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Abstract 
Neurotrophic factors, now termed neurotrophins, which belong to a class of polypeptidyl agents, have been shown to 
potentially be beneficial for the treatment of neurodegenerative diseases such as Alzheimer’s disease, because endogenous 
neurotrophic factors (NGF, BDNF, NT3, NT4) have been recognized to play critical roles in the promotion of neurogenesis, 
differentiation, and neuroprotection throughout the development of the central nervous system. However, high-molecular 
weight proteins are unable to cross the blood–brain barrier and are easily decomposed by peptidase under physiological 
conditions. To address this issue, small molecules that can mimic the functions of neurotrophic factors would be promising 
alternatives for the treatment of neurodegenerative disease. We have continued to search for natural products having typical 
neurotrophic properties, which can cause neurogenesis, enhance neurite outgrowth, and protect neuronal death using three 
cellular systems (PC12, rat cortical neurons, and MEB5 cells). In this review, we summarize the neurotrophic activities and 
synthesis of dimeric isocuparane-type sesquiterpenes from the liverwort, Mastigophora diclados, the mechanism of neuro-
trophic neolignans, magnolol, honokiol and their sesquiterpene derivatives, and introduce unique neurotrophin-mimic natural 
products, including seco-prezizaane-type sesquiterpenes from the Illicium species, vibsane-type diterpenes from Viburnum 
awabuki, and miscellaneous natural products with neurotrophic effects discovered by us.
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Introduction

In recent years, the percentage of elderly people has 
increased. In Japan, the population ratio of people aged 
more than 65 years is estimated to reach 29.1% by 2020 
and further increase to 38.5% by 2050 [1]. In a superaged 
society, people wish for healthy longevity and are eager for 
a fulfilling welfare society. On the other hand, with age, 
we suffer from various diseases, such as cardiovascular 
diseases, cancers, and dementia, and thus, it is essential 
to not only explore the etiology of these diseases but also 
develop therapeutic drugs and preventive methods.

In particular, the number of elderly individuals who suf-
fer from senile dementia has increased through this super-
aged society. Senile dementias are regarded as neurode-
generative diseases, which are categorized as Alzheimer’s 
disease (AD), Parkinson’s disease (PD), Huntington’s dis-
ease (HD), and amyotrophic sclerosis, and are character-
ized by nervous system dysfunction resulting from pro-
gressive neuronal degeneration [2]. In Japan, the elderly 
population with neurodegenerative diseases will increase 
to 8,300,000 by 2030 unless suitable medical treatments 
are not realized [3]. AD is the most prevalent form of 
dementia, accounting for 50–56% of cases at autopsy and 
in clinical settings, and AD combined with intracerebral 
vascular diseases accounts for another 13–17% of cases.

The principle risk for AD is age. The incidence of AD 
doubles for every 5 years of age, but AD is not necessarily 
the outcome of aging [4]. The brain regions involved in 
learning and memory processes are reduced in size in AD 
patients as a result of degeneration of synapses and death 
of neurons [5]. It has been more than 15 years since it was 
first proposed that AD might be caused by deposition of 
amyloid β-peptide (Aβ) in plaques in the brain [6]. Accu-
mulation of Aβ in the brain triggers the remaining AD 
pathogenesis, including the formation of neurofibrillary 
tangles containing tau protein, causing the degeneration of 
neurons and resulting in AD. Although tremendous efforts 
have been made according to the amyloid hypothesis, new 
drugs for the treatment of AD have not been successfully 
developed [7, 8]. This is presumably because the underly-
ing pathogenesis of AD still remains to be explored [9].

It is well known that following neuronal injury, adult 
neurons have an intrinsic ability and dynamic repair mech-
anism within the central nervous system to regenerate and 
produce neuronal cells and restore neuronal networks, 
although this capacity is limited and the regions that are 
able to regenerate neurons are restricted [10]. From this 
perspective, we initiated our research project to discover 
small molecule natural products that have the potential 
to act as neurotrophins to enhance neurogenesis, promote 
neurite outgrowth, and protect the death of neurons. In 

this review, we will introduce our own research program 
on the basis of neurotrophic properties and then highlight 
neurotrophic natural products, in particular, focusing on 
the chemistry and biological profiles of our discovered 
active compounds.

Neurotrophins and the screening system 
to search for neurotrophin mimetics

Neurotrophins (neurotrophic factors) have been shown to be 
potentially beneficial in the treatment of neurodegenerative 
diseases such as AD, Parkinson’s disease (PD) and Hunting-
ton’s disease (HD) because endogenous neurotrophic factors 
have been recognized to play critical roles in the promo-
tion of neurogenesis, differentiation, and neuroprotection 
throughout the development of the central nervous system 
[10, 11]. In mammals, the known neurotrophins are nerve 
growth factor (NGF), brain-derived neurotrophic factor 
(BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) 
[11]. These neurotrophins bind selectively to their tyrosine 
kinase receptors TrkA, TrkB and TrkC, and all of them bind 
non-selectively to the neurotrophin receptor p75, resulting 
in activation of neuronal signal transduction related to the 
broad spectrum of biological activities exerted by neuro-
trophins [12, 13]. Therapeutic uses of NFs by intracranial 
injections, transplantation of cells secreting NFs, or gene 
therapy have shown promising results in animal models of 
neuronal degeneration as well as in clinical trials [14–16]. 
However, as NFs are high-molecular weight proteins, they 
have been unable to cross the blood barrier and are easily 
decomposed by peptidase under physiological conditions. To 
address this issue, small molecules that can mimic the func-
tions of neurotrophic factors would be promising alternatives 
for the treatment of neurodegenerative disease [17, 18].

Our protocol of searching for small molecules with 
neurotrophic properties is how to discovery NT mimick-
ing compounds as well as to implicate active compounds 
in the key physiological functions of NTs: differentiation 
(neurogenesis), development (neurite outgrowth promo-
tion) and survival (protection of neuronal death) of neurons 
[19] (Fig. 1). We applied three cells to the assay system; rat 
pheochromocytoma PC12 cells [20], primary cultured rat 
cortical neurons [21] and mouse multipotent neural precur-
sor cells (MEB5) [22]. Both PC12 cells and NGF-mediated 
PC12 cells are used as the primary screening to identify 
active candidates. PC12 cells generate and extend neurites 
in response to NGF though the direct activation of the TrkA 
receptor or enhancing the intercellular NT signal pathway 
to induce neuritogenesis; whereas, NGF-mediated PC12 
cells can extend the length of neurites to show neurite out-
growth through various mechanisms. Withdrawal of NGF 
from the culture medium causes the death of PC12 cells. 
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This method is used to screen for protection against neuronal 
death. Primary cultured cortical neurons are used for the 
second screening to confirm neurite outgrowth promotion or 
protection of neuronal death under different culture condi-
tions. Finally, MEB5 cell lines have been used to ascertain 
whether active compounds have the potential to induce the 
differentiation of stem cells into neurons. In this review, our 
chemical and biological studies on natural products with 
neurotrophic activity are compiled [23–25].

