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Abstract: Lung cancer, chronic obstructive pulmonary disease (COPD) and asthma are inflammatory
diseases that have risen worldwide, posing a major public health issue, encompassing not only
physical and psychological morbidity and mortality, but also incurring significant societal costs.
The leading cause of death worldwide by cancer is that of the lung, which, in large part, is a
result of the disease often not being detected until a late stage. Although COPD and asthma are
conditions with considerably lower mortality, they are extremely distressful to people and involve
high healthcare overheads. Moreover, for these diseases, diagnostic methods are not only costly but
are also invasive, thereby adding to people’s stress. It has been appreciated for many decades that
the analysis of trace volatile organic compounds (VOCs) in exhaled breath could potentially provide
cheaper, rapid, and non-invasive screening procedures to diagnose and monitor the above diseases of
the lung. However, after decades of research associated with breath biomarker discovery, no breath
VOC tests are clinically available. Reasons for this include the little consensus as to which breath
volatiles (or pattern of volatiles) can be used to discriminate people with lung diseases, and our
limited understanding of the biological origin of the identified VOCs. Lung disease diagnosis using
breath VOCs is challenging. Nevertheless, the numerous studies of breath volatiles and lung disease
provide guidance as to what volatiles need further investigation for use in differential diagnosis,
highlight the urgent need for non-invasive clinical breath tests, illustrate the way forward for future
studies, and provide significant guidance to achieve the goal of developing non-invasive diagnostic
tests for lung disease. This review provides an overview of these issues from evaluating key studies
that have been undertaken in the years 2010–2019, in order to present objective and comprehensive
updated information that presents the progress that has been made in this field. The potential of
this approach is highlighted, while strengths, weaknesses, opportunities, and threats are discussed.
This review will be of interest to chemists, biologists, medical doctors and researchers involved in the
development of analytical instruments for breath diagnosis.

Keywords: analytical platforms; markers of respiratory diseases; lung cancer; chronic obstructive
pulmonary disease; asthma

1. Introduction

Respiratory diseases—including lung cancer, chronic obstructive pulmonary disease
(COPD) and asthma—are increasing worldwide. The World Health Organization (WHO)
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reported that the above-mentioned diseases are associated most often with smoking of
tobacco products, a habit that ultimately kills at least 8 million people per year. More-
over, Paul Garwood, Communications Officer of WHO, reported more than 40% of all
tobacco-related deaths are due to lung diseases, including cancer, COPD and tuberculo-
sis [1]. While lung cancer is one of the leading causes of death worldwide [2], COPD and
asthma are predominant lung diseases that are extremely stressful, limit quality of life,
and represent a significant societal costs [3].

Respiratory diseases, especially lung cancer, are often diagnosed only in their late
stages, because either of lack of specific symptoms or because they can be confused with
transient virus-induced diseases, which delays the chance of applying a timely and effec-
tive treatment. The diagnosis procedures for all three diseases are either bronchoscopy,
broncho-alveolar lavage or biopsy; all are very invasive, costly and time consuming [4].
Consequently, a non-invasive, fast, inexpensive and reliable screening procedure, real-
ized by means of robust and user-friendly analytical platforms that can replace the classical
methodologies for diagnosis of lung cancer, asthma and COPD, is highly required.

Exhaled breath can be the perfect matrix to be investigated. A breath sample is
directly connected with the affected organ (the lungs) and may therefore perfectly reveal
the emitted endogenous volatiles resulting from oxidative stress. Moreover, owing to its
non-invasiveness, patients willingly accept breath sampling.

Other biological matrices, including saliva, breast milk, sweat, epithelial tissue, urine
or feces, have been investigated for their use in diagnosing various diseases, for assessing
chemical exposure, or for determining drug consumption [5–12].

The investigation of exhaled breath has been studied more intensively compared with
other biological samples [13–22], and for which a number reviews are available in the
literature [4,23–30]. However, none of these reviews covers recent studies of VOCs and
lung disease undertaken in the last decade.

The focus of this paper is to provide such a review, presented in a systematic way so
that the current knowledge on VOC breath biomarkers of lung cancer, asthma and COPD
and details on their potential for use as diagnostic tools for lung diseases are provided in
one useful source for guiding future studies.

This review will cover studies of lung diseases that have used various analytical
platforms for breath analyses [31], including proton-transfer reaction mass spectrometry
(PTR-MS) [32–34], secondary electrospray ionization—mass spectrometry (SESI-MS) [20],
ion mobility spectrometry (IMS) [18,35–37], various sensors and E-noses [15,38–44] and
gas chromatography–mass spectrometry (GC–MS) [43–48].

GC-MS is regarded as the most selective detection method used in a variety of other
areas [7,31,49–53], but requires sample pre-concentration and cannot be used in real-time.
Neither PTR-MS, SESI-MS, nor GC-MS can be used in clinical environments at the point-
of-care, but all are extremely useful for discovery investigations. For provision of clinical
information so that quick and informed medical decisions can be made, IMS type systems
and e-noses have significant advantages in terms of their simplicity and low costs.

2. Study Design
2.1. Articles Selection

A single reviewer (IAR) undertook an extensive literature search covering the years
2010–2019 (literature search was completed on 12 February 2020), using the keywords
“VOCs asthma”, “VOCs COPD” and “VOCs lung cancer”, with the following databases
being used: Springer, Web of Science, Science Direct and Wiley.

By considering only articles written in English and omitting reviews and book chapters,
a total of 2268 papers were identified. Subsequently, by checking the reference list of these
selected articles, additional studies were identified and included.

Figure 1A schematically shows the method used for the article selection. Figure 1B
illustrates the number of articles found for each category of disease as a function of year,
2010–2019. This shows that the numbers of asthma and lung cancer studies are comparable.
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However, using a well-defined selection criteria (see next section), the number of articles
that are reviewed in this paper for lung cancer is considerably higher than those for asthma.
Figure 1C presents the number of studies by country.
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2.2. Criteria for Selection of Articles

To make this review manageable, articles were excluded using the following criteria:

• No investigation of the VOCs profile, but non-volatile markers;
• Targeted diseases caused by exposure to harmful VOCs;
• VOCs related to the effects of therapy;
• Sampling and/or analyses methods only;
• Sensitivity, specificity, or accuracy of existing methods, with no focus on clinical

studies;
• Sensor development used for validation standards of previously reported markers of

certain diseases;
• Risk assessment and occupational exposure studies;
• Nanomaterials with application in clinical diagnosis;
• Smoking and/or exposure to tobacco products;
• Predictive models constructed using VOCs targets collected from the literature;
• Non-clinical, in vitro and animals’ studies.

These exclusion criteria dramatically reduced the number of clinical studies to sixty.

2.3. Data Structuring

For the sixty clinical studies selected, the following information was extracted: study
design, investigated diseases, sampling methods, patient and control characteristics, ana-
lytical platform, statistical approach, measured outcomes, identification of VOCs and their
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quantification (where applicable) and diagnosis performance, e.g., expressed as sensitivity,
specificity, accuracy, area under the curve, etc. Owing to the multitude and heterogeneity
of the information, the following three tables have been constructed for convenience:

• Table 1 presents details on the type of sample that is collected, participants’ number,
and place (hospital, country) where the samples were collected;

• Table 2 summarizes the analytical platforms used, key outputs, statistical approach
and diagnosis accuracy;

• Table 3 reports the VOCs that have been identified to be associated with the three
respiratory diseases.

3. Statistics of Included Studies

A total of 139 studies were included in the present review. From the total of 60
cross-sectional clinical studies selected [13–22,32–48,54–86], 33 are related to lung cancer
[13,15,16,21,22,33,34,36,41,44,48,56,58–60,62,64,66–75,77,78,80,82,84,86], 14 are associated
with COPD [14,18–20,32,35,37,39,54,57,63,79,81,85], and 10 present details on asthma
[17,42,43,45–47,55,61,65,76]. Two other studies presented information on how to discrimi-
nate between patients with COPD or asthma [38,40]. One other study reported details on
discriminating lung cancer from COPD [83]. A total of 7072 participants formed two main
groups: one group is for patients diagnosed with one of the three diseases investigated
(3478) and healthy controls (3132), totaling 6610 subjects. The difference is made by a study
that investigates 462 participants without mentioning the number for each category [86].
One study [86] presents the reanalysis of data previously reported [87]. Within these groups,
1601 participants were involved in COPD studies (846 patients and 755 controls); 845 vol-
unteers were involved in asthma studies (614 patients and 231 controls), and the largest
number of participants at 4626 were associated with lung cancer studies (2053 patients,
2111 controls and 462 unknown).

Smokers have volatiles in their breath that result in confounding biomarkers and, hence,
these must be taken into account. For lung cancer patients, 601 participants reported to be
active smokers, 602 were former smokers and 328 never smoked. For COPD, 257 people were
active smokers, 361 former smokers and 62 never smoked. For asthma, 5 were declared to
be active smokers, 52 were former smokers and 38 never smoked. Concerning the smoking
status of the controls, a total number of 847 were active smokers, 395 were former smokers
and 936 never smoked. The differences between the total number of patients and smokers is
because the smoking status was not revealed in all of the papers, but also because a number
of the studies (especially those related to asthma) involved children. From the total number of
participants, 421 were children with 229 children having asthma and 192 children acting as the
controls. Of the selected clinical studies, thirty-two of them reported that they used mixed ex-
pired breath [13,17,19,21,33,34,36,38,41–43,45,46,54,59–62,64,66–69,71–73,75,76,78,80,83,85]
(consisting normally in a mixture of gaseous breath, that also includes the volatile components)
collected by simple expiration in bags, tubes with absorbent materials or directly into the used
instrumentation (as in the case of E-noses, for example). A total of twenty-two of them reported
the use of alveolar breath [14–16,18,22,32,35,37,44,48,56–58,65,70,74,77,79,81,82,84,86] (col-
lected at the appropriate time by monitoring CO2 levels as a function of time). Three studies
collected exhaled breath condensate [20,39,40] (all for COPD investigations). One study
collected both mixed and alveolar breath [55] and two studies examined mixed breath plus
sputum [47,63]. The clinical studies included in this review were undertaken in 18 different
countries. The information summarized above is presented in more detail in Table 1.
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Table 1. General view of included clinical studies in terms of: approach, number of subjects and framework.

Approach/
Comparison Matrix/Sample Cohort Size *

Patients
(Smokers/Former/

Never)

Controls
(Smokers/Former/

Never)
Organization Reference

COPD vs. controls mixed breath 66 + 45 40/20/6 12/10/23
University Hospital Maastricht; Centre for

Integrated Rehabilitation Organ Failure, Horn,
The Netherlands

[54]

Asthma vs.
controls (children) mixed breath 63 + 57 na na Department of Pediatric Pulmonology of

University Hospital, Maastricht, Netherlands [17]

Asthma vs. controls mixed + alveolar
breath 27 + 24 all non-smokers all non-smokers Istituto Dermopatico dell’ Immacolata, Rome

(Italy) [55]

Lung cancer vs. controls mixed breath 28 + 36 0/17/11 36 ˆ Forlanini Hospital, Roma, Italy. [21]
Lung cancer vs. never vs.

smoker vs. controls alveolar breath 12 + 12 + 12 0/12/0 12//0/12 Department of pulmonology, University Rostock,
Rostock, Germany [56]

COPD vs. controls alveolar breath 20 + 6 18/2 ˆ 0/6 ˆ Medicines Evaluation Unit, Wythenshawe
Hospital, Manchester, UK [57]

Lung cancer vs. never vs.
smoker vs. controls alveolar breath 31 + 31 + 31 0/29/2 31/0/31 Department of pneumology of local hospitals

from Rostock, Germany and Innsbruck, Austria [48]

Lung cancer vs. controls alveolar breath 30 + 22 not specified not specified Oncology Division, Rambam Health Care
Campus, Haifa, Israel [58]

Lung cancer vs.
non-smokers mixed breath 40 + 38 21/12/7 0/10/28 Thoracic Surgery Section of the University

Hospital of Parma, Italy [59]

Lung cancer vs. controls mixed breath 43 + 41 0/21/22 0/0/41 Affiliated Hospital of Anhui Medical University,
Hefei, Anhui, China. [60]

Asthma vs.
control (children) mixed breath 35 + 15 na na Department of Paediatric Immunoalergology of

Hospital D. Pedro, Aveiro, Portugal [61]

Asthma vs. controls mixed breath +
sputum 35 + 23 0/1/34 0/0/23 Medicines Evaluation Unit, Wythenshawe

Hospital, Manchester, UK [47]

Emphysema/COPD vs.
controls alveolar breath 43 + 161 ns ns Institute for Molecules and Materials, Radboud

University, Nijmegen, the Netherlands [32]

Asthma vs. COPD mixed breath 60 + 40 No healthy controls 5/51/4
COPD:13/0/27

Academic MC Amsterdam; Haga Teaching
Hospital; Albert Schweitzer Hospital, Dordrecht,

the Netherlands
[38]
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Table 1. Cont.

