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Although vascularized composite allografts (VCAs) have been performed clinically for a variety of indications, potential
complications from long-term immunosuppression and graft-versus-host disease remain important barriers to widespread
applications. Recently it has been demonstrated that VCAs incorporating a vascularized long bone in a rat model provide
concurrent vascularized bone marrow transplantation that, itself, functions to establish hematopoietic chimerism and donor-
specific tolerance following non-myeloablative conditioning of recipients. Advances such as this, which aim to improve the safety
profile of tolerance induction, will help usher in an era of wider clinical VCA application for nonlife-saving reconstructions.

1. Introduction

It has become increasingly appreciated that vascularized
composite allografts (VCAs) can, in select patients, provide
the best reconstructive alternative for complex losses, such as
of total larynx [1], total hand/forearm [2–4], and composite
subtotal facial deficits [5], which have until now been
essentially non-reconstructible. The problems that hold
VCA back from completely revolutionizing reconstructive
surgery are predominantly immunological [6]. VCAs contain
highly immunogenic (e.g., skin) and immunocompetent
(e.g., marrow and blood) tissues that, when revascularized
by the recipient vessels, instigate a battle of immune systems
leading to transplant rejection and/or graft-versus-host
disease (GVHD) unless intricately controlled exogenously by
immunosuppression. If robust tolerance between VCA and
host could be achieved repeatedly and predictably without

causing significant host morbidity, the gates could be opened
for a reconstructive paradigm shift led by VCA. The literature
addressing the concepts highlighted in this paper is immense
and it is not intended that it be exhaustively reviewed.
Instead, we provide an overview of the current trends in
chimerism-based tolerance research and focus particularly
upon recent cellular co-treatment strategies that have real
potential for translation to the clinical setting.

2. Current Immunosuppression to Avoid
VCA Rejection

VCA became a clinical reality using immunosuppression
regimens imported from solid organ transplantation [6].
Transplant recipients require life-long immunosuppression,
commencing with induction followed by maintenance ther-
apy. Maintenance may be interspersed with rescue therapies
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if episodes of acute rejection occur. The goals of tailoring
immunosuppression according to recipient and transplant
response are to prevent acute and chronic rejection, to
minimize the toxicities of immunosuppressants and the rates
of infection and malignancy, and to maximize patient and
graft survival without GVHD [7].

Induction therapy for clinical VCA consists of anti-
lymphocyte antibody or anti-T-cell therapy (using blocking
or deleting agents) administered parenterally for a short
course immediately posttransplant [8]. The underlying
rationale for using these agents is their potent anti-T-cell
immunosuppressive properties. Induction therapy is used
in conjunction with maintenance agents to minimize early
rejection episodes [8]. Induction agents include OKT3, anti-
thymocyte globulin (ATG), daclizumab, and basiliximab
[9]. Whilst induction therapies may be used in an attempt
to induce a tolerogenic effect to donor alloantigen, the
experimental evidence indicates that tolerance is unlikely to
follow if such treatments are used alone [10, 11]. Main-
tenance agents used in VCA include corticosteroids (pred-
nisone), cyclosporine, tacrolimus, azathioprine, mycopheno-
late mofetil (MMF), and sirolimus.

In the early 1990s cyclosporine-AZA steroid-based reg-
imens were used in a series of clinical CTAs to reconstruct
nerves, tendons, muscle, bone, joint, and laryngeal defects
[6]. In 1997, tacrolimus/MMF/prednisone-based regimens
developed by the Louisville group were used successfully
to prevent VCA rejection, especially of the skin, while
causing minimal systemic toxicity in a preclinical swine fore-
limb model [6]. This tacrolimus/MMF/prednisone-based
combination therapy, similar to that used for solid organ
transplants, was utilized thereafter for hand transplantations.

