) sets the
recording of the ERG signal in five different steps.

1.2.1. Rod Response. Thepatient is dark adapted for at least 20
minutes.The standard stimulus of dim-white flash (2 seconds
between the flash) of 2.5 log units or blue stimulus is given. It
is the first signal measured during the ERG recording [4].

1.2.2. Maximal Response. The combined response of both
cone cells and rod cells gives maximal response and is
produced by the white standard flash (10 seconds between the
flashes) [4].

1.2.3. Oscillatory Potentials. Oscillatory potentials or OP are
obtained either from light adapted eye (1.5 seconds between
flashes) or from dark adapted eye (15 seconds between
flashes) using white standard flash. The frequency of interest
is set by the band pass filter and the lowest frequency range is
75–100Hz and 300Hz and above at the higher end [4].

1.2.4. Cone Response. Before recording the cone response, the
patient should be light adapted for at least 10 minutes. The

flash used is white or bright red in colour and 0.5 seconds
between the flashes is the interval given [4].

1.2.5. 30Hz Flicker Response. Here the flicker type stimulus is
used and flashes are given at the rate of 30 stimuli per second.
Rods follow the flickering light up to 12–17Hz and cones will
follow up to 60–70Hz [4].

1.3. Literature Study. The first remarkable work done in the
field of ERG signal analysis by Bornschein et al. was the
study of electroretinography in normal, colour-blind, and
night-blind subjects under various states of adaptation with
varying stimuli [5]. A series of work followed by Barraco et
al. shows the three-frequency range of occurrence between
20 and 200Hz [1] and also analyzed the time-frequency
characteristics of the 𝑎-wave in congenital stationary night
blindness (CSNB) patients [2, 6]. Study on the basis of
principal component analysis and wavelet analysis was used
to visualise the time domain features and wavelet features
(Rogala andBrykalski) [7]. Anotherwork reported in the area
of ophthalmology is multifocal ERG analysis using wavelet
transform by Miguel et al. for the diagnosis of glaucoma
[8, 9]. Nair and Paul Joseph have analysed the ERG signal
using wavelets and entropy analysis [10]. Study of Crevier and
Meister showed that period-doubling occurs in the nonlinear
dynamical system and observation of chaotic behavior in
the nervous system is the period-doubling route to chaos in
flicker vision of the ERG [11]. Molaie et al. showed that the
parameters like flash frequency and contrast have a greater
impact on the recorded ERG signals which cause bifurcations
resulting in a period-doubling and the work defines neural
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network to be a powerful tool for modeling highly chaotic
behavior in the nervous system [12].

To the best of our knowledge, no work is done on the
nonlinear aspect of the ERG signal. Here, in this work, we are
analysing the ERG signal of controls, congenital stationary
night blindness (CSNB), and cone-rod dystrophy (CRD)with
the nonlinear chaotic perspective of analysis.

1.4. Organisation of Work. The organisation of work includes
the following subsections. In “Data Acquisition” Section we
present the details of the acquisition of ERG recordings
and various pathological diseases affecting the eye. “Analysis
Methods” provides a brief overview of various characteristic
measures like Hurst exponent, Lyapunov exponent, approx-
imate entropy, fractal dimension, and recurrence plots for
various cases. Following that the results are included. Final
conclusion and discussion of the study are also reported.

2. Data Acquisition

Acquisition of the recordings of the ERG signal is performed
using TOMEY EP 1000 version 3.0.4 from 15 control sub-
jects, 20 subjects with congenital stationary night blindness
(CSNB) type I, 15 subjects with CSNB type II, 35 subjects
with cone-rod dystrophy also called as retinitis pigmentosa,
among which 15 subjects are of typical RP (retinitis pigmen-
tosa), 10 subjects of early onset RP, and 10 subjects of late stage
RP. From the five steps of the recording of ERG signals, we
are analyzing only the maximum response and 30Hz flicker
response from the above subjects. Patient data were collected
from Little Flower Hospital and Research Centre, India, with
the proper consent from the clinicians. Brief descriptions of
the pathologies analyzed are given below.