Mastigophorenes: isocuparane‑type 
sesquiterpene dimers from the liverwort 
Mastigophora diclados

The liverworts elaborate a wide variety of terpenoids and 
lipophilic aromatic substances, which have been very often 
found to show different types of biological activity [26]. M. 
diclados (Brid.) Nees is a rather primitive liverwort and is 
commonly found in tropical Asiatic areas. Our independent 
study [27, 28] on the ether extract of M. diclados collected 
in Boruneo resulted in the isolation of four unique dimeric 

isocuparanes, mastigophorenes A (1), B (2), C (3), and D 
(4), together with their monomer unit, herbertenediol (5) 
[29] (Fig. 2). Mastigophorenes A (1), B (2), and D (4) were 
found to exhibit interesting neurotrophic properties at con-
centrations ranging from 0.1 to 10 μM, which could enhance 
neurite-sprouting and network formation in primary cell cul-
tures derived from embryonic rat cerebral hemispheres [30]. 
On the other hand, mastigophorene C (3) and the monomeric 
compound, herbertenediol (5), suppressed the neurite out-
growth under the same conditions.

The dimeric compounds 1–4 could be derived from her-
bertenediol (5), a cometabolite in the plant, by phenolic oxi-
dation. Compounds 1–4 are presumably biosynthesized via 
the phenoxy radical products formed from the one-electron 
oxidation of 5, and then the formed radicals are subsequently 
converted into radical A or benzyl radical B which would 
give rise to a quinone methide via one more oxidation along 
with the loss of a proton radical. Homocoupling between 
two radicals A would lead to mastigophorenes A (1) and B 
(2) followed by aromatization; whereas, mastigophorene D 
(4) could be produced from the direct coupling between two 
benzyl radicals B. An alternative heterocoupling between 

Fig. 1  Protocol of searching for 
neurotrophic compounds by the 
assay system using three cells: 
PC12, primary cultured rat 
cortical neurons, and MEB5

Neuronal stem cells Neurons Death of neurons

Neurogenesis
Neurite 

outgrowth
promotion

Protection of 
neuronal 

death

Neurotrophic compounds

Fig. 2  Mastigophorenes A (1), 
B (2), C (3) and D (4) from 
Mastigophora diclados 
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radicals A and B would give rise to mastigophorene C (3) 
(Scheme 1) [28]. In fact, biomimetic oxidative coupling of 
2-O-methylherbertenediol using (tert-BuO)2 in chloroben-
zene under refluxing gave, after O-methyl deprotection with 
 BBr3, two mastigophorenes A (1) and B (2) as an atrop-dias-
tereomeric mixture (40:60) in 28% yield [31]. However, the 
direct oxidation of herbertenediol (5) with (tert-BuO)2 failed 
to yield dimers 1 and 2, resulting in a complex mixture, 
and thus protecting the 1-hydroxy group of 5 was essential 
for successful oxidative coupling. We applied horseradish 
peroxidase (HRP)-catalyzed oxidative phenolic coupling to 

5, which resulted in the direct formation of 1 (10%) and 
2 (18%) with recovery of 5 (72%) [32, 33]. With a large 
amount of synthesized 1 and 2 in hand, the neurotrophic 
properties of 1 and 2 were evaluated in detail in primary 
cultured fetal rat cortical neurons. A neurite outgrowth assay 
was performed using 18-day-old fetal rat cortical neurons 
in serum-free DMEM supplemented with B-27. Morpho-
logical evaluation, as shown in Fig. 3, indicated that masti-
gophorenes A (1) and B (2) not only promoted significant 
neurite outgrowth but also formed a network of neurons at 
0.1 and 1 μM. A neuronal survival assay was carried out 

Scheme 1  Biosynthetic route to dimeric isocuparenes 1, 2, 3 and 4 based on one-electron oxidative coupling from (-)-herbertenediol (5)

Fig. 3  Enhancement of neurite outgrowth by mastigophorenes A (1) and B (2) in primary cultured rat cortical neurons in serum-free DMEM 
medium supplemented with B-27. a 0.5% EtOH, b 1μM mastigophorene A, c 1μM mastigophorene B
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using the same neuronal cultures in serum-free DMEM sup-
plemented with N-2, and the neuronal viability was assessed 
by the WST-8 assay. As summarized in Fig. 4, compounds 
1 and 2 maintained neuronal survival at 0.1 and 1.0 μM, 
but lost their survival effect at 10 μM. These results suggest 
that mastigophorenes A (1) and B (2) can protect neurons 
from being insulted by toxic substances such as oxygen free 
radicals [32].

In addition, it should be noted that diasteroselective syn-
theses of mastigophorenes A (1) and B (2) with an atrop-
enantioselective construction of the biaryl axis have been 
achieved by Bringmann [34], Meyers [35], and Feringa [36].

Magnolol, honokiol 
and sesquiterpene‑neolignans 
from Magnolia bark

The bark of the Magnolia tree, Magnolia obovata Thumb. 
and M. officinalis Rhed. have been used in traditional herbal 
medicines in China, Korea and Japan. Magnolia bark is an 
important ingredient in Hange-kobokuto and Sai-boku-to 
preparations for the treatment of gastrointestinal disorders, 
anxiety and allergic diseases (Fig.  5). Moreover, other 
reported beneficial effects of Magnolia bark include antican-
cer, anti-inflammatory, antiplatelet and antioxidant activities 
[37, 38].

Magnolol (6) and honokiol (7), biphenyl neolignans, 
are the main constituents of Magnolia bark and have been 
reported to have a variety of biological properties such as 
antioxidative, antitumor, antidepressant, antidiabetic, anti-
inflammatory, neuroprotective, and antimicrobial activities 
[39, 40]. In addition to their biological properties, magnolol 

(6) and honokiol (7) were found to have neurotrophic activ-
ity in primary cultured rat cortical neurons at concentrations 
ranging from 0.1 to 10 μM, but obovatol (8) had no activ-
ity even at 10 μM [41, 45]. Further studies on the minor 
components resulted in the isolation of various novel ses-
quiterpenes linked to biphenyl- or biphenylether-type neol-
ignans termed sesquiterpene-neolignan, eudesmagnolol (9), 
eudeshonokiols A (11) and B (10), eudesobovatols A (13) 
and B (12), clovanemagnolol (14), and caryolanemagno-
lol (15) [42–44]. Among them, clovanemagnolol (14) and 
caryolanemagnolol (15) could not only accelerate neurite 
outgrowth but also activate choline acetyltransferase activity 
(ChAT) at the concentration of 0.01 μM [45].