Despite rigorous immunosuppression, however, trans-
plants are not necessarily completely spared from acute
rejection episodes and, additionally, chronic rejection is
likely deleterious to the long-term function of VCAs [12].
Hence, subjecting patients to life-long immunosuppression
regimens that do not completely control against acute
rejection episodes nor against chronic functional decline
of a non-life-saving reconstructive transplantation remains
ethically problematic.

3. Graft-Versus-Host Disease in VCA Recipients

A critical feature of VCAs that distinguish them entirely from
solid organ transplants is the massive lymphoid armament
of donor immunocompetent cells from marrow and lymph
nodes that attempt to reject the recipient and may cause
GVHD. T cells have been identified as the most important
effector cellular subset in this reaction although other cell
populations may also participate [13, 14].

In attempts to relieve the risks of GVHD, attention has
recently been paid to the preparation of more tolerogenic
cell populations, notably plasmacytoid dendritic cells (DCs)
[15], hematopoietic stem cells (HSCs), and mesenchymal
stem cells (MSCs) [16]. Infusion of MSCs from a third-party
reduced GVHD in allogeneic bone marrow transplantation
(BMT) in leukemia patients [16]. MSCs have also been

shown to facilitate the induction of mixed hematopoietic
chimerism and islet allograft tolerance without GVHD in
rats [17].

Additionally, removal of mature T cells from the trans-
planted bone marrow graft has prevented GVHD effectively
in mice, rats, and humans [18]. Depletion of both αβ T cells
and γδ T cells from the donor marrow inoculums prevented
GVHD, implicating a role for either or both types of T cells
as effectors in GVHD [19]. Importantly, this approach to
T-cell depletion does not remove facilitating cells (FCs), nor
does it compromise engraftment [18]. The phenotype of FCs
is similar to that of plasmacytoid DCs, which are known to
mediate antigen-specific tolerance and induce CD4+ as well
as CD8+ regulating T cells in vitro [15, 20, 21].

To prevent the occurrence of GVHD in VCAs, T-cell
depletion of grafts has been explored in an attempt to
lower transplant-related mortality [22]. Selective techniques
to prevent GVHD without causing immune deficiency and
increased infection provoked by systemic T-cell depletion
can be achieved by preirradiating the transferred hind-
limb with a lethal dose [23] or by lymphadenectomy [24].
However, irradiation of the donor tissue may increase graft
failure, and lymphadenectomy is a time-consuming proce-
dure that has its own complications. These two methods
have limited potential for clinical practice. An alternative
promising approach is graft perfusion with anti-T cell
receptor (TCR) monoclonal antibody (mAb) [22]. This
approach immunomodulates the vascularized bone graft to
reduce GVHD after VCA and concomitantly promotes long-
term donor-specific tolerance in the host.

4. Tolerogenicity of Vascularized Bone
Grafts within VCA

Ideally, VCA recipients would be treated with an effec-
tive antirejection therapy that could be tapered quickly
to a maintenance dose and then stopped to reduce
immunosuppression-related complications [25]. Complete
withdrawal of immunosuppression would be possible if
donor-specific tolerance develops and the functional recov-
ery of the transplant would not be jeopardized by its with-
drawal, hence providing solutions to both chronic rejection
and immunosuppressive drug toxicity.