2.1. Controls. The normal amplitude range of rod response
is 140–250 𝜇V with the implicit time of 80–90ms, maximum
response ranges from 250 to 500 𝜇V amplitude, and implicit
time is 45ms. Cone response amplitude is 100–180 𝜇V with
the implicit time of 32ms and flicker response amplitude is
50𝜇V approximately.

2.2. Congenital Stationary Night Blindness (CSNB). It is an
X-linked retinal disorder with abnormal nocturnal vision. It
has two forms depending upon the severity: complete form
CSNB type I and an incomplete form CSNB type II. The
main difference between the two is in the complete form;
there are no measurable rod cells, whereas in the incomplete
form some response is obtained due to the rod cells. In the
complete form, cone activity is also affected [13, 14].

2.3. Cone-Rod Dystrophy (CRD) or Retinitis Pigmentosa (RP).
CRD also called as retinitis pigmentosa is an inherited retinal
dystrophy with retinal pigment deposits visible on fundus
examinations.The 𝑎-wave and 𝑏-wave amplitude are reduced.
It is again classified into three types, namely, typical RP,
early onset RP, and late stage RP. In the first type, the
symptom is night blindness. In the second type, macular
involvement occurs early and there is an involvement of rod
cells which supports the diagnosis. In the third type, there is
a decrease in the visual acuity and also macular involvement.

The appearance of night blindness or loss of central vision
supports the diagnosis [15, 16].

3. Analysis Methods

In this work various characteristic measures like Hurst
exponent, Largest Lyapunov exponent, Higuchi’s fractal
dimension, approximate entropy, and recurrence and phase-
space plots are analyzed. A brief description of each of the
parameters is given below.

3.1. Hurst Exponent. Hurst exponent is used to evaluate the
long range dependence of data and its degree in a time series.
Hurst exponent is themeasure of smoothness of a fractal time
series. It can also be defined as

𝐻 =
log (𝑅/𝑆)

log (𝑇)
, (1)

where 𝑇 is the duration of the ERG sample of data and 𝑅/𝑆 is
the value of rescaled range. If 𝐻 = 0.5, the time series acts as
a randomwalk. If𝐻 < 0.5, the time series covers less distance
than a random walk. If 𝐻 > 0.5, the time series covers larger
distance than a random walk.

To estimate the Hurst exponent, the dependence of the
rescaled range on the time span 𝑛 is first estimated. A time
series of length 𝑁 is divided into shorter time series of length
𝑛 = 𝑁, 𝑁/2, 𝑁/4 . . .. The average rescaled range is computed
for each “𝑛” [17]. Step-by-step explanation of rescaled range
calculation is as follows.

(i) Calculate the mean:

𝑚 =
1

𝑛

𝑛

∑

𝑖=1

𝑋
𝑖
, where 𝑋 = 𝑋

1
, 𝑋
2
, . . . 𝑋

𝑛
. (2)

(ii) Create a mean-adjusted time series:

𝑌
𝑡

= 𝑋
𝑡

− 𝑚 for 𝑡 = 1, 2, . . . 𝑛. (3)

(iii) Compute the cumulative deviate series say 𝑍:

𝑍
𝑡

=

𝑡

∑

𝑖=1

𝑌
𝑖

for 𝑡 = 1, 2, . . . 𝑛. (4)

(iv) Compute the range 𝑅:

𝑅 (𝑛) = max (𝑍
1
, 𝑍
2,...

𝑍
𝑛
) − min (𝑍

1
, 𝑍
2,...