Approach/
Comparison Matrix/Sample Cohort Size *

Patients
(Smokers/Former/

Never)

Controls
(Smokers/Former/

Never)
Organization Reference

COPD with AATD vs.
COPD vs. controls

exhaled breath
condensate 10 + 23 + 10 3/30/0 0/2/8

Philipps University Marburg; Ludwig
Maximilians University Munich; Saarland

University Hospital, Homburg/Saar, Germany
[39]

Lung cancer vs. controls mixed breath 23 + 30 2/0/21 6/0/24
Department of Lung Disease, Collegium

Medicum, Nicolaus Copernicus University,
Torun, Poland

[62]

Lung cancer vs. controls alveolar breath 137 + 143 ns/ns/ns 102/ns/41
Department of Lung Disease, Collegium

Medicum, Nicolaus Copernicus University,
Torun, Poland

[22]

Asthma vs.
controls (children) mixed breath 32 + 27 na na The Hospital Infante D. Pedro E.P.E, Aveiro,

Portugal [46]

COPD vs. controls breath + sputum 39 + 32 12/27/0 10/0/22 Medicines Evaluation Unit, University Hospital
of South Manchester, UK. [63]

COPD vs. COPD with
BC vs. controls alveolar breath 30 + 54 + 35 ns/ns/ns ns/ns/ns

KIST Europe; Max Planck Institute; Cluster of
Excellence for Multimodel Computing and
Interaction; Saarland University, Germany

[35]

COPD vs. controls alveolar breath 119 + 63 41/78/0 6/18/39 Respiratory Unit, Prince Philip Hospital, Llanelli,
UK [14]

COPD vs. asthma vs.
controls

exhaled breath
condensate 17 + 20 + 7 5/16/16 0/3/4

Patients recruited from hospital out-patient
clinics; controls from the community in Sydney,

Australia.
[40]

Lung cancer vs. controls alveolar breath 29 + 44 ns/ns/ns ns/ns/ns
Department of Lung Disease, Collegium

Medicum, Nicolaus Copernicus University,
Torun, Poland

[44]

Lung cancer vs. controls mixed breath 92 + 137 25/58/9 28/71/35 Outpatient clinic from Cleveland Clinic,
Cleveland, Ohio [64]

Asthma vs. controls
(children) alveolar breath 11 + 12 na na Inaccessible for authors; study developed in UK [65]

Asthma with
exacerbation vs. asthma

(children)
mixed breath 16 + 26 na na

Outpatient clinic, Department of Pediatric
Pulmonology, Maastricht University Medical

Centre, Maastricht, the Netherlands
[45]



J. Clin. Med. 2021, 10, 32 7 of 41

Table 1. Cont.

Approach/
Comparison Matrix/Sample Cohort Size *

Patients
(Smokers/Former/

Never)

Controls
(Smokers/Former/

Never)
Organization Reference

Lung cancer vs. controls mixed breath 22 + 10 19 #/3 0/10 ˆ Local hospitals from Linköping, Sweden. [66]
Lung cancer vs. BPD vs.

controls mixed breath 97 + 32 + 88 ns/ns/ns 45/43 ˆ James Graham Brown Cancer Center, University
of Louisville, Louisville, Kentucky [67]

Asthma vs. controls mixed breath 195 + 40 ns/ns/ns ns/ns/ns High Altitude Clinic, Davos-Wolfgang,
Switzerland [43]

Lung cancer vs. BPD vs.
controls mixed breath 107 + 40 + 88 56/65/12 45/0/43 Unmentioned; study developed in Louisville,

Kentucky [68]

Lung cancer vs. controls mixed breath 50 + 39 33 #/17 7 #/32
St. Marianna University School of Medicine,

Kanagawa, Japan [36]

Lung cancer vs. controls mixed breath 13 + 25 ns/ns/ns ns/ns/ns Shanghai Chest Hospital, Shanghai, China [69]
Lung cancer vs. BPD vs.

controls alveolar breath 79 + 54 + 38 15/40/24 9/20/9
12/25/17 (BPD) Sir Run Run Shaw Hospital, Hangzhou, China [70]

COPD vs. smoker vs.
non-smoker controls alveolar breath 45 + 23 + 28 5/40/0 11/12/28 Department of Pneumology, Ruhrlandklinik,

University Hospital of Essen, Germany [18]

Lung cancer vs. BPD vs.
smoker vs. non-smoker

controls
mixed breath 85 + 34 + 45 + 40 45/34/2/4 λ 45/0/40

10/7/7/10 λ (BPD)
James Graham Brown Cancer Center, University

of Louisville, Louisville, Kentucky [71]

Lung cancer vs. controls mixed breath 13 + 25 5/8 ˆ 8/17 ˆ Shanghai Chest Hospital, Shanghai, China [72]
Lung cancer vs. BPD vs.

controls mixed breath 165 + 65 + 194 69/80/7 25/20/20 (BPD)
73/41/80

Unmentioned; study developed in Louisville,
Kentucky [73]

COPD vs. controls mixed breath 89 + 101 37/52/0 49/52 ˆ Local hospitals in Marburg & Hannover,
Germany. [19]

COPD vs. controls alveolar breath 79 + 73 42/37 ˆ 41/32 ˆ Unmentioned; study developed in Germany [37]
MPM vs. AEx vs.

controls alveolar breath 23 + 22 + 21 9/5/9 (MPM) 5/5/12 (AEx)
13/0/8

University Hospitals of Ghent, Leuven and
Antwerp, Belgium [74]

Lung cancer vs. controls mixed breath 21 + 22 4/7/10 9/5/8 Unmentioned; study developed (probably) in
Israel [33]

Lung cancer vs. controls mixed breath 37 + 23 21/14/2 4/7/12
ELK Berlin Chest Hospital and Charité

Universitäts Medizin, Visceral, Vascular and
Thoracic Surgery, Berlin, Germany

[75]
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Table 1. Cont.

Approach/
Comparison Matrix/Sample Cohort Size *

Patients
(Smokers/Former/

Never)

Controls
(Smokers/Former/

Never)
Organization Reference

Asthma vs. asthma with
exacerbations (children) mixed breath 49 + 45 na na Outpatient clinic of 2 specialized pediatric

pulmonology centers in the Netherlands [76]

Lung cancer vs. BPD alveolar breath 89 + 30 16/56/17 14/10/6 Sheba Medical Center, Tel Hashomer, Israel. [77]
MPM vs. AEx vs.

controls mixed breath 14 + 19 + 16 1/9/4 6/7/6 (AEx) 0/8/8 Three participating university hospitals from
Belgium [78]

COPD vs. never vs.
former vs. smokers alveolar breath 57+ 33 + 28 + 39 8/49/0 32/28/39 Hospital Central de la Defensa “Gomez Ulla”,

Madrid, Spain [79]

Lung cancer vs. controls mixed breath 116 + 37 42/51/23 2/5/30 Tokai University Hospital, Kanagawa, Japan [80]
Lung cancer vs. controls alveolar breath 107 + 29 47/15/45 5/3/21 Aichi Cancer center, Nagoya Japan [16]
AECOPD vs. COPD vs.

controls alveolar breath 14 + 16 + 24 6/7/1 (AECOP) 3/13/0 (COPD)
7/0/17

Department of Internal Medicine II, Medical
University of Innsbruck, Austria [81]

COPD vs. controls exhaled breath
condensate 22 + 14 10/11/1 5/8/1 Unmentioned; study developed in Switzerland [20]

Lung cancer vs. BPD vs.
controls alveolar breath 233+ 111 + 140 102/45/86 41/16/54 (BPD)

69/16/55 Sir Run Run Shaw Hospital, Hangzhou, China [82]

Lung cancer vs. controls alveolar breath 37 + 48 9/15/13 4/10/34 Seoul National University Bundang Hospital,
Republic of Korea [15]

Lung cancer vs. controls mixed breath 57 + 72 22/35 ˆ 25/47 ˆ First Affiliated Hospital of Jinan University,
Guangdong, China [41]

Lung cancer vs. COPD
vs. controls mixed breath 30 + 18 + 61 12/16/2 10/8/0 (COPD)

13/21/27
Hospital Clinic and Hospital Universitari Sagrat

Cor of Barcelona, Spain. [83]

Lung cancer vs. controls mixed breath 30 +30 19/11 ˆ 5/25 ˆ Chinese People’s Liberation Army General
Hospital, Beijing, China [34]

Lung cancer vs. controls alveolar breath 108 + 121 69/39 ˆ 50/71 ˆ
Department of Lung Disease, Collegium

Medicum, Nicolaus Copernicus University,
Torun, Poland

[84]

Asthma vs. CF vs.
controls (children) mixed breath 20 + 13 + 22 na na Maastricht UMC & Department of Paediatric

Respiratory Medicine, Maastricht, Netherlands [42]

COPD vs. controls mixed breath 25 + 33 4/10/11 3/7/23 Outpatient clinic in Hospital Central “Dr. Ignacio
Morones Prieto”, San Luis Potosi, Mexico [85]

Lung cancer vs. controls alveolar breath 462 ns/ns/ns ns/ns/ns five medical centers in USA [86]
Lung cancer vs. controls mixed breath 15 + 14 3/12/0 1/6/7 University hospital of Liège, Belgium [13]

* the numbers presented are connected with the categories of diseased patients or controls involved in the study (the first number refers to patients and the second to controls); #—former + active smokers;
ˆ—former + never smokers; λ—smoking status unknown; AECOPD = acute exacerbation chronic obstructive pulmonary disease; AEx = asymptomatic former asbestos; BC = bronchial carcinoma; BPD = benign
pulmonary diseases; CF—cystic fibrosis; MPM = malignant pleural mesothelioma (tumor of pleural lining of the thorax associated with asbestos exposure).
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4. Analytical Platforms Used for Investigating Breath Volatiles Associated with
Asthma, COPD, and Lung Cancer

Several analytical spectrometric techniques can be used for analyzing volatiles con-
tained in exhaled breath samples. When choosing an analytical method, many aspects need
to be considered, including the advantages and disadvantages of a particular analytical
technique, and whether offline or on-line sampling is needed. Below, we describe the key
analytical instruments that have been used to investigate breath volatiles and lung diseases.

4.1. GC-MS Instrumentation

For offline measurements, GC-MS is the most powerful tool, with a high sensitiv-
ity (sometimes lower than ppb range) and, more importantly, a high potential for both
identification and quantification of unknown components from complex biological ma-
trixes [4,8–10,88,89]. Moreover, by using different columns and detectors a great versatility
in targeted analyses can be achieved [90,91].

Owing to its size and length of analysis (tens of minutes to hours) GC-MS cannot
be used at clinical points of care, even if, at the research level, GC-MS remains the gold
standard for VOC analysis in many fields [92–95]. GC-MS analysis requires the samples
to be collected, either in special bags or onto absorbent materials, and then transported
to the laboratories, resulting in samples being stored for days and even weeks before
analysis. Of the 60 clinical studies being reviewed in this paper, 29 used various types of
GC-MS systems. Two groups used two-dimensional GC, explicitly GC×GC-FID [69] and
TD-GC×GC-ToF-MS [13] for lung cancer investigations. Caldeira and co-authors [46] used
TD-GC×GC-ToF-MS to investigate exhaled breath metabolomes of patients with allergenic
asthma.