The induction and maintenance of tolerance to allo-
transplants constitutes an active process involving multi-
ple mechanisms that work cooperatively to prevent graft
rejection [26]. The creation of hematopoietic chimerism
through BMT remains the most stable method for inducing
transplantation tolerance [27]. Chimerism refers to a state
in which two genetically different hematopoietic systems are
harmoniously present and functioning in one organism [28].
Successful achievement of mixed chimerism tolerizes T cells
and B cells to both donor and host tissues [29]. Whilst
chimerism is associated with the induction of tolerance, our
research has indicated that it depletes after several months
and yet allograft tolerance is maintained [30, 31]. Therefore,
cell migration and chimerism are believed an invariable early
event in graft acceptance [32]. Irradiation of the recipient
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promotes cell migration and engraftment of the infused
donor HSCs. Conventional BMT can induce chimerism lead-
ing to tolerance, but involves the following sequence: host
conditioning with irradiation, donor BMT, characterization
of chimerism by flow cytometry (at 28 days), and allotrans-
plantation [27]. This 28-day period has been considered a
requirement for engraftment and repopulation of the donor
bone marrow cells in the host [27]. Allotransplantation per-
formed before successful engraftment of donor bone marrow
may interfere with the establishment of tolerance [27]. To
overcome this 28-day delay, operational tolerance through
cyclophosphamide, anti-CD2 mAb, or thymic irradiation
was successfully induced in four out of five patients with end-
stage renal disease receiving bone marrow transplantation
in addition to a kidney from related living donors [31].
Despite withdrawing immunosuppression, renal function
remained normal for up to 5.3 years after transplantation.
In addition, immediate tolerance to skin graft was observed
in rodent models using BMT and costimulatory blockade
with reduced myeloablative host conditioning. However,
exposing an otherwise healthy patient with a non-life-
threatening functional deficit to irradiation and the creation
of chimerism is ethically difficult.

A unique feature of some VCAs (e.g., hand/forearm,
knee) that has been exploited recently is the presence of
a vascularized bone marrow transplant (VBMT) compo-
nent within the incorporated long bone(s). This instantly
and continuously produces bone marrow cells once trans-
planted and directly provides the niche for reconstitution
of HSCs [30]. Bone marrow additionally contains stromal
cells, including fibroblasts, adipocytes, endothelial cells, and
osteoblasts, derived from MSCs that are known to influence
the HSC microenvironment [33]. Stromal cells appear to be
capable of supporting HSCs and progenitor cells in vitro
and in vivo and a stromal microenvironment is essential
for the proliferation and differentiation of hematopoietic
progenitors [33].

Early engraftment and reconstitution of multiple
hematopoietic lineages may allow for instant establishment
of chimerism and earlier tolerance to VCAs. VBMT within
VCA, and not conventional BMT, was critical to the long-
term establishment of chimerism and tolerance under
partially myeloablative conditioning and tacrolimus-based
treatment [30]. It can be concluded therefore that the VBMT
within VCA provides critical signaling and modulatory
functions that initiate tolerance induction. Importantly, this
study showed that it was therefore possible to overcome
the 28-day delay to engraftment because the VBMT within
VCA could, under the correct conditions, induce mixed
chimerism and tolerance simultaneously.

5. Other Methods of Tolerance
Induction for VCA

5.1. T-Cell Depletion. T cell depletion prior to VCA trans-
plantation followed by T-cell repopulation after allotrans-
plantation has been associated with allograft acceptance in
animal models and in humans [34, 35]. Nonspecific T-
cell depletion (lymphodepletion) medications such as ATG

[36, 37], Orthoclone mAb OKT3 [38], and humanized
Campath-1H CD52 mAb [39] are frequently used clinically
for induction therapy before transplantation for prevention
and treatment of acute rejection episodes. Selective T-cell
inhibition using αβ-TCR monoclonal antibodies combined
with cyclosporine has been associated with robust mixed
chimerism and long-term VCA survival in animal models
[40, 41].

5.2. Costimulation Blockade. Full T-cell function requires
binding of the TCR to MHC molecules on DCs or other
antigen-presenting cells (APCs), alongside profoundly influ-
ential co-stimulatory signals, examples of which include the
CD154 and CD28 interactions with CD40 and B7 ligands,
respectively [42, 43]. Without adequate co-stimulation, T
cells may undergo apoptosis, inactivation, or anergy [42].
Selective interference with these co-stimulators is therefore
an attractive way to influence the behavior of T cells that
encounter specific antigens.