Clovanemagnolol (14) and caryolanemagnolol (15) are 
most likely to be converted from caryophyllene β-oxide and 
caryophyllene α-oxide, respectively, according to Barton’s 
results [45, 46]. The proposed biosynthetic pathway as 
shown in Scheme 2 is initiated by the oxidation of (–)-car-
yophyllene, providing caryophyllene β-oxide or caryophyl-
lene α-oxide. Acidc activation of both epoxides leads to an 
intramolecular attack of the exocyclic alkene, generating the 
diastereomeric tricyclic cation intermediates A or B. Cation 
A is trapped by magnolol (6), directly forming clovanemag-
nolol (14), whereas cation B is trapped by 6, giving rise to 
caryolanemagnolol (15). Siegel et al. synthesized 14 and 15 
in two steps according to the postulated biosynthetic path-
ways [47, 49]. Synthesized 14 and 15 were confirmed to 
significantly promote neuronal growth at 0.01 μM in the 
primary cultured embryonic cortical neurons, similar to the 
neurotrophic effects of natural products [48, 49].

These results suggest that the lipophilic derivatives of 
simple biphenyl neolignans, magnolol (6) and honokiol (7) 
can enhance neurotrophic activity. Comparing the neuro-
trophic properties between 6 and 7, 7 was found to be more 
potent than 6 [50]. For further developments of more effec-
tive derivative, honokiol (7) was synthesized in 21% yield 
over 14 steps by utilizing a Pd-catalyzed Suzuki–Miyaura 
reaction [51]. In addition, the structure–activity relation-
ship between neurite outgrowth-promoting activity and the 
O-methylated and/or the hydrogenated analogs 7a–7f, as 
summarized in Fig. 6, was examined in the primary cultured 
rat cortical neurons.

As a result, honokiol (7), 2-O-methylhonokiol (7a), 
and 3′-dihydroallylhonokiol (7d) had striking effects on 
the morphology of cortical neurons as shown in Fig. 7. 
Analogs 7b, 7c and 7f showed no enhancement of neurite 
extension. As shown in Fig. 8, quantitative analysis of the 
longest neurite length affected by each compound at the 
concentrations of 0.1 and 1 μM indicated that 7a and 7d 
have the potential to enhance neurite extension in cultured 
rat cortical neurons with a potency that is as high as that 
of 7; whereas, analogs 7b, 7c, and 7f showed diminished 
neurotrophic efficiency. Thus, these results suggest that 
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Fig. 4  Neuroprotective activity of mastigophorenes A (1) and B (2) in 
primary cultured rat cortical neurons in serum-free DMEM medium 
supplemented with N-2. After the neuronal cells (2 × 105 cells 
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trol) and compounds 1 and 2, neuronal viability was assessed by the 
WST-8 reduction assay. The data are expressed as means SE (n = 4); 
*p < 0.05, **p < 0.015, ***p < 0.005 versus control.
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the 4′-hydroxy group and the 5-allyl group are essential 
for honokiol-mediated neurite outgrowth-promoting activ-
ity (Figs. 7, 8). Based on the results of this SAR study, 
Gree and Chandrasekhar et al. synthesized 24 derivatives 

with various substituents at the 3′-allyl position of 7 and 
evaluated their neurotrophic effects in neurite outgrowth 
of differentiated Neuro2a cells after treatment with NGF 
but could not find new analogs that were more potent than 

Fig. 5  Neolignans 6–8 and sesquiterpene-neolignans 9–15 from Magnolia obovata 
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7 [52]. Recently, we successfully synthesized honokiol (7) 
in 74% yield over five steps [53], thereby a large amount of 
honokiol is now available for assessing its in vitro/in vivo 
biological activities and preparing a variety of derivatives.

Next, after preparing several compounds and assess-
ing their neurotrophic activity, we found two fluorescently 
labeled derivatives, 7-MCM (7-methoxycoumarin-3-car-
bonyl) (7g) and NBD (7-nitrobenzyl-2-oxa-1,3-diazolyl) 
(7h) that were suitable to be probe molecules to identify 
the intra/intercellular targets of 7. Rat cortical neurons 
were incubated with 5 μM 7h, 7g, and 7MCME for 1 h, 
and then their distributions in cortical neurons were mon-
itored by fluorescence imaging under a microscope. As 
shown in Fig. 9, the apparent fluorescence was observed 
in intercellular regions, but the fluorescent molecule itself, 
7MCME, showed no fluorescence in any of the neurons. 
Taking a closer look at the fluorescent images, it is inter-
esting to note the fluorescent vesicles assembled at the 
neck and/or branch of the dendrites in each cell body. 
These results suggest that honokiol could be taken up into 

cells and interact with specific targets, which would be 
associated with neurite outgrowth [54].

Pharmacological studies of honokiol (6) and magno-
lol (7) have revealed that their effects on central nerves, 
such as depressant, muscle-relaxant, and anxiolytic effects, 
are mainly ascribed to their actions on  GABAA receptors 
[55]. In our search for neurotrophic compounds, 6 and 7 
were identified as neurotrophic compounds that upregu-
late the activity of choline acetyltransferase in neuronal 
culture [45]. Furthermore, we found that 6 and 7 could 
promote neurite outgrowth and neuronal survival under 
serum-free conditions in cultured rat cortical neurons [50]. 
Additionally, it should be noted that magnolol could pre-
vent the decrease in age-dependent neuronal loss in the 
hippocampus of senescence-accelerated mice (SAMP1) 
[56]. The intriguing effects of honokiol and magnolol 
prompted us to investigate the mechanisms underlying 
their neurotrophic actions using the cultured neurons. In 
general, neurotrophins such as NGF, BDNF, and NT-3 
bind to the extracellular domain of the tyrosine kinase 
receptors TrkA, TrkB, and TrkC, respectively, and thereby 
activate the respective tyrosine kinase in the intracellular 
domain [57]. When target signal proteins bind to tyrosine 
kinases, they are phosphorylated to adopt active forms, 
and then transfer signals to their downstream. Among the 
NT-activated signaling molecules,  Ca2+, MAPK (ERK), 
and Akt, are indispensable for transferring intracellular 
signals to nuclei [58]. First, we examined the intracellular 
 Ca2+ response in primary cultured rat cortical neurons and 
human neuroblastoma SH-SY5Y cells by fluo-3 fluores-
cence imaging analysis. Magnolol and honokiol increased 
cytoplasmic free  Ca2+ with a characteristic lag phase. The 
cytoplasmic free  Ca2+ increase was independent of extra-
cellular  Ca2+ but dependent on the activation of phospho-
lipase C and inositol 1,4,5-triphosphate  (IP3) receptors, 
indicating an increase in cytoplasmic free  Ca2+ through a 
phospholipase C-mediated pathway. Thus, 6 and 7 cause 
the release of  Ca2+ from intracellular stores, resulting in an 
increase in cytoplasmic  Ca2+ [59]. Regarding the effects of 
6 and 7 on extracellular signal-regulated kinase (ERK1/2) 
and Akt, honokiol-induced neurite outgrowth in the cul-
tured rat cortical neurons was significantly reduced by 
PD98059, a mitogen-activated protein kinase inhibitor, but 
not by LY294002, a phosphoinositide 3-kinase inhibitor. 
Honokiol also enhanced the phosphorylation of ERK1/2 in 
a dose-dependent manner; whereas, the effect of 7 on Akt 
phosphorylation was characterized by transient enhance-
ment of 10 min and lasting inhibition after 30 min. The 
phosphorylation of ERK1/2 enhanced by 7 was inhibited 
by PD98059 as well as KN93, a  Ca2+/calmodulin-depend-
ent kinase II (CaMKII) inhibitor. Moreover, the products 
of the phosphoinositide-specific C (PLC)-derived inositol 
1,4,5-triphosphate  (IP3) and 1,2-diacylglycerol (DAG) 