𝑍
𝑛
) . (5)

(v) Compute 𝑆, standard deviation,

𝑆 (𝑛) = √
1

𝑛

𝑛

∑

𝑖=1

(𝑋
𝑖

− 𝑛)
2

. (6)

(vi) Calculate the rescaled range 𝑅(𝑛)/𝑆(𝑛) and average
over all time series of “𝑛.”
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3.2. The Largest Lyapunov Exponent (LLE). Lyapunov expo-
nent is used to distinguish between the periodic and chaotic
signals. In phase space, the trajectories of chaotic dynamics
follow typical patterns. It is the rate at which the neighbor-
ing trajectories separate from each other. A zero exponent
indicates that the orbits maintain their relative positions. A
negative exponent shows that the orbits approach a common
point and the positive exponent shows that they are on
chaotic attractor.

For any two points in a space say𝑋
0
and𝑋

0
+Δ𝑥
0
, each of

the points generates their own orbit in the space using a set of
equations, where Δ𝑥 is the separation between the two orbits.
This separation Δ𝑥 is the function of initial value Δ𝑥(𝑋

0
, 𝑡).

Then the Lyapunov exponent 𝜆 is given by

𝜆 = lim
𝑡→∞

1

𝑡
ln

󵄨󵄨󵄨󵄨Δ𝑥 (𝑋
0
, 𝑡)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨Δ𝑋
0

󵄨󵄨󵄨󵄨

. (7)

The largest Lyapunov exponent is computed by the least
square fit to average line and is defined as

𝑦 (𝑛) =
1

Δ𝑡
⟨ln (𝑑

𝑖
(𝑛))⟩ , (8)

where 𝑑
𝑖
(𝑛) is distance between 𝑖th phase-space point and its

nearest neighbors at 𝑛th time and ⟨⋅⟩ is the average overall
phase-space points [18–20].

3.3. Approximate Entropy (ApEn). Approximate entropy
which is applied to the relatively short and noisy data is the
logarithmic likelihood that the sample points which are close
to each other will be same for the next comparison with a
longer pattern. Smaller ApEn value shows that the signal is
deterministic and higher ApEn value shows that the signal is
random [21, 22]:

ApEn (𝑚, 𝑟, 𝑁)

=
1

𝑁 − 𝑚

𝑁−𝑚

∑

𝑖=1

log (𝐶
𝑚+1

𝑖
(𝑟)) − (

1

𝑁 − 𝑚 + 1
)

×

𝑁−𝑚+1

∑

𝑖=1

log (𝐶
𝑚

𝑖
(𝑟)) ,

(9)

where 𝐶
𝑚

𝑖
(𝑟) is correlation integral, 𝑚 is pattern length, and 𝑟

is effective filter [23, 24].

3.4. Fractal Dimension (FD). In traditional geometry, the
Euclidean dimension of an object is referred to as the number
of directions each differential of the object occupies in a space.
The FD is used to provide a measure of how much space is
occupied by an object between the Euclidean dimensions. In
this work, we are using Higuchi’s algorithm for the analysis
[25].

Let 𝑥(1), 𝑥(2) . . . 𝑥(𝑁), be the time series to be analyzed.
Let 𝑥
𝑘

𝑚
be the 𝑘 new time series:

𝑥
𝑘

𝑚
= {𝑥 (𝑚) , 𝑥 (𝑚 + 𝑘) , 𝑥 (𝑚 + 2𝑘) ,

. . . 𝑥 (𝑚 + [
𝑁 − 𝑚

𝑘
] 𝑘)} ,

(10)
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Figure 2: Variation of HE for six cases.

where 𝑚 = 1, 2 . . . 𝑘 and 𝑚 is initial time value and 𝑘 is the
discrete time interval.

For each 𝑥
𝑘

𝑚
, 𝐿
𝑚

(𝑘) (length) is computed by

𝐿
𝑚

(𝑘) =

[𝑎]

∑

𝑖=1

|𝑥 (𝑚 + 𝑖𝑘) − 𝑥 (𝑚 + (𝑖 − 1) 𝑘)|
(𝑁 − 1)

[𝑎] 𝑘
, (11)

where 𝑁 is the total length of data 𝑥, (𝑁 − 1)/[𝑎]𝑘 is
normalization factor, and 𝑎 is (𝑁 − 𝑚)/𝑘.