4.2. PTR-MS and SESI-MS Instrumentation

PTR-MS and SESI-MS can be, and have been, used offline to analyse breath samples,
but they come into their own for online analysis. However, the advantages of real-time
analysis, which allows rapid changes in volatile concentrations to be detected, comes at the
expense of identifying the volatiles with a high level of confidence [96–99]. Nevertheless,
the near patient analyses mean that samples do not need to be transported and hence stor-
age is not necessary. Consequently, deterioration of the breath samples and storage errors
are avoided. As for GC-MS, PTR-MS, and SESI-MS require skilled operators. Generally, the
cost of a PTR-MS, and particularly PTR-ToF-MS, being between EUR 200,000 and 500,000
are far more than the cost of GC-MS instruments (EUR 60,000–150,000) and, hence, there
are fewer PTR-MS studies compared to GC-MS. Although the cost of a SESI-MS is lower
than that of a GC-MS, it has only been rarely used. PTR-MS was used in two studies of
lung cancer [33,34], and one study for discriminating COPD and emphysema [32]. SESI-MS
was involved in a single study for COPD diagnosis [20]. Another soft chemical ionization
mass spectrometric technique that could be used in real-time for discovery programmes
is the Selected Ion Flow Tube Mass Spectrometry but, to our knowledge, no study of
breath volatiles and lung disease involving this instrument has been reported. No study is
presented for SIFT-MS.

4.3. IMS Based Instrumentation

Another category of analytical instrumentation suitable for VOCs analysis in real
or near to real time is ion mobility spectrometry (IMS), both as a standalone tool and
coupled with GC columns that provide a pre-separation. The costs of instrumentation are
considerably lower than the previous mentioned techniques based on mass spectrometry
(ranging from between EUR 7,000 and 30,000 for standard IMS, while GC-IMS can range
between EUR 50,000 and 60,000). That no vacuum system is required dramatically reduces
the size and power requirements. Together with its ease of use and robustness, IMS,
and particularly GC-IMS, is extremely suitable for use in clinical environments at the
point of care [100–104]. The most common types are the classical IMS, a-IMS (aspiration
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IMS), FAIMS (Field Asymmetric wave IMS) and DMS (differential mobility spectrometry).
For improved analytical dimensionality, GC-IMS and MCC-IMS (multi-capillary column
IMS) are also used [91]. Amongst the clinical studies that we review, MCC-IMS has been
used to investigate patients with COPD [18,35] and lung cancer [36,74]. One other study
used a double approach by comparing GC-IMS and GC-APCI-MS (atmospheric pressure
chemical ionization MS) for investigating breaths samples from patients with COPD [37].

4.4. Sensors and Electronic Noses

Analytical instrumentation related to online measurements also comprises simple
sensors and electronic noses (e-noses). They are usually cheap, easy to operate and have
the capacity of real-time monitoring based on pattern recognition algorithms. Moreover,
they are often equipped with software that compares VOCs-emitted profiles of ill patients
with those of healthy individuals [15,64,105]. Their main drawback is their lack of selec-
tivity, VOCs are not identified, reproducibility may be affected by interferences, thereby
diminishing the reliability, and robustness.

E-noses were successfully applied in discriminating exhaled air of patients with
asthma from healthy controls; a commercial system model Cyranose 320, consisting of
an array of 32 organic polymer sensors, has been used [106]. The same nanosensor array
(Cyranose 320) has been utilized for discriminating patients with lung cancer and COPD,
when it has been shown that an electronic nose is able to distinguish the VOCs pattern in
exhaled breath of lung cancer patients from healthy controls; the authors pointed out in
a realistic manner that, although the electronic nose may become a very convenient tool
for a physician, this instrument may qualify as either a screening tool or a pre-diagnostic
tool by selecting patients for further diagnostic and testing procedures [107]. Analysis
of exhaled VOCs in order to discriminate COPD phenotypes, using a Bionote electronic
nose (comprising of a seven quartz microbalance (QMB) sensor array, with the sensors
being covered with anthocyanins that are used as chemical sensitive materials), has been
described in several original research papers [108,109].

Application of e-noses and other types of sensors to breath analysis has been addressed
by a review focusing to methodological issues related to applying e-noses to breath analysis.
Although they possess strong capabilities in rapidly discriminating samples of exhaled
breath (the so-called “breathprint”), the e-nose is not currently ready for point-of-care
use [110].

Another valuable review summarizes the role electronic noses play in distinguishing
different endotypes by using VOCs in exhaled breath; breath sampling and metabolism of
VOC biomarkers are also summarized [111].

Of the 60 clinical studies included in this review, nine studies used sensors or e-
noses [15,38–40,42,64,66,77,83], while five studies used both sensors or e-noses and an addi-
tional GC-MS (or a related) technique as a confirmation method [21,55,58,78,85]. For exam-
ple, Cyranose 320 (Smiths Detection, Pasadena, CA, USA) e-noses were used to discriminate
between asthma and COPD [38,40]; another type of e-nose, Aeonose (The eNose Company,
Zutphen, The Netherlands) was utilized to differentiate between children with asthma
and cystic fibrosis [42]. The Cyranose 320 system is a portable device that incorporates 32
chemical sensors that provide a different response to various VOC mixtures; these chemire-
sistor sensors are made from carbon black nanocomposites that have the ability to change
their resistance as a response to VOC exposure [39]. Aeonose is an easy-to-use hand-held
e-nose, weighing just 650 grams, equipped with three metal-oxide sensors, which behave
as semiconductors at higher temperatures [42].

In terms of other sensors, colorimetric sensor array [64], metal oxide gas sensors [15]
and nanosensors based on organically functionalized gold nanoparticles [58] have been
used to investigate their potential for use in cancer diagnosis.



J. Clin. Med. 2021, 10, 32 11 of 41

4.5. Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is an ana-
lytical technique that can be used for targeted detection and quantification of VOCs. Using
“a hybrid linear ion trap Fourier transform (FT) ion cyclotron resonance (ICR) mass spectrometer
(MS) equipped with a TriVersaNanoMate ion source with an electrospray chip (nozzle inner diame-
ter 5.5 mm)” researchers claim to have identified specific carbonyl cancer markers (mainly
2-butanone, 3-hydroxy-2-butanone, 2-hydroxyacetaldehyde and 4-hydroxyhexenal) that
can differentiate benign pulmonary disease from early-stage lung cancer [67,68,71,73].

4.6. Trained Dogs

It is worth mentioning that trained dogs have been used to “sniff” for diseases,
with claims of good performances being apparently comparable, if not better, to vari-
ous analytical devices. In two studies included in the present review, trained dogs were
used [44,83], while a new article related to two-step investigation of lung cancer detection,
where the abilities of sniffer dogs were proved in maintaining their discriminative capac-
ity under long-term, and in different types of environments, appeared after the articles’
collection period closed [112].

4.7. Features and Performance of Analytical Platforms

All the clinical studies reviewed in this paper describe various methods of optimization
at different levels (sampling, analysis, data processing and interpretation, etc.) in order
to enhance diagnostic capabilities. A summary of sensitivity and specificity obtained
by different studies is presented in Figure 2. Multiple statistical approaches have been
used to classify the detected VOCs using different models. Details about each clinical
study, including analytical platforms, statistical approaches, and outcomes are presented
in Table 2.
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Table 2. Details of clinical studies reviewed.

First Author/
Year [Ref] Diseases Observations and Details of

Diseases Analytical Platform Outcomes Statistical
Approach/Representation Accuracy (%) *

Van Berkel, 2010 [54] COPD steroid-naïve patients TD-GC-ToF-MS 1179 VOCs;
12 identified markers SVMs; John Platt’s SMO; RF -

Dallinga, 2010 [17] Asthma children; atopy; allergy GC-MS
945 VOCs;

10 discriminative
VOCs

DA 92–100

Montuschi, 2010 [55] Asthma intermittent & persistent mild;
atopy GC-MS + E-nose FENO monitoring

t test; Mann-Whitney U test;
feed-forward neural network;

PCA
DP: 70.8–95.8

D’Amico, 2010 [21] Lung cancer
Adenocarcinoma, SCLC,

bronchio-alveolar &
squamous cell carcinoma

E-nose +
GC-MS pattern of VOCs PLS-DA; PLS-LVs 79–86

Fuchs, 2010 [56] Lung cancer SCLC & NSCLC SPME-OFD—GC-MS 10 discriminative
aldehydes

Kruskal–Wallis one-way
ANOVA; Box plot. -

Basanta 2010 [57] COPD GOLD I to IV, exacerbation,
eosinophilia GC-DMS VOCs profile

Pearson chi square, students
t-test, Mann Whitney U, PCA,

ROC, DFA, Pearson’s
correlation coefficient

76–84
AUC: 79–92

Kischkel, 2010 [48] Lung cancer SCLC & NSCLC GC-MS 42 VOCs,
4 identified markers

Mann–Whitney Rank test;
ANOVA; post hoc

Student–Newman–Keuls;
Dunn’s Method; PCA,

-

Peng, 2010 [58] Lung cancer Stage I to IV GC-MS & GNPs
nanosensor array pattern of VOCs PCA -

Poli, 2010 [59] Lung cancer Stage I or II; NSCLC SPME-OFD–GC-MS 7 identified markers
(aldehydes)

ANOVA; ANCOVA; Tukey’s
post hoc test; DA (Wilks’

Lambda).

AC: 93–97
OCC:92

Song, 2010 [60] Lung cancer Stage I to IV; squamous cell,
adenocarcinoma GC-MS VOCs profile;

2 selected markers Wilcoxon rank sum test; ROC AUC: 94–96

Caldeira, 2011 [61] Asthma Children; allergic & allergic
rhinitis GC–qMS

44 VOCs;
28 discriminative

VOCs
ANOVA; PLS; PLS–DA; CVA: 88

Ibrahim, 2011 [47] Asthma Eosinophilia; neutrophilia GC-MS 47 discriminative
VOCs MLR, PCA, Box plot; ROC CVA: 82

AUC: 90–98

Cristescu, 2011 [32] COPD GOLD I to III; emphysema PTR-MS 31 discriminative
VOCs logistic regression, ROC AUC: 0.56
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Table 2. Cont.

First Author/
Year [Ref] Diseases Observations and Details of

Diseases Analytical Platform Outcomes Statistical
Approach/Representation Accuracy (%) *

Fens 2011 [38] Asthma & COPD fixed & classic asthma; COPD
GOLD stages II & III E-nose pattern of VOCs CDA; PCA, ROC AUC: 93–95

Hattesohl 2011 [39] COPD with & without alpha
1-antitrypsin deficiency E-nose pattern of VOCs

LDA, Mahalanobis distance,
Mann–Whitney U-test,
Wilcoxon signed rank

CVA: 58.5–80.5

Rudnicka 2011 [62] Lung cancer SCLC, squamous cell,
adenocarcinoma GC–TOF/MS 55 VOCs Mann–Whitney U test DA, FA -

Ulanowska, 2011 [22] Lung cancer Adenocarcinoma;
Planoepitheliale. GC/MS VOCs profile;

14 identified markers DA, FA, CHAID tree -

Caldeira, 2012 [46] Asthma Children; allergic & allergic
rhinitis GC×GC–ToF-MS 134 VOCs;

6 identified markers PLS-DA, MCCV -

Basanta 2012 [63] COPD GOLD I to IV GC-ToF-MS
487 VOCs

11 discriminative
VOCs

Mann Whitney U, DFA, LOOCV,
PCA, ROC 69; AUC:74–95

Hauschild 2012 [35] COPD & BC ns MCC/IMS
VOCs profile;

20 discriminative
VOCs

Decision tree, linear SVM, naive
Bayes, neural net, radial SVM,

RF
82–94; AUC: 80–92

Phillips, 2012 [14] COPD GOLD I to IV, emphysema GC-MS VOCs profile
12 automatic classifier methods;

with 8 stand-alone classifiers,
and 2 ensemble techniques

71–82; AUC: 71–82

Timms 2012 [40] Asthma & COPD both with & without
gastro-oesophageal reflux E-nose pattern of VOCs

PCA, Mahalanobis distance,
Mann–Whitney, Kruskal–Wallis

& t tests
65–85

Buszewski, 2012 [44] Lung cancer SCLC & NSCLC GC-ToF-MS & canine
recognition VOCs profile Kruskal–Wallis test, chi2 test,

factor analysis, PCA
-

Mazzone, 2012 [64] Lung cancer
Stage I to IV; SCLC, NSCLC,

squamous cell,
adenocarcinoma

colorimetric sensor
array

bio-signatures of lung
cancer

ROC, t-tests, Pearson test, four
logistic prediction models 46–89; AUC:81–85

Gahleitner, 2013 [65] Asthma Children; GC-MS VOCs profile;
8 identified markers;

PLS-DA, PCA, Whisker box
plots, two-tailed t-test, -

Robroeks, 2013 [45] Asthma Children; atopy, exacerbations GC-TOF-MS VOCs profile;
6 discriminative VOCs SMV, t-test, Friedman test 64–100

Schmekel, 2014 [66] Lung cancer
Stage III & IV; SCLC, NSCLC,
adenocarcinoma, squamous

cell
E-nose pattern of VOCs AAN, PLS CVA:98
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Table 2. Cont.