Scheme  2  The proposed biosynthesis of clovanemagnolol (14) and 
caryolanemagnolol (15)
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Fig. 6  Structure of honokiol (7) and its analogs 7a–7f, and florescent derivatives 7g–7h 

Fig. 7  Morphology of cultured 
rat cortical neurons demon-
strated with anti-MAP2 immu-
nochemical staining. a Neurons 
in the presence of 0.5% ethanol 
as vehicle control; b neurons 
in the presence of 0.1μM 7; c 
neurons in the presence of 1μM 
7a; d neurons in the presence of 
0.1μM 7d 
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were measured after honokiol treatment. Taking these 
results with our previous findings, as depicted in Fig. 10, 
signal transduction from PLC,  IP3,  Ca2+, and CaMKII to 
ERK1/2 has been proposed for a mechanism involved in 
honokiol-induced neurite outgrowth [60].

Furthermore, magnolol and honokiol were shown to be 
able to prevent age-related learning and memory impair-
ment and cholinergic deficits in senescence-accelerated 
mice (SAMP8) [61]. Magnolol and honokiol were orally 
administered to 2-month-old SAMP8 mice once a day for 
14 days. The SAMP8 mice showed significant impair-
ment of learning and memory at 4 and 6 months of age. 
This age-related learning and memory impairment was 
prevented by pretreatment with either 6 (10 mg/kg) or 7 
(1 mg/kg). In addition, 6 and 7 prevented age-related cho-
linergic defects and enhanced phosphorylation of Akt, a 

member of the prosurvival pathway, in the forebrain at 
2 months of age (Fig. 11).

Recently, it was reported that 6 and 7 showed antide-
pressant-like effects on unpredictable chronic mild stress 
(UCMS)-treated rats by enhancing BDNF expression and 
serotonergic activity in the hippocampus [62, 63]. Mat-
sui et al. reported that 6 significantly improved depressive 
behavior in olfactory bulbectomized (OBX) mice in the tail 
suspension test, significantly enhanced hippocampal neu-
rogenesis and increased phosphorylation of Akt and cyclic 
AMP-responsive element-binding protein (CREB) [64]. 
These data demonstrate that magnolol (6) has antidepres-
sant-like effects on behaviors and actions by enhancing hip-
pocampal neurogenesis and neurotrophin-related intracel-
lular signaling in mice.

Magnolol (6) and honokiol (7) are well known to have 
potent antioxidant effects [65]. Oral administration of 6 to 
C57BL/6N mice after 1-methyl-4-phenyl-1,2,3,6-terahydro-
pyridinium (MPTP) treatment, an in vivo model of Parkin-
son’s model, almost completely prevented MPTP-induced 
lipid peroxidation in the stratum [66], suggesting that 6 has 
protective effects on the onset of cognitive impairments via 
an antioxidative mechanism. This is also consistent with the 
increasing lipid hydroperoxide level in the brain of SAMP8 
at 2 months of age, which may be a cause of the age-related 
impairments and degeneration seen in the brain [67].

Neurotrophic compounds from Illicium 
species

The genus Illicium, belonging to the family Illiciaceae, con-
sists of approximately 40 species around the world. This 
genus is mainly distributed in the eastern North America, 
Mexico, the West Indies and eastern Asia. The fruits of the 

Fig. 8  Quantitative analysis of anti-MAP2 immunochemically stained 
processes affected by honokiol (7) and its analogs 7a–7f. In each 
group, the average lengths of the primary processes were determined 
from 100 neurons selected in random fields. **p < 0.01; ***p < 0.001 
compared with control. Data presented here are derived from one of 
the two repeated experiments with similar results

7g 7h 7MCME

Fig. 9  Distribution of fluorescent derivatives in primary cultured rat 
cortical neurons. Rat cortical neurons were incubated in the presence 
of 5-μM 7g, 7h and 7MCME at 37 °C for 60 min followed by fluo-

rescence imaging under microscope. Ex = 330 nm, Em = 431 nm for 
7g and 7MCME. Ex = 470 nm, Em = 560 nm for 7 h
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Illicium species are distinctive star-shaped follicles that emit 
a characteristic refreshing flavor. In particular, the fruits of 
I. vernum Hook, Chinese star anise, are the source of eco-
nomically important product derived from this genus, which 
is widely used as a spice for flavoring food and beverages. 
Hence, essential oils have been the primary subject of chem-
ical research on Illicium species, and the presence of volatile 
phenols has been reported as constituents of various parts 
of all Illicium species studied so far. The chemical constitu-
ents of the Illicium species are classified into three groups; 
sesquiterpenes, prenylated  C6-C3 compounds, and triphenyl-
neolignan (sesquineolignan). Some of these compounds are 
not only unique in their architectural structure but also exert 
intriguing bioactive effects on the neuronal system [68, 69].