This procedure is repeated for different values of 𝑘

ranging from 1 to 𝑘max, obtaining the average length. Fractal
dimension is the slope of the least square linear best fit of the
graph ln(𝐿

𝑚
(𝑘)) versus ln(1/𝑘).

3.5. Recurrence Plots (RP). Recurrence plot is a visualization
technique which is used to detect hidden dynamical patterns
and correlations in the data. In general, the RP reveals all
those times at which the phase-space trajectory visits roughly
the same area in the phase space. Suppose we have the time
series {𝑋

𝑖
}
𝑁

𝑖=1
representing the trajectory in the phase space

with 𝑋
𝑖

∈ R𝑑. RP is based on the following equation:
R
𝑖,𝑗

= Θ(∑ −‖𝑋
𝑖

− 𝑋
𝑗
‖), 𝑖, 𝑗 = 1, 2, . . . 𝑁. Θ = Heaviside

function. ‖ ⋅ ‖ = norm. ∑ = predefined threshold.
Recurrence plots are mainly of four types, homogenous,

drift, periodic, and disrupted. Homogenous RP are of station-
ary type and relaxation time is short with respect to the time
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Figure 3: Variation of ApEn for six cases.

spanned by the RP. Oscillating systems have RP (periodic)
with diagonal lines and checkerboard structures. Slowly vary-
ing parameters with brightened RP at upper left and lower
right corners are drift RP. Extreme events or sudden changes
in the dynamics produce disrupted recurrence plots [26].

3.6. Surrogate Data Analysis. Surrogate data analysis is used
to check the nonlinearity in the original data. Surrogate data
is generated by phase randomizing the original dataset. The
surrogate data has the same mean, variance, autocorrelation
function, and similar spectral properties as of original data
but phase relations are different. 15 surrogate series were gen-
erated from each original data series. Statistical significance
is measured by comparing the experimental data with the
surrogate data. If both results differ more than 50%, then the
null hypothesis is rejected and it shows that the original data
is nonlinear [27].

4. Results

Nonlinear parameters like Hurst exponent, approximate
entropy, Higuchi’s fractal dimension, and the largest Lya-
punov exponent are calculated for 30Hz flicker signal and
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oscillatory potential of ERG signal. Tables 1 and 2 show the
unique parameters in different cases along with the 𝑃 values.

The Hurst exponent which is in the range of 0-1 is used
to measure the long range dependence of a time series. In
each of the cases shown in Tables 1 and 2, the HE varies
with a 𝑃 value less than 0.05. Approximate entropy which
measures the disorder or predictability of the ERG signal
shows higher values for control and the range of values
reduces with each pathological case. The time lag used is 1
with 𝑚 value of 2. For ApEn 𝑟 value is taken as 15% of the
standard deviation. The 𝑟 value is selected on the basis of
previous studies which indicate good statistical validity [22].
HFD also showed reduced values for abnormal cases due to
reduced rhythmic variation. Dimension value is taken as 9
with the delay of 1 in our study.

Figures 2, 3, and 4 show the Hurst exponent, LLE, and
ApEn for the ERG signal. In our analysis, LLE value is a
positive exponent which means that the signal is chaotic but
the value is not distinguishable for different cases with the 𝑃

value greater than 0.05.
Recurrence plot shows unique pattern in the case of

control, CSNB, and CRD groups. In cone-rod dystrophy, also
known as retinitis pigmentosa, recurrence plots show more
squares in the case of both 30Hz flicker input and oscillatory
potential input (Figures 5 and 6). It indicates that, in CRD
groups, a rhythmic variation causes periodicity and more
patches of colors indicate variation of the signal.
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Figure 5: Recurrence plots for 30Hz flicker input.

Table 1: Nonlinear parameter values in different cases for 30Hz flicker ERG signal.