First Author/
Year [Ref] Diseases Observations and Details of

Diseases Analytical Platform Outcomes Statistical
Approach/Representation Accuracy (%) *

Fu, 2014 [67] Lung cancer
Stage I to IV; SCLC, NSCLC,
adenocarcinoma, squamous

cell
FT-ICR-MS

Detection of C1 to C12
carbonyls;

4 identified markers
Wilcoxon test, box plot -

Meyer, 2014 [43] Asthma asthma endotypes &
phenotypes GC-MS

945 detected VOCs;
16 discriminative

VOCs
cluster analyses 83–95;

DP: 98–99

Bousamra, 2014 [68] Lung cancer BPD & cancer stage 0, I, II FT-ICR-MS Detection of carbonyls;
4 identified markers Wilcoxon test, box plot -

Handa, 2014 [36] Lung cancer Stage I to IV; squamous cell,
adenocarcinoma, SCLC MCC-IMS 115 VOCs,

9 identified markers
Box-and-Whisker plots,

Wilcoxon-Mann-Whitney test, -

Ma, 2014 [69] Lung cancer Stage III & IV GC×GC-FID
quantification of
benzene series; 5

identified markers

Mann–Whitney U Test,
Wilcoxon W test, PLS-DA -

Zou, 2014 [70] Lung cancer

Stage I to IV; SCLC, NSLC,
adenocarcinoma, squamous

cell, Adeno-squamous
carcinoma

GC-MS 5 identified markers Pearson’s χ2 test,
Mann–Whitney test, ROC, PCA AUC: 0.67–0.88

Besa, 2015 [18] COPD GOLD I to IV MCC/IMS 224 VOCs;
6 discriminative VOCs

Kolmogorov–Smirnov test, one
way ANOVA, Kruskal–Wallis

test, t-test, Mann–Whitney
U-tests

67–71

Li, 2015 [71] Lung cancer SCLC, NSLC, squamous cell,
adenocarcinoma, FT-ICR-MS

Detection of C1 to C10
carbonyls;

6 identified markers

Kruskal–Wallis test, boxplot,
PLS, SVM, RF, LDA, ROC 89–97

Ma, 2015 [72] Lung cancer ns TD-GC-MS; 5 identified markers quantification with standards -

Schumer, 2015 [73] Lung cancer

Stage I to IV; SCLC, NSLC,
squamous cell, carcinoid, large
cell, adenocarcinoma in situ,

adenocarcinoma

FT-ICR-MS 4 identified markers
(carbonyls) Not specified 69

Gaida, 2016 [19] COPD GOLD III & IV GC-MS 134 VOCs;
14 identified markers

t-test, ANOVA, Newman–Keuls
test, LDA, CVA: 78–86

Allers, 2016 [37] COPD Not specified GC-IMS &
GC-APCI-MS

45 VOCs (by GC-IMS)
& 102 (by

GC-APCI-MS);

Welch’s t-test, Welch’s t-test,
Box-and-whisker plots -
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Table 2. Cont.

First Author/
Year [Ref] Diseases Observations and Details of

Diseases Analytical Platform Outcomes Statistical
Approach/Representation Accuracy (%) *

Lamote, 2016 [74] Lung cancer MPM; AEx MCC-IMS pattern of VOCs
Fisher’s exact-test,

Kruskall–Wallis test, One-way
ANOVA, ROC, LOOCV

76–87; AUC:17–94

Feinberg, 2016 [33] Lung cancer
Naïve LC patients; Stage III &

IV; SCLC, squamous
cell, adenocarcinoma

PTR-MS pattern of VOCs paired two-tailed Student t-test,
box plot -

Schallschmidt 2016
[75] Lung cancer Not specified GC-MS 24 quantified VOCs;

7 markers

Mann–Whitney U-test, LDA,
LOOCV, Box plot, Cluster

analysis,
-

van Vliet, 2017 [76] Asthma Children, exacerbation, atopy GC-ToF-MS 7 identified markers RF, ROC, PCA OCC: 82
AUC: 90

Shlomi, 2017 [77] Lung cancer Stage: I to IV; E-nose pattern of VOCs DFA, LOOCV, Wilcoxon test,
ANOVA, chi-square test 76-87

Lamote, 2017 [78] Lung cancer Naïve MPM, pleural plaques GC-MS, E-nose VOCs profile;
6 identified markers; DA, ROC 50–97;

AUC: 36–98
Jareno-Esteban, 2017

[79] COPD Not specified GC-MS 5 VOCs with
discriminative features Kolmogorov–Smirnov test -

Oguma, 2017 [80] Lung cancer
Stage: I to IV; SCLC, NSLC,

squamous cell,
adenocarcinoma

GC-MS
Quantification of 14

pre-stabilized VOCs; 2
markers

ROC, Mann–Whitney U-test,
Kruskal–Wallis test, Wilcoxon’s
rank test, Jonckheere–Terpstra

test

AUC: 67–71

Sakumura, 2017 [16] Lung cancer Stage: I to IV GC-MS
63 VOCs,

20 discriminative
VOCs

Wilcoxon test,
Kolmogorov–Smirnov test,

SVM, LOOCV

AC: 89;
DP: 84.6

Pizzini, 2018 [81] COPD GOLD: II, III & IV; AECOPD,
stable COPD GC-MS 105 VOCs;

12 identified markers
One way ANOVA, post hoc

analysis, RF AUC: 92–97

Bregy, 2018 [20] COPD GOLD: I to IV SESI-HRMS
1441 detected VOCs;

43 discriminative
VOCs

LOOCV, PCA, Venn diagram,
ROC 89

Wang, 2018 [82] Lung cancer Not specified TD-GC-MS
SPME-GC-MS

pattern of VOCs;
12 identified markers chi-square, ROC 77–83

AUC: 73–88

Chang, 2018 [15] Lung cancer Stage: I to IV; squamous cell;
adenocarcinoma

seven metal oxide gas
sensors pattern of VOCs SVM, LDA, PCA 61–75
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Table 2. Cont.

First Author/
Year [Ref] Diseases Observations and Details of

Diseases Analytical Platform Outcomes Statistical
Approach/Representation Accuracy (%) *

Cai, 2018 [41] Lung cancer SCLC & NSLC E-nose pattern of VOCs Mann-Whitney U test,
chi-square test, ANOVA, ROC, 76/94/83

Guirao, 2019 [83] Lung cancer &
COPD

Stage: I & II; SCLC, NSLC,
lepidic adenocarcinoma,

adenocarcinoma, squamous
cell

Trained dogs Pattern recognition ROC AUC: 0.98

Sun, 2019 [34] Lung cancer squamous cell,
adenocarcinoma PTR-MS 5 discriminative VOCs Mann–Whitney U test, LDA,

whisker box plot, ROC AUC: 0.74–0.99

Rudnicka, 2019 [84] Lung cancer Stage: I to IV; SCLC, NSLC GC–TOF/MS 86 VOCs; Mann–Whitney U test, DFA, FA,
AAN, BOX PLOT, ROC AUC: 0.86

Bannier, 2019 [42] asthma moderate to severe asthma &
children with CF E-nose pattern of VOCs AAN, ROC, LOOCV, AUC: 0.79–90

Rodríguez-Aguilar
2019 [85] COPD GOLD: I to IV FCG E-nose

62 VOCs;
17 discriminative

VOCs;

Student test t, Mann–Whitney
U-test, Fisher test, SPCA, ROC,

LOOCV
OCC: 82;

Phillips, 2019 [86] Lung cancer Not specified GC-MS pattern of VOCs ROC 80-88; AUC: 77–88;

Pesesse, 2019 [13] Lung cancer Not specified TD-GC-GC×GC-ToF-
MS

37 VOCs with
discriminative features Fisher test, PCA, RF -

*—or stated otherwise; na—not applicable; AAN—artificial neural nets; AATD—1-antitrypsin deficiency; AEx—asymptomatic former asbestos; AUC—The area under the ROC; BC—bronchial carcinoma;
BPD—benign pulmonary diseases; CDA—canonical discriminant analysis; CVA—Cross-Validated Accuracy-Value; DA—Discriminant analysis; DFA—Discriminant function analysis; DP—diagnostic
performance; FA—factor analysis; FCG e-Nose—ultrafast gas-chromatography equipped with electronic nose detector; FENO—fractional exhaled nitric oxide; FT-ICR—Fourier transform-ion cyclotron
resonance; GNPs—gold nanoparticles; GOLD—Global Initiative for Chronic Obstructive Lung Disease; LDA—Linear discriminant analysis; LOOCV—leave-one-out cross-validation; LPPI-MS—low pressure
photoionization mass spectrometry; MCCV—Monte Carlo Cross Validation; MLR—multivariate logistic regression, MPM—Malignant pleural mesothelioma; ns—not specified; NSCLC—non-small-cell lung
carcinoma; OCP—overall correct classification; PCA—principal component analysis; PLS-D—Partial Least Squares Discriminant analysis; PLS-LVs—Partial Least Squares Latent Variables; RF—random forest;
ROC—Receiver Operating Characteristic Curve; SCLC—small-cell lung carcinoma; SESI-HRMS—secondary electrospray ionization—high-resolution mass spectrometry; SMO—sequential minimal optimization
algorithm; SPME-OFD–GC-MS—Solid phase microextraction on-fiber derivatization; SVM—Support vector machine.



J. Clin. Med. 2021, 10, 32 17 of 41

5. Diagnosis of Investigated Respiratory Diseases
5.1. Asthma

Asthma is a chronic inflammatory condition, which produces reversible airways ob-
struction, often beginning in childhood, and characterized by triggering bronchospasms.
The common symptoms include short episodes of chest tightness, wheezing, coughing,
and a shortness of breath, with these symptoms being in some people more pronounced
during the night or following strenuous physical exercises [4,17,113]. Although appearing
from partially unknown causes, it is considered that asthma is often caused by environ-
mental pollution, irritant agents, allergens (pollen, dust, fur etc.) or drugs (aspirin and
beta blockers) [114]. Both asthma and COPD diagnosis is based on symptoms, long term
response therapy lung capacity tests, and spirometry tests, which includes: (1) FVC (forced
vital capacity): largest volume of air that can be forcefully exhaled and (2) FEV (forced
expiratory volume): how much air can be exhaled in one second) [115]. Gastroesophageal
refluxes, eosinophilia, neutrophilia, allergic rhinitis, obstructive sleep apnea and atopy
are conditions frequently occurring in people with asthma [27,47]. The atopy (the triad of
asthma, allergic rhinitis and eczema together) is the predisposition towards developing
hypersensitivity reactions and triggering exacerbations. An exacerbation is an asthma
attack crisis that may also appear in non-atopic asthmatics. Asthma cannot be cured;
the prevention includes avoiding the allergenic and irritants agents and the use of inhaled
corticosteroids. In 2015, 358 million people were globally registered as diagnosed with
asthma, with 397,100 deaths attributed to the disease [2,3].

Diagnosis of Asthma Based on Specific VOCs

The main disadvantage of traditional tests used for diagnosing asthma resides in
the fact that they are time consuming and some of them are invasive. Both invasive and
non-invasive (spirometry and fractional exhaled nitric oxide) diagnostic techniques are
used. However, non-invasive diagnosis based on exhaled VOCs is promising, and hence
has recently been gaining increasing attention. In eight studies, asthma diagnosis was
tested using GC-MS analysis. For example, Dallinga et al. [17] analyzed the breath samples
of 63 asthmatic children and compared them to breath samples from 57 healthy controls
(5 to 16 years old). Only eight VOCs were found to be needed to discriminate diseased
from healthy children (with a claim of 92% correct classification, a sensitivity of 89% and a
specificity of 95%) [17]. A set of eight compounds was used in another study to discriminate
between healthy and asthmatic children; however just one of them, 2-octenal, was proposed
as a certain marker of asthma, because the authors concluded that the others may have
other possible origins [65].