We reported the isolation and structure of tricycloillici-
none (16) [70] and (2R)-12-chloro-2,3-dihydroillicinone E 
(18) [71] from the woods of I. tashiroi. Compounds 16 and 
18 were found to increase choline acetyltransferase (ChAT) 
activity by 143% and 228% at 30 μM in cultured P10 rat 
septal neurons, respectively. Lately, both compounds were 
shown to promote neurite outgrowth in NGF-mediated PC12 
cells and primary cultured rat cortical neurons at concentra-
tions as high as 50, 100 μM. On the other hand, compounds 
19–21, without a chlorine atom, did not have neurotrophic 
activity [72]. Another bicyclic nonaromatic phenylpropa-
noid, bicycloillicinone asarone acetal (17), was isolated from 
the same plant source as 16 and was found to enhance ChAT 
activity at 30 μM, which catalyzes the synthesis of acetyl-
choline from its precursor [73]. Acidic hydrolysis of 17 led 
to its core aldehyde, bicycloillicinone 17a, and cathechol 
portion 17b (Scheme 3).

The syntheses of 16 and the core structure 17a were 
achieved by Danishefsky’s group [74]. Cholinesterase 
inhibitors such as donepezil and tacrine, which are capa-
ble of increasing neurotransmitter acetylcholine levels by 
inhibiting acethylcholinesterase (AChE) activity, are now 
in use for the treatment of AD [75]. Thus, compounds 
16–18, which can induce ChAT, an enzyme responsible 
for the biosynthesis of acetylcholine, should contribute to 
increased acetylcholine levels and support the survival of 
cholinergic neurons. As prenylated phenylpropanoids with 
neurotrophic activity, illicinin A (22) and compound 23 
were isolated from I. anisatum [76]. Compounds 22 and 23 
were found to significantly promote neurite outgrowth at 
concentrations ranging from 0.1 to 10 μM in primary cul-
tured rat cortical neurons. Illicinin A (22) and its derivatives 
22a–22c were synthesized for structure–activity relationship 
studies by applying Pd-catalyzed Stille reactions and then 
were assessed for the neurite length of rat cortical neurons 
at 1 μM. As a result, compound 22c showed reduced activity, 
whereas the others 22a and 22b showed comparative activity 
to illicinin A (22) or were more potent, thereby indicating 
that an allyl group in 22 is essential for exerting neurotrophic 
activity. In addition, the presence and position of the prenyl 
group in 22 were shown to play an important role in neuro-
trophic activity.

Typical neolignans, magnolol (6) and honokiol (7), were 
introduced in the early section of this review as having inter-
esting neurotrophic properties. Macranthol (25) [77] and iso-
dunnianol (24) [78], another neolignans bearing one phe-
nyl group called sesquineolignan, showed neuroprotective 
activity at 5–10 μM [79] and neurite outgrowth-promoting 

Fig. 10  Proposed neurotrophic 
mechanism of honokiol (7) in 
cortical neurons.  IP3 and DAG 
production, cytoplasmic free 
 Ca2+ increase, and ERK1/2 
phosphorylation are identified 
as effects of honokiol. The 
involvement of PLC, CaMK 
II, and MEK is shown using 
their specific inhibitor, U73122, 
KN93, and PD98059, respec-
tively
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activity at 0.1–10 μM in primary cultured rat cortical neu-
rons [80] along with anti-AChE activity with an IC50 value 
of 13.0 μM [84]. In addition, macranthol (25) exerted an 
antidepressant-like activity in mice by increasing the 

expression of hippocampal BDNF [81], and the mechanism 
of its mediated antidepressant-like action was verified to be 
associated with BDNF-TrkB and downstream activation of 
the PI3K/Akt-Bcl-2/caspase-3 signal pathway [82]. Merril-
lianoid (26), a unique caged-shaped neolignan possessing a 
benzo-2,7-dioxa[3,2,1]octane moiety that was isolated as a 
racemic form from the leaves of I. merrillianum, influenced 
the NGF-induced neurite outgrowth of PC12 cells at con-
centrations from 1 to 10 μM, possibly by interacting with 
the TrkA receptor and downstream activation of ERK1/2 
and MEK in the Ras/ERK signal cascade [83].

The fruits of I. anisatum (Japanese star anise, “shikimi”) 
are known to be very toxic. Ingestion of these fruits causes 
convulsive symptoms, frequently leading to death. In 1952, 
Lane succeeded in the isolation of the pure toxic principle 
named anisatin (27), and its complete structure was later 
established by Yamada and Hirata [85]. Kawano et al., who 
continued to investigate the toxic substance in I. anisatum, 
succeeded in systematic studies on the chemical components 
in Illicium plants. Later, Schmidt and our group joined the 

Fig. 11  Prenylated  C6–C3 compounds and neolignans from Illicium species

Scheme 3  Acidic hydrolysis of 17 
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chemical and biological studies of Illicium plants. A number 
of unique seco-prezizaane-type sesquiterpenes or so-called 
Illicium sesquiterpenes have been reported exclusively by 
the above three groups, and the occurrence of Illicium ses-
quiterpenes has been found to be limited to the genus Illi-
cium [69]. Following the extensive chemical studies on Illi-
cium sesquiterpenes, we turned our attention to neurotrophic 
properties but not neurotoxic activity for these sesquiterpe-
nes. The isolation of sesquiterpenes from Illicium species, 
guided by the enhancement of ChAT activity, neurite out-
growth promotion and neuroprotective activity in primary 
cultured rat cortical neurons resulted in the discovery of a 
number of neurotrophic sesquiterpenes as shown in Fig. 12.

Isodunnianin (28) was the first neurotrophic Illicium 
sesquiterpene isolated from the wood of Illicium tashiroi 
collected in Ishigaki Island, Japan, and it was shown to 
moderately enhance neurite-sprouting during the develop-
ment of neurons and increase ChAT activity at 10 μM in 
primary fetal rat cortical neurons [86]. The structure of 28 
was elucidated on the basis of the published NMR data of 
dunnianin [87], but later was corrected to 28 according to 
the revised structure of dunnianin [88]. Two majucin-type 
sesquiterpenes, (2S)-hydroxy-3,4-dehydroneomajucin (29) 
and jiadifenin (31), isolated from Illicium jiadifengpi, sig-
nificantly promote the neurite outgrowth of primary cultured 
rat cortical neurons at concentrations ranging from 0.1 to 
10 μM [89]. Jiadifenin (31) could be transformed from (2S)-
hydroxy-3,4-dehydronemajucin (29) if the C-10 hydroxyl 

group is oxidized to a ketone. Thus, compound 30, which 
was derived from 29 by DMP, was exposed to epimeriza-
tion conditions at C-1 with DBU, leading to the thermo-
dynamically more stable product (1R)-30. Next, DMP or 
Jones oxidation of (1R)-30 [90] gave rise to jiadifenin (31) 
as an equilibrated mixture at the C-10 position in good yield, 
followed by the addition of MeOH to the reaction mixture 
(Scheme 4). This chemical transformation confirmed the 
absolute configuration of jiadifenin.