Costimulation blockade, with or without BMT, using
anti-CD154 (anti-CD40L) mAb alone or together with
CTLA-4 Ig (CTLA-4 immunoglobulin fusion protein) has
been reported to prolong survival or induce tolerance to VCA
in rodents and large animals [42–48]. Various mechanisms
have been proposed in prolongation of solid organ allograft
survival using co-stimulatory blockade, including anergy,
suppression, and deletion. The most recent data suggest that
deletion of peripheral alloreactive T cells has a major role in
the establishment of mixed chimerism using co-stimulatory
blockade. The use of co-stimulatory blocking reagents
in BMT protocols can facilitate the induction of mixed
chimerism while markedly reducing the potential toxicity
of conditioning using total body irradiation (TBI), thymic
irradiation or host T-cell depletion. CTLA-4 Ig is a biological
agent consisting of the extracellular domain of CD152
fused to the Fc region of IgG1. As CTLA-4 Ig is potentially
tolerogenic through costimulatory blockade it has been
explored extensively in transplantation. It was subsequently
deduced in mice that administration of CTLA-4 Ig resulted
in the induction of indoleamine 2,3-deoxygenase (IDO) in
professional APCs, like DCs [49]. IDO is induced during
inflammation by IFN-γ [50] and other proinflammatory
cytokines and acts to deplete the local microenvironment
of the essential amino acid, tryptophan. The resulting low
levels of extracellular tryptophan act as a signal to inhibit
T-cell proliferation.

5.3. In Vitro Manipulation of Donor Dendritic Cells. Den-
dritic cells (DCs) are considered the most potent class of
APCs, the mature form of which express MHC class I and
II molecules. They bear a variety of costimulatory signal
molecules such as CD40, CD80, and CD86 that are respon-
sible for presenting antigen to T cells for T-cell activation.
The majority of DCs are functionally immature and therefore
incapable of presenting donor antigen to T-cells efficiently,
leading to disabled T-cell activation [51]. This has been
exploited to support VCA tolerance induction by, prior
to transplantation, infusing pharmacologically stabilized
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Table 1: Methods of tolerance induction for VCA listed chronologically.

Methods Induction pathway

Chimerism
Bone marrow transplantation

Vascularized bone grafts

T cell depletion ATG, OKT3 mAb, Campath-1H (CD52) mAb, αβ TCR/γδ TCR mAb

Costimulation blockade CD154, CD28, and/or CD40 mAbs, B7 ligand, CTLA-4 Ig (fusion protein)

Donor dendritic cell In vitro manipulation followed by intravenous infusion

Mesenchymal stem cell Ex vivo expansion followed by intravenous infusion

Regulatory T cell In vivo induction followed by intravenous infusion

immature DCs that have been pulsed with donor antigen
[52, 53]. DCs are also noted to induce tolerogenic regulatory
T cells (Treg) that in turn promote allograft tolerance [52, 53].
The administration of recipient-derived DCs prolonged VCA
survival in animal models but DCs per se were unable to
induce transplantation tolerance to VCA [54, 55].

5.4. Mesenchymal Stem Cells. Another intriguing recent
finding that requires further research has been the ability
of infused syngeneic, allogeneic, and even third-party
adipose-derived MSCs to promote long-term survival of
VCA between fully MHC-mismatched rats without causing
GVHD [56]. Clinically, MSCs could modulate immune
responses and ameliorate GVHD after hematopoietic-stem-
cell transplantation [57]. How exactly MSCs modulate the
immune response is not completely understood. However,
some mechanisms involved in such modulation have
been proposed, which include the expression of HLA-G
molecules, direct interactions with DCs preventing them
from differentiation and maturation, and modulation of
the expression of cytokines/factors such as IL-10, TGF-β,
IDO, TNF-α and INF-γ [58]. Co-treatment of MSCs with
BM cells before VCA transplantation with low-dose (3 Gy)
irradiation conditioning significantly prolonged allograft
survival without GVHD as compared to animals that did not
receive MSC co-treatment [59].