The ability to diagnose allergenic asthma—sometimes combined with allergic rhinitis
in children—was tested using HS-SPME/GC–qMS and a comprehensive two-dimensional
GC×GC–ToF-MS [46,61]. Almost similar statistical tools were involved for data processing,
and the two-dimensional GC×GC–ToF-MS proved its superiority in comparison to GC-MS.
In the first study by Caldeira et al., [61] a set of 28 VOCs was used to discriminate between
asthmatic and control group, with a classification rate of 88% [61]. In their second study [46],
a pattern of just six chemicals, namely nonane, 2,2,4,6,6-pentamethylheptane, decane, 3,6-
dimethyldecane, dodecane, and tetradecane, were used, with a classification rate of 98%
being achieved, with 96% sensitivity (meaning that only ∼4% allergic asthma children
were misclassified as controls) and 95% specificity (meaning only ∼5% were classified as
false positives). All six chemicals were, therefore, proposed as biomarkers of asthma [46].
Exacerbations in case of atopic asthmatics children were predicted based on emitted VOCs
analyzed by GC-MS [45,76]. In the first study, the applied classification model used seven
VOCs that provided a correct classification rate of 91% for those patients, who experienced
exacerbations (sensitivity of 79% and specificity 100%). Moreover, they demonstrated that
the FeNO and lung function were not predictive for exacerbations [45]. The classification
model used in the second study was based on seven selected VOCs, three aldehydes,
one hydrocarbon, one ketone, one aromatic compound, and one unidentified VOC, which
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achieved a sensitivity of 88% and a specificity of 75%, with AUC of ROC 90% [76]. Electronic
noses were used for discrimination between asthma and COPD, asthma and cystic fibrosis,
and for asthma diagnosis [38,40,42].

Aeonose, a patient-friendly and easy to use e-nose device, was utilized to test the
discrimination and diagnostic accuracy for children with asthma and cystic fibrosis. The re-
ported mean values for discrimination between asthma and cystic fibrosis were as follow:
AUC = 0.90 (95% CI), sensitivity 89%, specificity 77%, while for differentiation between
healthy controls and cystic fibrosis the mean scores were slightly lower: AUC = 0.87,
sensitivity 85% and specificity 77%. However, the authors reported that diagnostic ac-
curacy in the case of asthma and healthy controls discrimination was lower compared
with the first two cases (AUC = 0.79, with a sensitivity of 74% and specificity 91%) [42].
A Cyranose 320 instrument was also used discriminate between asthma and COPD in two
studies [38,40]. Consequently, an 88% accuracy for distinguishing between asthma and
COPD was obtained in the first study [38]. In the second study, two groups (asthmatics
and COPD patients), both with and without gastro-esophageal reflux disease (GORD)
were investigated, in an attempt to distinguish patients with GORD from those without.
The discrimination between patients with COPD, with and without GORD, achieved an ac-
curacy of 67.6%, while the asthmatic group with GORD was differentiated from asthmatics
without GORD with an 85% accuracy.

5.2. COPD

COPD can coexist with asthma and can actually occur as a complication of chronic
asthma. Generally, after the age of 65, most people with asthma will also develop COPD.
In this setting, COPD can be differentiated by increased airway neutrophils, abnormally in-
creased wall thickness, and increased smooth muscle in the bronchi [116]. Although having
most of the common symptoms of asthma, unlike asthma, COPD is a progressive disease
characterized by sputum production and irreversible airways obstruction, which does not
improve much with the use of bronchodilators [116]. The most common cause of COPD
is tobacco smoking [115,116]. In 2015 only, COPD globally affected about 174.5 million
people and it resulted in 3.2 million deaths [2,3].

Diagnosis of COPD Based on Specific VOCs

The COPD diagnosis is almost similar to that of asthma, while a VOC analysis
is also possible. COPD was investigated by GC-MS in six studies included in this re-
view [14,19,54,63,79,81]. Phillips and co-authors involved 119 patients with COPD and
63 controls in their study. Machine learning approaches were used and models were
automatically generated, which correctly predicted the diagnosis in 64% of controls and
79% of patients, obtaining an AUC of ROC of 0.82 [14]. Better discrimination was obtained
by Van Berkel et al., [54] who used six VOCs that correctly classified 92% of the subjects
with a sensitivity and specificity of 98 and 88%, respectively. Moreover, 14 out of 15 steroid-
naïve patients were also correctly classified [54]. Besides discriminating between COPD
group and healthy controls, the identification of various COPD subgroups has also been
achieved [63]. Notwithstanding, Pizzini and al. went into more details and succeeded
to perform differential diagnosis between patients with COPD and COPD with acute
exacerbations—a complication caused by infectious and non-infectious agents [81].

It is widely acknowledged that smoking results in respiratory disease development,
including COPD. In support of this, Gaida and co-authors developed a dual center study
in order to compare the VOCs emitted by smokers and non-smokers, with the volunteers
having or not having COPD [19]. Their results highlighted that active smokers are clearly
discriminated from the non-smokers. Furthermore, by characterizing 134 VOCs, they were
able to provide evidence for 14 VOCs related to COPD.

Real time SESI-HRMS (Secondary Electrospray Ionization—High-Resolution Mass
Spectrometry) was used as a diagnostic tool for COPD. A number of 1441 different VOCs
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were identified, but only 43 were used to discriminate between groups, obtaining an
accuracy of 89%, a sensitivity of 93% and a specificity of 86% [20].

PTR-MS was utilized to explore breath samples of heavy smoker patients with em-
physema [32], patients who are at risk to develop COPD, based on the hypothesis that
emphysema is defined by airways inflammation that alters the composition of the exhaled
air. Even if the authors reported that in COPD/emphysema screening the proposed method
did not provide a valuable diagnostic tool, a series of VOC markers associated with this
disease are presented [32].

A multi-capillary column (MCC-IMS) was used to diagnose COPD in comparison with
COPD plus bronchial carcinoma (BC). The statistical learning methods applied were able
to distinguish between the patients groups. Healthy and COPD groups were discriminated
with a 94% accuracy, while BC on COPD/no-COPD was classified with a 79% accuracy [35].
Besa et al. also used MCC-IMS to differentiate COPD patients from healthy subjects.
A number of 137 spectral peaks proved to be statistically significant between the COPD,
healthy smokers and nonsmoker groups, while just six VOCs correctly discriminated
the COPD patients from healthy controls with a 70% accuracy [18]. Moreover, 15 peaks
discriminated between healthy smokers and healthy nonsmokers [18]. A prototype of a
compact, closed gas loop GC-IMS was developed and used in an attempt to find correlations
between volatiles from COPD patients and controls [37]. A second approach was made to
provide a comparison between the results obtained and those acquired by using a modified
mass spectrometer with atmospheric pressure chemical ionization with GC pre-separation
(GC-APCI-MS). In the case of GC-IMS, three VOCs highlighted significant differences
between the COPD and healthy groups, while in the case of GC-APCI-MS, one distinctive
VOC, 2-pentanone, has been identified as a COPD specific marker [37].

Ultrafast gas chromatography equipped with an electronic nose detector (FCG eNose)
has been used to discriminate between patients with COPD and healthy controls, using a
set of 17 VOCs, which correctly classified the groups with an 82% accuracy, 96% sensitivity
and 91% specificity [85]. Hattesohl et al. used a Cyranose 320 eNose instrument to
measure VOCs patterns of patients with COPD with and without alpha 1-antitrypsin (AAT)
deficiency [39]. These authors proved that an e-nose system can differentiate VOC prints
of COPD patients with AAT deficiency by obtaining a cross-validation value of 82% (with
a sensitivity of 100% and a specificity of 100%) when exhaled breath condensates of AAT-
deficiency and COPD groups were compared. In pure exhaled breath, the cross-validation
value was lower, being just 58.3% (with a sensitivity of 1.00 and a specificity of 1.00).

5.3. Lung Cancer

Malignant tumors, which are formed due to uncontrolled cell growth tissues localized
in the lungs, are defined as lung cancers. The most common symptoms that could predict
the onset of lung cancer are coughing, a shortness of breath, a pain into the chest and
weight loss. It is considered that about 85% of lung cancers are caused by tobacco smoking,
with the remaining maximum 15% of cases resulting from exposure to radiation, radon,
asbestos, and various forms of air pollution. Other causes result from passive smoking or
genetic factors [117].

5.3.1. Types of Lung Cancer

The primary lung cancers are known as carcinomas (LC) that, according to the his-
tological type, belong to two main categories: small-cell lung carcinoma (SCLC) and
non-small-cell lung carcinoma (NSCLC). SCLC consists of dense cells containing neu-
rosecretory granules in the form of blisters full of neuroendocrine hormones; a reason
why these kinds of tumors are associated with endocrine or paraneoplastic syndromes.
SCLC accounts for about 15% of all lung cancer worldwide [118]. NSCLC accounts for
approximately 85% of lung cancers. The most common types of NSCLC are squamous
cell carcinoma, non-squamous cell carcinoma (which include adenocarcinoma), large cell
carcinoma, and several other types that occur less frequently. The most frequently appear-
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ing is adenocarcinoma, located generally peripherally in the lungs [119]; this form of LC
accounts for approximately 40% of all lung cancers [120]. Molecular testing allows for
possible mutations in the adenocarcinomas to be identified; the most frequently appearing
mutations are summarized in Figure 3.
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Squamous cell carcinomas tend to be centrally located in the lungs; they are more
common in men than in women, and are mostly associated with smoking [122]. Large
cell carcinoma is a malignant neoplasm composed of large tumor cells resulting from
transformed epithelial cells in the lungs. It can be differentiated from squamous cell
carcinomas and adenocarcinomas by light microscopy [123].

5.3.2. Diagnosis of Lung Cancer Based on Specific VOCs

Lung cancer is often diagnosed by chest radiographs or by computed tomography;
however, the diagnosis needs to be confirmed by biopsy, which is an invasive, time con-
suming and expensive diagnosis method with risks. Therefore, many lung cancer studies
of breath VOCs have been undertaken in the hope to discover breath biomarkers of the
disease and thereby realise a simple non-invasive test. However, despite intense work,
to date, no breath test for lung cancer has been forthcoming. A major reason for this is that
there has been little consensus between studies, with limited agreement as to which breath
volatiles (or pattern of volatiles) can be used to discriminate people with lung cancer from
those without. Although many breath volatiles have been proposed to result from lung
cancer, not a single study, thus far, has specifically pinpointed the origins of the breath
volatiles exclusively to lung cancer nodules and not oxidative stress in any other organ
resulting from cancer or any other disease.
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In the research related to the diagnosis of lung cancer, GC-MS has been widely
used, accounting for more than 50% of studies. In the 15 studies included in this present
review, GC-MS was used for analyses [13,16,22,44,48,60,62,69,70,72,75,80,82,84,86], while in
another three studies, GC-MS was used as an additional confirmatory method [21,58,78].

Two studies used an ingenious sampling method, SPME-OFD (Solid Phase Micro-
Extraction On-Fiber Derivatization), followed by GC-MS analysis, for detection of targeted
aldehydes (biomarkers of oxidative stress), which were previously transformed in stable
oximes by means of SPME-OFD [56,59]. Exhaled aldehydes C1–C10 [56] and C3–C9 [59],
respectively, were detected.

Different statistical approaches and machine learning algorithms have been used
in order to classify the samples analyzed by GC-MS, coming from patients with lung
cancer and from healthy controls [48,64,70,71,74,86]. In an attempt to get closer to a
standardization of lung cancer diagnosis, Kischkel et al. applied five different algorithms to
process their GC-MS data [48]. Their results concluded that exhaled VOCs are dependent
on a multitude of factors, other than the investigated diseases (i.e., patients’ medical history,
environmental conditions) [48].

GC-MS profiles of potential markers of lung cancer were investigated in four different
studies by a Polish group [22,44,62,84]. They carried out qualitative and quantitative mea-
surements by sampling human breath using solid phase SPME and gas chromatography—
time-of-flight mass spectrometry (GC–TOF/MS), obtaining possible biomarkers (19 to
32 VOCs) at the level of parts per billion, when more subtypes of lung cancer were in-
vestigated (SCLC, NSCLC, adenocarcinoma, planoepitheliale, squamous cell carcinoma).
Sons et al. [60] used GC-MS to investigate two types of lung cancer: adenocarcinoma and
squamous cell carcinoma, covering all four stages of the disease, and proposed just two
key volatile biomarkers that were found at significantly higher concentrations in the breath
of the lung cancer patients compared to the controls: 1-butanol and 3-hydroxy-2-butanone
(acetoin). For 1-butanol, the obtained AUC was 0.940, with a sensitivity and specificity of
0.953 and 0.854, respectively, while for acetoin, the AUC was 0.964, whereas the sensitivity
was 0.930 and specificity 0.927. Moreover, other important conclusions were revealed:
higher concentrations of both targets were found in adenocarcinoma than in squamous cell
carcinoma, and the concentrations of the VOCs could not be correlated with the stage of
disease [60]. Adenocarcinoma and squamous cell carcinoma subtypes were discriminated
in a PTR-MS study. The authors claim that breath volatiles from adenocarcinoma and
squamous cell carcinoma patients can help in identification of cancer subtypes [34].