Parameters Controls CSNB I CSNB II Typical RP Early onset RP Late stage RP 𝑃 value
HE 0.5468 ± 0.042 0.3467 ± 0.04 0.2513 ± 0.0214 0.7768 ± 0.012 0.6987 ± 0.0314 0.9144 ± 0.0654 0.0051
ApEn 2.9527 ± 0.0301 2.6553 ± 0.0425 2.4934 ± 0.028 1.9464 ± 0.01 1.2970 ± 0.006 1.0904 ± 0.043 0.0124
HFD 1.8483 ± 0.0401 1.6526 ± 0.0912 1.4366 ± 0.0048 1.3370 ± 0.03 1.2464 ± 0.0062 1.0809 ± 0.012 0.123
LLE 0.4823 ± 0.0031 0.457 ± 0.001 0.41 ± 0.004 0.43 ± 0.0015 0.401 ± 0.007 0.422 ± 0.0017 0.067

Table 2: Nonlinear parameter values in different cases for oscillatory potential of ERG signal.

Parameters Controls CSNB I CSNB II Typical RP Early onset RP Late stage RP 𝑃 value
HE 0.4551 ± 0.033 0.1120 ± 0.0112 0.1909 ± 0.0241 0.2805 ± 0.0306 0.3548 ± 0.016 0.8168 ± 0.0212 0.002
ApEn 1.8526 ± 0.005 1.4491 ± 0.0041 1.1947 ± 0.0203 0.95608 ± 0.052 0.7522 ± 0.004 0.6405 ± 0.031 0.034
HFD 1.8501 ± 0.0301 1.5448 ± 0.0165 1.4383 ± 0.026 1.0098 ± 0.003 1.3142 ± 0.0046 1.2696 ± 0.011 0.106
LLE 0.7090 ± 0.0015 0.7577 ± 0.0009 0.7134 ± 0.002 0.7043 ± 0.0052 0.741 ± 0.0064 0.732 ± 0.0041 0.079
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Figure 6: Recurrence plots for oscillatory potential input.

5. Discussion and Conclusion

In this paper we have demonstrated and introduced the
nonlinear analysis as a tool to evaluate the electroretino-
graphic signal. All biological signals are random in nature
and this randomness does not provide any time domain
analysis and prediction. A nonlinear deterministic chaos
theory and chaotic indicators are used for the analysis of ERG
signal. In our work, quantitative schemes such as Hurst expo-
nent, Lyapunov exponent, Higuchi’s fractal dimension, and
approximate entropy are analyzed. Qualitative analysis like
recurrence plots and phase-space plots are also computed for
controls and different pathological groups. From our work, it
can be concluded that all the nonlinear parameter values are
higher for the control subjects and smaller values in the case

of CSNB and CRD group which clearly shows the reduction
of rhythmic variation in the pathological cases. In all the six
cases (normal, CSNB I, CSNB II, typical RP, early onset RP,
and late stage RP) the parameters like Hurst exponent, ApEn,
HFD, and average recurrence showdistinguishable numerical
information from the ERG signal. From our study the largest
Lyapunov exponent (LLE) shows positive value in all cases
indicating the confirmation of the chaotic nature of the ERG
signal. But LLE is not distinguishable for different groups.
Recurrence plots and phase-space plots provide the visual
inspection tool to assess the time evolution and the frequency
of their recurrences. In our previous work, we have analyzed
the ERG signal using wavelet analysis [10]. The method
described in this paper is the analysis of the same signal
from the nonlinear perspective of view. No work has yet been
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reported till now on the nonlinear aspect of the ERG signal
analysis. Currentwork provides an excellentmethod formore
advanced studies in the field of ophthalmology. Analysis and
methods are individual dependent and the existing literatures
prove that nonlinear methods are more effective in the anal-
ysis of biomedical signals like EEG (electroencephalogram)
and HRV (heart rate variability) analysis.
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