Fig. 12  Anisatin (27) and Illicium sesquiterpenes having neurotrophic properties

Scheme 4  Conversion from 29 to 31 
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Another interesting majucin-subtype sesquiterpene, 
jiadifenolide (32), and jiadifenoxolanes A (33) and B (34), 
were isolated from the same plant [91]. Jiadifenolide (32) 
and jiadifenoxolane A (33) were found to significantly 
enhance the neurite outgrowth in primary cultured rat cor-
tical neurons, in particular, jiadifenolide exhibited more 
potent activity at concentrations as low as 0.01 μM as shown 
in Fig. 13. These majucin-subtype sesquiterpenes were 
reported to promote neurite outgrowth of NGF-mediated 
PC12 cells but have no effect on PC12 cells in the absence 
of NGF [90]. Moreover, jiadifenolide (32) promoted neurite 
extension and significantly increased the total neurite area 
and length in neuronal cells derived from human induced 
pluripotent stem (iPS) cells at concentrations ranging from 
1 to 10 μM [92].

MEB5 is a multipotent stem cell line that can differentiate 
into neurons, astrocytes, and oligodendrocytes and, thus, is 
regarded as a potential tool to investigate compounds effec-
tive for the differentiation of CNS multipotent neuronal stem 
cells [22, 93, 94]. Furthermore, we attempted to assess the 
induction of differentiation of MEB5 cells by jiadifenolide. 
As shown in Fig. 14A, jiadifenolide significantly induced 
neuronal differentiation of MEB5 cells at 10 μM rather than 
astrocytic differentiation, with leukemina inhibitory fac-
tor (LIF) specifically induced as shown in Fig. 14A-b, B. 
The number of neurons at all the tested concentrations was 
greater in cultures treated with jiadifenolide than in control 
cultures (Fig. 14B). These results demonstrate that jiadife-
nolide promotes neuronal differentiation in the same manner 
as NGF.

Jiadifenolide (32) can be obtained straightforwardly from 
neomajucin (40) by DMP oxidation presumably through the 
proposed mechanism in Scheme 5 [91]. Jiadifenolide (32) 
and the other majucin-subtype sesquiterpenes 29–31 and 33 
have attracted great attention from organic chemists due to 
their complex caged structural architecture and remarkable 
neurotrophic properties. Taking the structural similarity of 
the majucin-subtype sesquiterpenes into consideration, most 

synthetic strategies are divergent and comprehensive [18, 
95–100].

Studies on seco-prezizaane-type sesquiterpenes from the 
Illicium species have culminated in their classification into 
further subgroups on the basis of a lactone type as follows: 
anisatin-subtype, pseudoanisatin-subtype, minwanensin-sub-
type, majucin-subtype, pseudomajucin-subtype, cycloparv-
ifloralone-subtype, anislactone-subtype and allo-cedrane-
subtype consisting of rare carbon skeletons. Merrilactone 
A (37), of the anislactone-subtype, from the pericarps of 
Illicium merrillianum was found to exhibit neurotrophic 
activity in primary cultured rat cortical neurons at a con-
centration as low as 0.1 μM [101]. The limited amount of 
37 has prevented further biological studies. This encouraged 
us to attempt partial synthesis of merrilactone A (37) from 
anislactone B (42), which was available in a large quan-
tity from the same plant [102]. First, a solution of 42 in 
trifluoroacetic acid (TFA) was refluxed to bring about the 
lactone transformation to the C-4 hydroxyl group with dehy-
dration of the C-1 hydroxyl group, giving rise to 43 in good 
yield. Then, epoxidation of 43 with m-chloroperoxybenzoic 
acid (m-CPBA) proceeded in a highly stereoselective fash-
ion to give 44, which was treated with p-toluenesulfonic 
acid (p-TsOH) to produce merrilactone A (37) in 78% yield 
(Scheme 6). Following our reports, a number of excellent 
total syntheses of merrilactone A were published, and one 
should take a look at references [103, 104] for the details of 
each synthesis.

Tashironin (35) and 11-O-debenzoyltashironin (36) were 
isolated from I. tashiroi [105] and I. merrillianum [106]. 
Tashironin and its congeners [107] have a tricarbocyclic 
skeleton corresponding to the key intermediate, allo-cedrane 
in the biosynthesis of seco-prezizaane-type sesquiterpenes. 
Among allo-cedrane-type sesquiterpenes 11-O-debenzoylta-
shironin (36) exhibits solely neurotrophic features in primary 
cultured rat cortical neurons at 0.1–10 μM and the presence 
of a free acetal group at the C-11 position is essential for 
having neurotrophic activity [106]. In 2017, illisimonin A 

Fig. 13  Neurite outgrowth-promoting activity of 32 in primary cultured rat cortical neurons. a Morphology of neurons in control groups, b mor-
phology of neurons in 0.01 μM, c morphology of neurons in 10 μM
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(38), which could be classified as a rare rearranged allo-
cedrane, was isolated from the fruits of I. simonsii and was 
reported to show neuroprotective effects against oxygen–glu-
cose deprivation-induced cell injury in SH-SY5Y cells with 
an EC50 value of 27.72 μM [108]. Recently, the absolute 
configuration of 38 was revised by its enantioselective syn-
thesis [109]. The first example of a seco-prezizaane-type 
norsesquiterpene, (2R)-hydroxy-norneomajucin (39) was 
isolated from I. jiadifengpi and was added to a list of Illi-
cium sesquiterpenes with neurotrophic activity [110]. The 

biosynthesis of 39 could be initiated by oxidation of the 
hydroxyl group at the C-10 position of neomajucin 40 to 
give a highly strained α-keto-δ-lactone, which would cause 
decarboxylation to lose one carbon, thereby leading to 
the less strained five-membered lactone 39. As shown in 
Scheme 7, when 2-O-acetyl-(2S)-hydroxyneomajucin (45) 
was oxidized with Jones reagent, decarboxylation occurred 
spontaneously resulting in direct formation of the γ-lactone 
46, from which 39 was readily accessible after several reac-
tions [110].