Three types of lung cancer (adenocarcinoma, squamous cell carcinoma, and small
cell carcinoma) that were histologically proven were analyzed using MCC-IMS, with the
obtained VOC profiles were compared with a healthy control group. In addition, adeno-
carcinoma samples, with and without epidermal growth factor receptor (EGFR) mutation,
were also compared. The decision tree algorithm used was able to discriminate the groups
of patients based on the 115 detected VOCs. Moreover, n-dodecane was found to be signifi-
cantly higher in 14 patients with EGFR mutation than in those negative for EGFR (p = 0.01).
The applied decision tree algorithm differentiated therefore the positive EGFR samples
from those negative with a sensitivity of 85.7% and a specificity of 78.6% [36]. Almost
similar results were obtained by Shlomi and co-authors, who discriminated patients with
EGFR mutation from other groups investigated with 83% accuracy, while the sensitivity
and specificity were 79% and 85%, respectively. For samples analyses, a highly sensi-
tive nanoarray of sensors, containing 40 cross-reactive chemically diverse chemiresistors,
was used [77].

The interference of benign pulmonary diseases (BPD) in the selection of VOCs markers
for lung cancer has been reported [82]. SPME and TD (thermal desorption) were used
together with GC-MS to classify four groups of samples: from patients with lung cancer,
from patients with BPD, the group with lung diseases (including lung cancer and BPD) and
the group of healthy controls. The main scope was to check if the benign lung tumors led
to the generation of VOCs that interfere with those considered to be associated with lung
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cancer. The authors concluded that the discrimination between the lung cancer group and
the control group, and between the BPD group and the control group, is possible with an
accuracy of 70–80%. However, no VOCs could discriminate between the lung cancer group
and BPD group [82]. A kindred study was developed by Zou et al. [70], where the breath
samples coming from 171 volunteers divided into three groups (with lung cancer, with BPD
and controls) were analyzed by GC-MS. They suggested that five detected volatiles are
associated with lung cancer. They reported that they succeeded in discriminating the
three preselected groups, avoiding the interference between lung cancer and pulmonary
non-malignant diseases [70]. However, only an AUC higher than 0.80 can state a good
predictability of diagnosis [10]; consequently, the authors obtained good diagnosis accuracy
just in case of one volatile (AUC = 0.84), but satisfactory to low in case of the other four
VOCs reported (AUC = 0.67 to 0.78). Moreover, by applying PCA, a partial discrimination
of lung cancer group from control and BPD group was obtained [70]. Good discrimination
of lung cancer from benign nodules (with an 87% accuracy) was obtained in another study,
by using an electronic nose system consisting of highly sensitive nanoarray sensors [77].
In addition, discrimination feasibility between BPD and lung cancer was proved in other
four studies [67,68,71,73]. The authors succeeded in proving a good diagnosis prediction
for lung cancer, avoiding the BPD interferences, when FT-ICR-MS was used for analyzing
breath samples.

Feinberg et al. used PTR-MS to study volatile fingerprints in the exhaled breath of
patients with lung cancer before and after an oral glucose tolerance test, to investigate
whether tumor cells hyper-glycolysis can affect the volatile signatures [33]. The authors
concluded that oral glucose tolerance test has a minimal effect on the VOC profile of patients
group, while the profiles coming from the control group were significantly changed after
the induced hyper-glycolysis. It was proposed that this is due to the ceiling effect present
in cancerous patients [33].

Malignant Pleural Mesothelioma (MPM, which is predominantly caused by asbestos
exposure) was investigated using MCC-IMS. Discrimination of MPM patients from control
groups was achieved with an overall accuracy of 76%, a ROC-curve of 0.81, an 87%
sensitivity and a 70% specificity [74]. MPM screening using an e-nose was investigated by
the same group of researchers, while GC-MS was used in parallel [78]. MLM group was
discriminated by control group with a 97% accuracy when GC-MS analyses were processed
and with only a 74% accuracy when the data obtained with the e-nose were interrogated.
The sensitivity and specificity were at 100 and 91%, respectively, for GC-MS data, and at 82
and 55%, respectively, for e-nose data.

5.4. Discrimination between Asthma, COPD and Lung Cancer

The results discussed above were acquired based on patterns of VOCs or based on
reported individual biomarkers. A total number of 146 biomarkers have been reported for
all three investigated diseases, as summarised in Table 3. We used the markers collected
from the literature to check if they provide discrimination between the investigated diseases.
The IBM SPSS statistical software package version 21 was employed for running PCA.
Consequently, PCA revealed discrimination between asthma, COPD and lung cancer with
93.3% of variance when the first two principal components were considered, as presented
in Figure 4A. The classification of VOCs according with chemical classes is presented
in Figure 4B. It is important to mention that the number of lung cancer markers were
considerably higher due to the larger number of lung cancer studies.
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Table 3. Markers associated with the three reviewed respiratory diseases.

No First Author/
Reference Marker of Detected Markers

Concentration in Patients * Concentration in Controls *
Unit p-Value

Smokers Former Never Smokers Former Never

1 Van Berkel, [54] COPD 12 VOCs (nq) 2,4,6-trimethyl-decane; 2,6-dimethyl-heptane; 3,7-dimethyl 1,3,6 octatriene; 4,7-dimethyl-undecane; 4-methyl-octane;
benzonitrile; hexadecane; hexanal; isoprene; octadecane; terpineol; undecane

2 Fuchs, [56] LC

hexanal - 1.632 - 0 - 0.172

ng/L

-
nonanal - 1.768 - 0 - 0 -
octanal - 6.652 - 0.768 - 1.407 -

pentanal - 33.957 - 12.077 - 4.689 -

3 Kischkel, [48] LC

dimethyl sulphide - 0.27 - 0.27 - 0.3 nmol/L =0.002
dimethyl formamide - 5589.5 - 1403 - 558.5 counts =0.003

propanal - 0.34 - 0 - 0 nmol/L <0.001
butanal - 6.47 - 1.06 - 1.41 nmol/L <0.001

4 Poli, [59] LC

propanal - 49.8 66.3 - - 24.4

pM1

=0.006
butanal - 23.6 28.6 - - 10.8 <0.001

pentanal - 17.1 20.3 - - 8.2 <0.001
hexanal - 38.2 35.9 - - 10.3 <0.001
heptanal - 15.4 17.0 - - 6.9 <0.001
octanal - 26.9 22.4 - - 11.6 <0.001
nonanal - 51.7 36.5 - - 13.3 <0.001

5 Song, [60] LC
1-butanol 2.21–30.31 - - - - 0.32–13.97 ng/L <0.005

3-hydroxy-2-butanone 1.95–50.3 - - - - >6.21 <0.005

6 Cristescu, [32] asthma 30 proposed VOCs (nq)

1-(3-pyridinyl)-ethanone; 1-(4-pyridinyl)-ethanone; 1,2,3,5-tetramethylbenzene; 3-pentanone; 1,2,3-trimethylbenzene;
1,2,4,5-tetramethylbenzene; 1,2,-diethylbenzene; 1,3,-diethylbenzene; 1,4,-diethylbenzene; 2-(1-methylethyl)-pyridine;
2,3-butanedione; 2,6-dimethyl-benzenamine; 2-methyl-3-buten-2-ol; 2-methylbutanal; 2-pentanone; 2-propyl-pyridine;

3-methyl-2-butanone; 3-methyl-2-buten-1-ol; 3-methyl-3-buten-1-ol; sec-butylbenzene; pentanal; 3-methylbutanal;
4-aminobenzenecarbonal; benzamide; benzeneethanamine; chloramine; N,N-dimethyl-benzenamine; butylbenzene;

n-ethyl-benzenamine; propiolonitrile;
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Table 3. Cont.

No First Author/
Reference Marker of Detected Markers

Concentration in Patients * Concentration in Controls *
Unit p-Value

Smokers Former Never Smokers Former Never

7

Ulanowska, [22] LC #

ethanol 466.9 - - 286.4 - 188.5

ppb <0.005

acetone 358.6 - - 330.2 - 225.7
butane 90.3 - - 25.8 - 56.2

dimethyl sulfide 11.9 - - 9.2 - 9.3
isoprene 100.3 - - 61.5 - 70.8
propanal 7.8 - - 6.7 - 6.9

1-propanol 54.8 - - 17.0 - 6.6
2-pentanone 7.5 - - 5.3 - 4.8

furan 4.7 - - 4.3 - 3.7
o-xylene 22.1 - - 18.7 - 17.4

ethylbenzene 19.6 - - 10.4 - 10.4
pentanal 5.9 - - 0 - 0
hexanal 4.5 - - 0 - 0
nonane Not quantified

8 Caldeira, [46] asthma 6 proposed VOCs (Nq) 2,2,4,6,6-pentamethylheptane, 3,6-dimethyldecane, decane, dodecane, nonane, tetradecane

9 Phillips, [14] COPD

isoprene 97.6 92.3 - - - 96.5

Occurrence
rate (%)

-

acetic acid 92.2 96.2 - - - 94.7
benzaldehyde 100 100 - - - 100

benzene 100 98.7 - - - 100
carbon dioxide 100 100 - - - 100

hexanal 90.2 94.9 - - - 0
toluene 100 93.6 - - - 0

1-heptenal 46.3 1.3 - - - 0
sulphur dioxide 71.1 80.3 - - - 63.2

1,3,5-cycloheptatriene 4.9 28.2 - - - 0
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Table 3. Cont.

No First Author/
Reference Marker of Detected Markers

Concentration in Patients * Concentration in Controls *
Unit p-Value

Smokers Former Never Smokers Former Never

10 Buszewski, [44] LC

acetone 44.2–53.45 - - 34.57–390 - -

ppb

<0.005
benzene 1.38–14.97 - - 1.29–3.82 - - <0.005
butanal 1.35–1.87 - - 1.32–2.55 - - <0.001

2-butanone 1.35–3.18 - - 1.35–2.86 - - <0.001
ethyl acetate 1.12–8.22 - - 3.98 -22.89 - - <0.001
ethylbenzene 2.22–18.38 - - 1.45–3.16 - - <0.001

furan 1.67–3.25 - - 1.53–2.81 - - <0.005
2-pentanone 1.80–4.11 - - 3.25–8.77 - - <0.001

propanal 1.56–3.44 - - 1.56–3.74 - - <0.001
1-propanol 0 - - 4.37–13.15 - - <0.001
2-propanol 3.21–4.17 - - 3.32–7.19 - - <0.001
2-propenal 5.10–9.57 6.84–94.36 <0.005

11 Gahleitner, [65] asthma 8 proposed markers (nq) 1-(methylsulfanyl)propane; octadecyne; 1,4-dichlorobenzene; 1,7-dimethylnaphtalene; 1-isopropyl-3-methylbenzene;
2-octenal; 4-isopropenyl-1-methylcyclohexene; ethylbenzene;

12 Fu, [67] LC #

2-butanone 1.78–8.38 - - 0.45–2.34 -

nmol/L

<0.001
3-hydroxy-2-butanone 0.13–077 - - 0.02–0.15 - - <0.001

2-hydroxyacetaldehyde 0.23–1.13 - - 0.03–0.45 - - <0.001
4-hydroxyhexenal 0.005–0.05 - - 0.007–0.09 - - <0.005

13 Bousamra, [68] LC #

2-butanone ~ 3.3 - - ~ 1.8 - -

nmol/L

<0.001
3-hydroxy-2-butanone ~ 0.25 - - ~ 0.1 - - <0.001

2-hydroxyacetaldehyde ~ 0.3 - - ~ 0.2 - - <0.001
4-hydroxyhexenal ~ 0.3 - - ~ 0.15 - - <0.001

14 Handa, [36] LC 9 proposed markers (nq) 2-metylbutylacetat; 3-methyl-1-butanol; ethylbenzol; heptanal; hexanal; iso-propylamin; n-dodecane;
cyclohexanone

<0.01 to
<0.001

15 Ma, [69] LC #

Toluene 22.01–291.6 - - 18.86–99.8 - -

ng/L

-
ethylbenzene 14–85.67 - - 3.76–218.1 - - -

p-xylene + m-xylene 9.33–82.5 - - 0.82–55.39 - - -
o-xylene 2.93–14.8 - - 1.31–23.0 - - -

isopropyl benzene 0.24–0.86 - - 0.19–0.67 - - -

16 Zou, [70] LC 5 proposed markers (nq) 2, 6, 11-trimethyl-dodecane; 5-(2-methyl-) propyl- nonane; hexadecanal; 8-hexyl- pentadecane;
2,6-di-tert-butyl-, 4-methyl- phenol

<0.001 to
0.022
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Table 3. Cont.