5.5. Regulatory T-Cell Therapy. Further study into our model
[60] demonstrated that the Treg/CD4+ ratio in the peripheral
blood of VCA-accepting chimera was negatively correlated
with mixed chimerism levels. This suggests a significant
role for Treg in maintaining VCA tolerance when mixed
chimerism is less robust. A body of literature reports that
Tregs have exceptional therapeutic effects on autoimmune
diseases [61], organ transplantation [62, 63], and GVHD
models [64, 65], but do not induce skin graft tolerance across
full MHC barriers when utilized alone [66, 67]. Interestingly,
combined therapy with Tregs and allogeneic BMT has been
reported to achieve durable mixed chimerism and long-
term tolerance to nonvascularized skin allografts without
cytoreductive conditioning in mice [68]. This approach
was recently tested in rats in our laboratories [69]. A
combination of Tregs prepared from the recipient strain
and VBMT treatment, with a short course conditioning of
recipients with costimulation blockade and rapamycin, led

to long-term multilineage hematopoietic mixed chimerism
(12–18%) and long-term donor-specific tolerance to VCA
(89% acceptance rate) without GVHD. Neither stable mixed
chimerism nor VCA acceptance was observed in recipients
without Treg treatment. Interestingly, FoxP3+ Treg cells infil-
trated VCA near the donor/allograft tissue junction in VCA-
accepting chimera, further suggesting an importance for
them in permitting long-term VCA survival [68–70]. Of
note is that the FoxP3+Treg cells found in the donor/allograft
tissue junction were mostly of recipient origin (JY Lin and
SK Liao, unpublished). Nevertheless, the question as to
whether they belong to natural or induced Treg remains to
be determined. The presence of Tregs in the donor skin of
hand allotransplantation recipients has been demonstrated
as has increased FoxP3 expression during rejection episodes
at a later time point after transplantation [71, 72]. These
findings also support that Treg may play a significant role
in maintaining allograft acceptance and prevent allograft
rejection by downregulation of donor-reactive effectors
infiltrating the donor graft. However, the clinical relevance
and exact mechanism of immunomodulation by Tregs in
tolerance induction to VCA remains unclear and further
investigations are warranted.

Allogeneic Treg, third-party Treg [73, 74] and MSC
preparations [75, 76] are just some examples of how
immunosuppressive functions from diverse cellular sources
have been exploited to ease tolerance induction in recent
years. Encouragingly, these biologicals can be cryopreserved
in liquid nitrogen and hence could be made available in
large quantities when required to facilitate VCA acceptance
in the future. So far, stable mixed chimerism, which has
been successfully established in rodent models for toler-
ance induction to VCA, has not been observed in the
majority of clinical VCA transplantations without recipient
conditioning, thus making translation of such protocols
into clinical application less likely. The major hindrance to
widespread use of mixed allogeneic chimerism as a strategy
to induce VCA tolerance in the clinical setting will be
the requirement for recipient conditioning and the risk of
GVHD. We believe that combination approaches, such as
our noncytoreductive Treg-VBMT protocol or tailored cell-
based therapies alongside low-dose immunosuppression,
may have improved potential for clinical application in
VCA transplantation. Current widely researched methods of
tolerance induction are summarized in a chronological order
in Table 1.
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6. Conclusions

Encouraging results continue to be obtained from VCA
investigations in rats focusing on developing nonmyeloab-
lative methods of establishing mixed chimerism. So far
there has been a lack of evidence showing the presence of
mixed chimerism or donor-specific unresponsiveness in all
clinical VCA transplantation recipients (including 53 hand
transplantations that inherently included VBMT and one
face transplantation with bone marrow infusion), suggesting
stable mixed chimerism cannot be induced without host
conditioning in humans. Clinical VCA transplantations will
benefit from further investigations searching for tolerance
protocols involving less toxic host conditioning. Proto-
cols that have promise incorporate co-treatment strategies,
including the use of cell-based therapies involving VBMT,
Treg, and/or MSCs. Whilst progress is made in improving
the safety of tolerance induction, it will become increasingly
important to develop recipient monitoring measures that can
accurately reflect the success or failure of tolerance induction
in these animal models. Such tests should ultimately be
considered an integral part of tolerizing protocols to be used
clinically for VCA.
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