B

A
(a) (b) (c) (d)

Fig. 14  Effects of jiadifenolide on the neuronal differentiation of 
MEB5 cell line. A Morphological changes of MEB5 cells; blue, red, 
and green express nucleus, neuron, and astrocyte, respectively. a 
Control (0.5% EtOH), b leukemia inhibitory factor (LIF, 10 ng/mL), 
c nerve growth factor (NGF, 50  ng/mL), d jiadifenolide (10  μM). 
MEB5 cells were first cultured in the presence EGF at the density 
of 1.8 × 104 cells/cm2, and then medium was changed to EGF-free 
medium. After 4 days in the absence of EGF, the cells were double 
labeled with antibodies to class III β-tubulin (Tuj-1, red) and glial 

fibrillary acidic protein (GFAP, green). B The percentage of the neu-
ronal (red) and astrocytic (green) cells; the cells were maintained for 
1 day in the proliferation medium, and then transferred to the differ-
entiation medium containing vehicle (control) or jiadifenolide and 
cultured another 7 days. After immunostaining for Tuj-1 and GFAP, 
neuron, astrocyte, and total cell numbers were counted, and the ratio 
to total cells was calculated. Data were expressed as means ± SE 
(n = 5)
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Neurotrophic sesquiterpenes 28–33 and 36–39 (Fig. 12) 
have significant structural homology with anisatin (27) and 
picrotoxinin (49) which cause convulsions but do not have 
neurotrophic properties. Picrotoxinin has been validated to 
elicit convulsion by binding to the  GABAA receptor and 
chloride anion blockade of the Cys-loop family of gluta-
mate-gated chloride channels. Anisatin (27) and veranisatin 
(48) were also identified as picrotoxin-like, noncompetitive 
GABA-antagonists [111, 112]. Many of these convulsant 
terpenes contain γ-or δ-lactone motifs. Even the simple 
β-alkyl lactone β-EMGB exhibits convulsive activity by 
binding to the same site as picrotoxin. Based on structural 
homology with picrotoxinin (49) and anisatin (27) (Fig. 15), 
it has been postulated that neurotrophic Illicium sesquiter-
penes would enhance neurite outgrowth by modulation of 

the Cys-loop family of  GABAA receptors, and a mechanistic 
link may exist between convulsant terpenes and neurotrophic 
Illicium sesquiterpenes [113].

In 2017, Shenvi et  al. succeeded in the synthesis of 
(–)-11-O-debenzoyltashironin (36) and compared the effects 
of neurotrophic compounds 32 and 36, and convulsive com-
pounds 27 and 49 on primary cultures of rat cortical neurons 
in terms of the hyperexcitation expected from the antago-
nism of inhibitory channels. Although all four compounds 
similarly caused hyperexcitation of cortical neurons and 
inhibited GABA-evoked currents, the GABA antagonistic 
effects of 32 and 36 were tenfold weaker than those of 27 
and 49. Neurite outgrowth enhancement by 32 and 36 might 
be accounted for by a mechanism of chronic depolarization 

Scheme 5  Direct oxidative conversion of 40 to 32 

Scheme 6  Partial synthesis of 37 from anislactone B (42)
Scheme 7  Chemical conversion from 45 to 39 
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but more data are needed to validate this hypothesis in which 
convulsive and neurotrophic sesquiterpenes share a common 
target [114].

In 2018, Witkin et al. reported that jiadifenolide (32) and 
11-O-debenzoyltashironin (36) did not cause convulsions in 
mice nor did they enhance or diminish convulsions induced 
by pentylenetetrazole (PTZ) although picrotoxinin (49) and 
tetramethylenedisulfotetramine (TETS) both induced con-
vulsions. Furthermore, jiadifenolide and 11-O-debenzoylta-
shironin were verified to be less potent and less efficacious 
antagonists of GABA receptors than either picrotoxinin or 
TETS [115].

The underlying molecular mechanisms by which jiadife-
nolide (32) and its analogous Illicium sesquiterpenes exert 
their neurotrophic effects remain unknown despite the 
abovementioned hypothesis that they share a common tar-
get with the convulsant compounds including anisatin and 
picrotoxinin. We previously reported that jiadifenolide sig-
nificantly promotes neurite outgrowth and cell growth as 
well as prevents death of neuronal precursor cells derived 
from human pluripotent stem cells (hiPSCs) [92]. By in 
silicon molecular network analysis of our comprehensive 
RNA sequencing results on 32-treated human neuronal cells 
using KeyMolnet software, 32 was found to activate cellular 
communication network factor (CCN) signaling pathways by 
upregulating the mRNA expression of CCN2. In addition, 
the CCN2 protein was confirmed to exhibit neurotrophic 
effects and promote phosphorylation of the p44/42 MAPK 
protein in human neuronal cells. This result suggests that the 
molecular mechanism by which 32 exerts its neurotrophic 
effect is linked with CCN signaling [116]. It should be noted 
that this is the first discovery to connect neurotrophic effects 
with CCN signaling.

Miscellaneous natural products 
with neurotrophic effects

Vibsane-type diterpenoids rarely occur as natural products 
and have been limited to the isolation from Viburnum spe-
cies thus far. The carbon skeletons of these diterpenes are 

further classified into three subtypes: those with an eleven-
membered ring, those with a seven-membered ring, and the 
rearranged types (neovibsanins) [117, 118]. Among the three 
subtypes of vibsane-type diterpenoids, neovibsanins A (50) 
and B (51) and their congeners 52–55 with modifications on 
the prenyl group, as shown in Fig. 16, significantly enhanced 
the neurite outgrowth of NGF-mediated PC12 cells at con-
centrations ranging from 5 to 40 μM [119, 120]. A good 
synthetic achievement of neovibsanin B was accomplished 
by Imagawa et al. [121], who then extended their synthetic 
efforts to structure–activity relationship studies, resulting in 
elucidation of the minimum structure required for display-
ing neurite outgrowth activity in NGF-mediated PC12 cells 
(compound 56) [122].

The Brazilian medicinal plant Ptychopetalum olacoides 
is known as a nerve tonic and is used for the treatment of 
chronic degenerative conditions of the central nervous sys-
tem [123]. From the MeOH extract of this plant, a number of 
clerodane diterpenes 57–62 and 64–65 were isolated, among 
which ptychonal hemiacetal (57), ptychonal (58), 6α,7α-
dihydroxyannonene (61), and 7α,20-dihydroxyannonene 
(62) exhibited NGF-potentiating activity in PC12 cells in the 
presence of NGF (20 ng/mL) at concentrations ranging from 
0.1 to 40 μM [124, 125]. On the other hand, compounds 
59, 60, and 63–65 had no effect on PC12 cells in the pres-
ence or absence of NGF. Compound 61 is the most potent 
NGF potentiator of these active compounds. The adjacent 
hydroxyl groups in 61 presumably contribute to its increased 
activity because the acetonide 63 loses activity at the same 
concentrations. In addition, the furan ring plays an important 
role in the appearance of NGF-potentiating activity since 
64 and 65, with modifications to the furan ring, showed no 
activity at all.