No First Author/
Reference Marker of Detected Markers

Concentration in Patients * Concentration in Controls *
Unit p-Value

Smokers Former Never Smokers Former Never

17 Li, [71] LC

2-butanone ~3.5 - - ~0.8 - ~ 0.7

nmol/L 95% CI

4-hydroxy-2-hexenal ~0.0005 - - ~0.0003 - ~ 0.0003
3-hydroxy-2-butanone ~0.03 - - ~0.01 - ~ 0.01
hydroxyacetaldehyde ~0.04 - - ~0.02 - ~ 0.02
4-hydroxy-2-nonenal ~0.002 - - ~0.001 - ~ 0.001

2-pentanone ~1.2 - - ~0.9 - ~ 0.8

18 Ma, [72] LC #
propanol 7415.3 - - 1975.3 - - ng/L -
acetone 1811.6 - - 579.9 - - -

methanol 225 - - 76.7 - - -

19 Schumer [73] LC

2-butanone 3.4 2.47 ˆ - 1.4 1.26 ˆ -

nmol/L

-
3-hydroxy-2-butanone 0.31 0.15 ˆ - 0.09 0.07 ˆ - -

2-hydroxyacetaldehyde 0.33 0.29 ˆ - 0.17 0.019 ˆ - -
4-hydroxyhexenal 0.007 0.007 ˆ - 0.002 0.001 ˆ - -

20 Gaida A, [19] COPD λ

benzene 96–100 96 - 100 96 ˆ -

Occurrence
rate (%)

<0.005 to
<0.02

acetic acid 96–100 96–100 - 100 96–100 ˆ -
toluene 100 96–100 - 100 100 ˆ -

m,p-xylene 96–100 74–93 - 96-100 80–85 ˆ -
1,6-dimethyl-1,3,5-

heptatriene 74–100 7–19 - 40–71 0 ˆ -

o-xylene 93–100 33–50 - 57–96 26–36 ˆ -
1-ethyl-3-methyl

benzene 89–100 33–61 - 60–92 26–28 ˆ -

linalyl acetate 9–89 11–96 - 3–88 24–89 ˆ -
tridecane 100 85–100 - 77–100 88–100 ˆ -
phenole 100 96–100 - 100 100 ˆ -

m/p-cresol 36–48 7–50 - 30–71 44–48 ˆ -
indole 64–100 67–100 - 87–96 96–100 ˆ -

vinyl acetate 96–100 7–9 - 57–88 0–8 ˆ -
butanone 78–100 82–85 - 63–71 22–60 ˆ -

21 Allers, [37] COPD
acetonitrile ~25 ~1 ˆ - ~33 ~6 ˆ - Intensity

(arbitral
units)

=0.01
2-butanone ~2.3 ~1.9 ˆ - ~3.1 ~1.8 =0.05

2-pentanone Intensity not specified -
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Table 3. Cont.

No First Author/
Reference Marker of Detected Markers

Concentration in Patients * Concentration in Controls *
Unit p-Value

Smokers Former Never Smokers Former Never

22 Schallschmidt [75] LC

n-hexane 1.3 0.8 > - 2.1 0.7 > -

ng/L <0.001 to
<0.05

3-methylpentane 0.8 0.8 > - 1.6 0.5 > -
cyclohexane 1.5 1.9 > - 4.4 4.8 > -
n-nonanal 1.9 2.4 > - 2.8 1.3 > -
1-butanol 5.1 10.1 - 2.2 1.9 > -

2-butanone 6.9 6.6 - 19.3 > 4.6 > -
2-pentanone 2.9 2.7 - 10.8 > 3.0 > -

23 van Vliet, [76] asthma 7 proposed markers (nq) 1, 2-dimethylcyclohexane; 2-ethylhexanal; 2-methylfuran; 6, 10-dimethyl-5,9-undecadien-2-one; nonanal; octanal

24 Lamote, [78] LC 6 proposed markers (nq) diethyl ether, methylcyclopentane, nonanal, limonene, cyclohexan, isothiocyanatocyclohexane

25 Jareno-Esteban, [79] COPD 5 proposed markers (nq) hexanal; heptanal; nonanal; propanoic acid; nonanoic acid

26 Oguma, [80] LC # Cyclohexane 0.1 - - 0.2 - - ppb =0.002
Xylene 0.16 - - 0.07 - - ppb =0.0001

27 Sakumura, [16] LC 5 proposed markers (nq) hydrogen isocyanide; methanol; acetonitrile; isoprene; 1-propanol

28 Pizzini, [81] COPD #

cyclohexanone 35 - - - - -

Occurrence
rate (%)

<0.001 to
=0.006

n-butane 96 - - - - -
4-heptanone 48 - - - - -
2-pentanone 79 - - - - -

n-heptane 99 - - - - -
methyl propyl sulfide 77 - - - - -

dimethyl disulfide 93 - - - - -
6-methyl-5-heptene-2-

one 98 - - - - -

2,4-dimethylheptane 90 - - - - -
2,6-dimethyloctane 70 - - - - -

cyclohexane 95 - - - - -
2-methylhexane 82 - - - - -
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Table 3. Cont.

No First Author/
Reference Marker of Detected Markers

Concentration in Patients * Concentration in Controls *
Unit p-Value

Smokers Former Never Smokers Former Never

29 Wang, [82] LC 12 proposed markers
(nq)

heneicosane; 3-ethyltoluene; 1,2,3-trimethylbenzene, N-propylbenzene; indan; methylcyclohexane
1-methyl-3 propylbenzene; propylcyclohexane; o-xylene; 4-methyl-2-pentanone; 5-methylindan; <0.001

30 Cai, [41] LC 23 proposed markers
(nq)

dimethylmethane; ethanol; methane; isoprene; hexane; heptane methyl-cyclopentane; 2-methylheptane; octane;
3-methyloctane; 1,4-dimethylbenzene; ethenylbenzene; dodecane; tetradecane; tridecane; 2.2.4.6.6-pentamethyl-heptane;

2,5,5-trimethyl-2,6-heptadien-4-one; limonene; benzene;; 2-phenyl-propylbutyrate; 1,2,6-trimethylnaphthalene;
3-methylnonane;

*—when a single value is reported, the concentration refers to mean range concentration detected in the investigated samples; #—smoking status of patients was not detailed with respect of obtained
concentrations/values, consequently the quantified markers were placed in the first column (s) just in an aleatory way; ˆ—the value refers to the concentration measured in former + never smokers;
λ—inter-laboratory comparison, different values reported are related to the discrepancies between the two investigated sited; pM1 = 10−12 M; LC- lung cancer; nq—not quantified.
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6. The Origin of VOCs Related to the Investigated Diseases and a Sum Up of the
Diagnostic Prediction Using the Markers Reported in the Reviewed Studies

A breath sample is composed of a mixture of N2, O2, CO2 and vapors of H2O, together
with a small fraction of VOCs that consists of more than 1000 compounds [24]. In terms
of their origin, these VOCs can be endogenous (generated by the organism, as a normal
process of metabolism or as a response to diverse pathologies) or exogenous (absorbed by
the organism from the environment and then eliminated through exhaled breath), or both.
Unfortunately, the metabolic pathways for the production of endogenous biomarkers
associated with various diseases are mostly unknown. The metabolic fates for a limited
number of exogenous compounds is well known. The challenge in VOC selection from a
complex exhaled breath matrix is the correct identification to a given disease, and this needs
to be based on an in-depth knowledge of inflammatory processes. Asthma, COPD and lung
cancer are conditions characterized by chronic inflammation and oxidative stress that can
be diagnosed through endogenous volatiles. Clinical studies have proven the link between
the condition and inflammatory or peroxidative activity as a result of reactive oxygen
species (ROS) reaction with lipid membranes [124]. Unfortunately, the inflammatory
processes have different sources. For example, sputum inflammatory profiles were able
to predict both neutrophilic and eosinophilic asthma [47]. Another method that can be
used for asthma phenotyping is sputum cell count [125,126]. However, other interactions
of leukocytes, epithelial and stromal cells, proved their contribution to inflammatory
processes in asthmatic patients [127].

Hydrocarbons are stable end products of lipid peroxidation released in breath in real
time (seconds) after formation in tissues [23]. The presence of alkanes (ethane and pentane)
in exhaled breath has been shown to be correlated with lipid peroxidation [24]. However,
pentane is also a non-specific marker reported in bowel disease [128] and rheumatoid
arthritis [129].

Aldehydes are also associated with oxidative stress and inflammatory processes [4].
Hexanal, heptanal and nonanal, which are formed by the peroxidation ofω 3 andω 6 fatty
acids [59], have been reported as markers of asthma, lung cancer and COPD [36,56,75,76,78,79].
Aldehyde concentrations are known to be affected by age (e.g., pentane may indicate higher
metabolic demands of young adults) and smoking history [4]. Endogenous compounds
occurring in cigarette smoke (such as acetonitrile, furan, 2-methylfuran, 3-methylfuran,
2,5-dimethylfuran, benzene and toluene) are detected in smokers’ breath samples, but not
in the breath of non- or ex-smokers [22,84]. Toluene present in breath samples can result
from environmental contamination.
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In a pilot study, Gahleitner et al. [65] identified VOC markers of childhood asthma
in exhaled breath. Partial least square discriminant analysis was performed and eight
compounds (1,7-dimethylnapthalene; 1-(methylsulfanyl)propane; 2-octenal; octadecyne; 1-
isopropyl-3-methylbenzene; ethyl benzene; 1,4-dichlorobenzene and limonene) were found
to have the greatest contribution to the discrimination between asthmatic and control group.
The authors concluded that only 2-octenal is an endogenous marker, while the other seven
compounds may potentially result from environmental exposure, catabolism/metabolism,
treatments involved for asthma or they can even have an etiological significance in relation
to asthma pathogenesis [65].

The concentrations of methanol, acetone, propanol and pentane were measured in
patients with lung cancer [69]. The detected concentrations were higher in patients with
stage IV than in those with stage III, and in both cases higher in patients with diabetes,
than in non-diabetic persons. It was assumed that these findings occurred because the
predictive power of markers is proportional with the tumor size and because the lack
of insulin is leading into the accumulation of ketones (especially acetone). Patients with
smoking history presented increased concentrations of all four markers when compared
to non-smokers [69]. In comparison, Song et al. stated that they could not correlate the
detected markers (1-butanol and acetoin) with the stage of lung cancer [60].

Isoprene (2-methyl-1,3-butadiene) is an endogenous controversial marker of diseases.
The assumption that isoprene is related to cholesterol metabolism [130], is a possible
indicator of obesity [131], or a biomarker of lung cancer [16,22,41] and/or COPD [14,54],
has been invalidated by researchers. It has been proposed that the variability in isoprene
concentration is more related to increasing and decreasing heart rates (as a result of wash-
out from muscle tissues [132]) since isoprene concentrations have been shown to increase
within a few seconds following physical exercise and then to reach the initial level when
breath rate stabilizes [131,133]. Moreover, isoprene can correlate with age, while it was
proven that people younger than 40 years exhaled significantly less isoprene than older
people [48].

Propanal and 1-propanol have both been proposed as markers of lung cancer
[16,22,44,59,69]. However, they are used in disinfectants, and hence are found in high
concentrations in the hospitals’ environment. This is why it has been strongly recom-
mended that they are excluded as biomarkers of lung cancer [48]. Benzaldehyde, reported
initially as a marker of COPD [14], was actually found to be a decomposition product [19].

Limonene (4-isopropenyl-1-methylcyclohexene) is a ubiquitous monoterpene found in
fruits (especially citrus), drinks, flavor additives, air fresheners, cleaning products, scented
candles, toothpastes, and deodorants. Therefore, limonene can have possible origin in
indoor pollution. Yet limonene has been reported to be an endogenous biomarker of
lung cancer [41,78]. This is almost certainly incorrect, and the higher levels in the breath
of patients with lung cancer may indicate a higher consumption of citrus fruits or fresh
juice [134]. In case of liver cirrhosis, limonene is a key exogenous biomarker denoting a
deficient liver metabolism, accumulated due to the liver incapacity to convert it in carveol
metabolites or perillyl metabolites by CYP2C enzymes [135,136].

7. Limitations, Excluding Criteria and Standardization

The diagnosis of lung disease via breath samples is still not a reality. This is a result of
a number of limitations and challenges, including sampling, analysis, confounding factors,
correct use of controls, small numbers of volunteers, dietary issues, medications, medical
treatments, coexisting conditions, and the lack of reproducibility between studies.

Concerning sampling, it is well documented that subjects are breathing spontaneously
with different frequencies, while hypo- or hyper-activity during sampling will produce
changes in the composition of the expired breath. Use of mixed expired or end tidal
will result in changes in concentrations being measured. Concentrations in the exhaled
breath dramatically increase in the end-tidal phase, correlating to the highest concentration
of expired carbon dioxide (end-tidal carbon dioxide concentration) [23]. Consequently,
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the standardization should start from this level. The resting period before sampling and the
establishment of which part of breath is going to be sampled need to be decided. In terms
of analyses, a combination of GC-MS instrumentation to be used for discovery, followed
by fast identification of these targets with rapid techniques such as sensors and e-noses is
highly desirable.

The control cohorts used in some studies are often younger compared with the in-
vestigated patient groups. For example, in one study, the mean age of the control group
was 28 ± 6.08, while the age of the two patient investigated groups, one with COPD
with acute exacerbation and the other with COPD only, was 66.9 ± 9.05 and 71.4 ± 7.46,
respectively [81]. Fens et al. [38] included in their study a much wider age range, be-
tween 18 and 87 years, in an attempt to discriminate between asthma and COPD patients,
while Oguma et al. involved 37 volunteers between the ages of 24 and 64 years as controls,
and 116 patients with lung cancer between the ages of 36 and 96 years [80]. Compara-
ble age discrepancies were found in another study, where the age difference of the two
control groups and the investigated cohort diagnosed with COPD were considerably
lower [18]. The mean age of healthy smoker and non-smoker groups were 38.7 ± 14 years,
and 42.5 ± 8.4 years, respectively, while the mean age of patients diagnosed with COPD
was 56.2 ± 8.5 years. The authors reported as well that the age difference was statisti-
cally significant between the two control groups and the group affected by COPD [18].
Conversely, another study included COPD patients with the mean age 58.6 ± 6.9 years,
while the mean age of healthy controls was 58.1 ± 8.1 years [20]. Nevertheless, it is still
questionable how much the variables such as age, smoking status, Body-Mass-Index,
and presence of other diseases can affect the emitted VOCs profiles in an exhaled breath
sample. We do believe that a rigorous quantification of emitted volatiles is almost impos-
sible, due to differences in patients, mainly related to gender and age. Adult males with
bigger chest volume will definitely exhale more breath compared with females, elders or
infants. Whether the concentration of volatile markers of interest is influenced by the total
volume, still remains debatable.

The small cohort size involved in many studies is a limitation that needs to be men-
tioned. Many of the clinical studies included only a few dozen volunteers [13,20,46,57,58,62],
and rarely more than two hundred patients [14,22,43,68,84]. In only three cases did the
number of included subjects exceeded 400 [73,82,86]. This is understandable, because of
the unavailability of suitable patients to donate the necessary samples, but also because of
the long duration required to collect a large number of samples. From our personal experi-
ence, from a small city with 202,074 inhabitants reported in 2018, we succeeded to collect
during one year just 30 tissues samples coming from patients with post-operative bacterial
infections and controls [10]. We are confident that other researchers experienced the same
issue. For example, Fens et al. [38] mentioned in their published article that although
they included 100 patients with an established diagnosis of asthma or COPD, these were
recruited over a long period, namely between August 2007 and March 2010. Moreover,
the patients come from a limited location. The analyses of these kind of samples may simply
provide results that reflect the diagnosis of a subtype/phenotype of a respiratory disease,
which cannot accurately be mirrored in the markers liberated by the general population
affected by the same condition. For example, Gaida et al. [19] recruited 222 subjects from
two different sites in Germany, Hannover and Marburg, in an attempt to investigate VOCs
related to COPD. Differences between both room air VOCs and breath VOCs were found
when the two sites were compared. Geographical variation in the exhaled VOCs was also
found between two sampling sites in China and Latvia [137].

Dietary issues are another important factor connected with VOCs analysis detected
from a breath samples. Many studies imposed fasting limits of one hour [40,77,95],
two hours [15,38,47,63], three hours [65,81], four hours, [14] and six hours [33]. In some
studies, volunteers were fasting overnight, or for 12 hours [21,41,60,70,82]. However, a long
fasting period is not easily accepted by volunteers, and is not feasible in a real-life scenario.
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The impact of medication applied for respiratory diseases (like inhalative agents, corti-
costeroids, antibiotics, anesthetics, etc.) together with the effect of concomitant medications
(antihypertensive or anti-diabetic therapy), as well as the effect of co-existing disorders on
exhaled VOCs still remains unknown.

Owing to a total lack of standardization in this field, different excluding criteria
have been applied. For example, Zou et al. [70] excluded all participants younger than
45 years old from a validation cohort, while Phillips et al. [14] excluded all patients with
current or previous cancer history, known dementia, heart failure, other known pulmonary,
and renal or liver disease when investigating COPD. Rodríguez-Aguilar and colleagues
in their COPD study excluded all patients with asthma and all individuals with a history
of upper or lower respiratory tract infection during the 4 weeks before their measure-
ments [85]. Van Vliet investigated asthma in children aged between 6 and 17 years old,
and applied the following exclusion criteria: technically unsatisfactory performance of
lung function measurements; other pulmonary diseases; cardiac abnormalities; mental
retardation; congenital abnormalities or existence of a syndrome; active smoking; children
that had immunotherapy during the study [76].

Excluding certain categories of volunteers is not a suitable solution all of the time.
Furthermore, patients often do not honestly declare if they are active or ex-smokers. In ad-
dition, their medical histories are often confidential. Applying excluding criteria will
decrease the cohort in a biased way. However, not applying such criteria may result in
too much interference that makes it difficult to follow the pattern of markers occurrence,
which, in turn, will finally affect the diagnostic accuracy. Perhaps the best decision is to
not exclude a key population, but just to subtract some well-known volatiles associated to
certain habits (e.g., smoking).

The chemical composition of a breath sample is also dependent on the lung area from
where it is sampled. Alveolar breath is generally expected to have the highest concentra-
tion of VOCs, because it originates from the deepest part of the lungs, and is, therefore,
the closest to the alveolar capillaries, but that depends on the solubility of the volatile,
which is related to the compound’s Henry coefficient. Clearly, the gas exchange process is
dependent on the alveolar membrane thickness and in the case of respiratory disease by the
ability of patients to take a deep inspiration and provide a profound expiration. The lack
of standardized methods for sampling, analysis and data processing, as well as the effects
of environmental contaminants, has resulted in the large number of disparate studies.

An important issue to address is where in the breathing cycle a breath sample should
be taken from patients suffering from COPD or asthma, because these illnesses are more
related to the upper airways, and not the alveolar region. Whilst it is true that breath from
the lower airways are less important for these diseases, use of the end-tidal region limits
dilution and contamination of a breath sample from the mouth, and anatomic or tubing
dead-space. Furthermore, there would no temporal resolution in the breath sample that
could be used to differentiate upper from lower airways breath samples. Therefore, it is
always best to collect a breath sample during the end-tidal exhalation phase.

7.1. Current Status of VOCs Based Diagnosis

A snapshot of cancer studies included in the current review, including quantification
or identification, is presented in Figure 5, as a network analyses obtained by using R
studio with console version 3.6.3. It is worth mentioning that in 21 studies related to lung
cancer, 83 biomarkers have been reported. From this number, just 31 of them are common
between at least two studies. Moreover, the best concordance was obtained for 2-butanone,
which was common between six studies, followed by different isomers of xylene detected
in five studies. Nonanal, 2-pentanone, 3-hydroxy-2-butanone and hexanal were common
markers in four studies.
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between lung cancer studies and COPD studies are generally common for all three 
diseases. This fact denotes that they are not specific markers for a given lung condition, 
but rather simply indicative of a respiratory disease. Consequently, it is obvious that 
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Figure 5. Network analyses of lung cancer studies distribution based on detected volatiles, where cir-
cles marked with S represent the number of the study, allotted similarly in Table 3; darker diamonds
represent the common VOCs; pale diamonds depict the uncommon VOCs.

The case of the other two lung diseases is even more deficient in comparison to lung
cancer. No common compound was found for asthma, for which four studies only re-
ported biomarker identification. Six studies reported biomarker identification for COPD.
Just one compound, hexanal, was common between three studies, while five VOCs were
common only in two studies. The distribution of VOCs between the three diseases we
have reviewed, as well as between different studies investigating the same conditions are
presented in Figure 6. As shown in Figure 6A, the compounds that are common between
lung cancer studies and COPD studies are generally common for all three diseases. This fact
denotes that they are not specific markers for a given lung condition, but rather simply
indicative of a respiratory disease. Consequently, it is obvious that exhaled VOCs may
depend also on a variety of parameters, other than the disease under investigation. This is
why a standardized approach, including simultaneously sampling, analysis, data pro-
cessing, normalization and correcting parameters, is needed to lead to the discovery of
well-founded biomarkers that can provide clinically relevant information from breath
analysis. Janssens et al. [138] have reviewed VOCs detected from urine, tissue, blood and
cell lines of lung cancer patients and discovered some similar markers with those reported
in the present review.
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diamonds represent the components.

Efforts for development of a new standardized sampling device are being made by
the company Owlstone Medical (Cambridge, UK). Their ReCIVA (Respiration Collector for
In Vitro Analysis) provides a dedicated clean air supply, CASPER (Clean Air Supply Pump
for ReCIVA). Thermo-desorption tubes containing Tenax/Carbograph-5TD adsorbents
are used to collect the breath samples. The ReCIVA device allows for specific fractions
of exhaled breath to be collected in TD tubes through continuous monitoring of pressure
and CO2 levels within the mask and for the removal of background contaminants [139].
Using Tenax as an absorption material in the sampling process has advantages (such as
stability and low desorption temperature) but there are some drawbacks. For example,
benzaldehyde is a decomposition product that appears in the chromatograms when Tenax
tubes are used. In addition, nonanal and decanal, which have been proposed as markers
related to COPD [79], asthma [76] and lung cancer [56,59,78], are difficult to evaluate
correctly when Tenax® TA is used as adsorption material [19].

7.2. Overall Proposed Solutions

• Breath sampling needs highly standardized conditions to include certain breath frac-
tion, well-defined excluding criteria, given conditions for preparation of volunteers
for sample collection, and the volume and duration of sampling;

• In the absence of a “perfect” breath reference material, routine breath control measure-
ments should be performed at certain time spans;

• Operating of instruments according to well-defined protocols and standardized criteria;
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• Monitoring of background air that can impact the performance of the methods;
• Calibration of instruments (especially sensors) with standardized samples that mimic

breath is highly desired;
• Data processing workflow should be also standardized including for examples: peaks

alignment, normalization, and statistical analyses.
• Utilization of standardized methods for data processing (statistical tools, thresholds

used for extraction parameters);
• Creation of databases of markers obtained using standardized methods that can be

accessed and completed by researchers.

8. Concluding Remarks and Future Perspectives

The current available tools for the diagnosis of pulmonary diseases based on exhaled
VOCs are promising, but are far from being of clinical use. Promising findings have been
reported, and we have emphasized in this review that both discrimination between the
three lung diseases reviewed and diagnosis prediction are relevant. However, multiple
constraints—including sampling, analysis, validation and standardization—need to be
solved before analysis of specific VOCs can be widely applied into clinical practice. As a
short-term future perspective, we predict that analytical instrumentation will be used
in small point of care studies to confirm or deny the possibility of certain respiratory
conditions. Based on this first diagnosis the subjects may then be sent for a more complex
and confirmatory diagnosis. As for long-term future perspectives, we consider that online
instrumentation, especially portable instrumentation, IMS, GC-IMS, sensors and e-noses,
are convenient devices for physicians to be used in the diagnosis and monitoring of
respiratory diseases, as well as for use in monitoring therapy.
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