Four spirocyclic nortriterpenes, leonurusoleanolides 
A (67), B (68), C (69), and D (70) were isolated from the 
fruits of Leonurus heterophyllus. Compounds 67 and 68, 
and compounds 69 and 70 exist as equilibrium mixtures of 
E and Z isomers. Mixtures of 67 and 68, and 69 and 70, 
significantly enhanced the neurite outgrowth of NGF-treated 
PC12 cells at concentrations ranging from 1 to 30 μM and 
also the parent compound, phlomistetraol B (66), possessed 

Fig. 15  Convulsant sesquiterpenes and compounds that target primarily the  GABAA receptors
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NGF-potentiating activity. However, 67–70 seemed to be 
more potent NGF potentiators than 66, which had toxicity 
at concentrations higher than 30 μM [126].

The polycyclic prenylated acylphloroglucinol (PPAP) 
family comprises a highly oxygenated and densely substi-
tuted bicyclo[3.3.1]nonane skeleton bearing prenyl or gera-
nyl side chains that are rich in the family Clusiaceae (Gut-
tiferae). Hypericum perforatum, commonly known as St. 
John’s wort, has attracted attention due to its antidepressant 
activity [127]. In the course of chemical studies on PPAPs 
of Garcinia subelliptica (Guttiferae) [128, 129], we found 
that garsubellin A (71) could increase the ChAT activity, a 
key enzyme for physiologic acetylcholine synthesis in the 
nervous system, by up to 154% at 10 μM in comparison with 
the control in primary cultured P10 rat septal neurons [130]. 
Owing to its important biological activity and architectural 
structure, garsubellin A (71) stimulated substantial synthetic 
effort, and the excellent synthetic achievements have been 
reported [127, 131–133]. More efficient synthetic methods 
of 71, however, still have to be developed to supply suffi-
cient quantities to explore its full biological characterization 
(Figs. 17, 18). 

A unique group of the neolignans, such as americanol 
A (72), isoamericanol A (73), americanin A (72a), isoa-
mericanin A (73a), americanoic acid A methyl ester (76) and 
isoamericanoic acid A methyl ester (77), which are charac-
terized by having a 1,4-benzodioxane ring and have diverse 
and significant biological activities, occur exclusively in 

the seeds of Phytolacca americana L. (Phytolaccaceae) 
[134, 135]. In particular, americanol A and isoamericanol 
A were found to enhance not only ChAT activity but also 
neurite outgrowth at 10 μM in primary cultured fetal rat 
hemispheres [136]. Neolignans 72 and 73 would be formed 
by oxidative dimerization of the corresponding monomeric 
unit, coniferyl alcohol. In fact, caffeic acid was subjected 
to horseradish peroxidase (HRP)-catalyzed oxidative condi-
tions to give rise to dicarboxylic acids 74 and 75, which were 
converted to 72 and 73, respectively, followed by sequential 
reductions [137]. We reexamined the neurotrophic activities 
of 72–77 in primary cultured rat cortical neurons. In addi-
tion to 72 and 73, americanoic acid A methyl ester (76) was 
found to exhibit potent neurite outgrowth activity at 0.1 μM; 
whereas, the activities of compounds 74, 75 and 77 were 
comparable with control cultures. Although compounds 74 
and 75 had no effects on neurite outgrowth, they induced 
significant neuritogenesis such as increasing the number 
of neurite branches in the concentration range from 0.1 to 
10 μM in a similar manner to basic fibroblast growth factor 
(bFGF) as shown in Fig. 19 [138].

Novel polyoxygenated benzofuran derivatives, namely, 
ribisin A (78), ribisin B (79), ribisin C (80), and ribisin 
D (81), were isolated from the fruiting bodies of Phel-
linus ribis, which is used in the East Asian countries as 
a traditional medicine for enhancing immunity and gas-
trointestinal cancer. Beznofurans 78–81 showed marked 
neurite outgrowth-promoting activity in NGF-mediated 

Fig. 16  Neovibsanin-subtype diterpenes with neurotrophic effects
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PC12 cells at concentrations ranging from 1 to 30 μM; 
whereas, none of these four compounds had morphological 
effects on PC12 cells in the absence of NGF. Their abso-
lute configurations on the chiral positions were elucidated 
by applying the CD exciton chirality method to the read-
ily derived p-bromobenzoate [139]. Chemoenzymatic total 
syntheses of 78–81 were achieved by two groups [140, 
141], and therefore, the absolute stereochemistry of ribisin 
C (80) was revised as its ent-form.

A prenylated and geranylated biphenyl derivative, clu-
siparalicoline A (82), was isolated from the roots of Clusia 
paralicola and showed modest cytotoxicity in the KB cell 
line [142]. We achieved the first synthesis of 82 by apply-
ing sequential palladium-catalyzed Stille and Suzuki reac-
tions, and synthetic 82 was assessed by our neuronal cell 
assay. As a result, 82 was found to exhibit potent neurite 
outgrowth-promoting activity at concentrations from 0.1 
to 1.0 μM in primary cultured rat cortical neurons, but 
the application of a higher dose than 10 μM induced the 

death in all neurons [143]. Although 82 shows cytotoxicity 
at high concentrations, the biaryl moiety of 82 may have 
some positive effects on the development and survival of 
neurons in the same manner as honokiol and magnolol, 
which have a specific affinity for neuronal cells [45].

Piperine (1-piperoylpiperidine), a pungent nitrogenous 
substance, is a main alkaloid in various piper species. 
These piper plants are commonly used as household spices 
as well as important traditional medicine in many Asian 
countries. With regard to piperine on cognitive function, 
recent pharmacological studies have shown that piperine 
possesses cognitive-enhancing activity [144] and improves 
both memory impairment and neurodegeneration in rats with 
cognitive defects induced by the ethylcholine aziridinium 
ion (AF64A) [145]. These reports prompted us to evaluate 
the neurotrophic properties of the fruits of the Javanese long 
pepper, Piper retrofractum, which are called Cabe Jawa and 
are used as one of the ingredients in the Indonesian natural 
medicine jamu. The methanolic extract of P. retrofractum 

Fig. 17  Other terpenes that enhance neurite outgrowth of NGF-mediated PC12 cells
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fruits exhibited neurite outgrowth-promoting activity in 
NGF-mediated PC12 cells. Bioassay-guided fractionation 
resulted in the isolation of the active component, pipero-
dione (83), which is the first example of piperine oxidized 
at the C-2 and C-5 positions. Compound 83 showed potent 
NGF-potentiating activity in PC12 cells at concentrations 
ranging from 0.1 to 10 μM, but piperine had no effect on 
PC12 cells at the same dose as 83 [146]. Our study has dem-
onstrated that piperine is not the active constituent responsi-
ble for the observed neurotrophic activity of P. retrofractum 
fruits. Recently, the total synthesis of piperodione (83) was 
reported from two groups, and 83 was verified to have NGF-
potentiating activity but not cytotoxicity at all [147, 148]. 
Now, with large quantities of 83 in hand, further pharmaco-
logical studies of 83 are in progress.

Fig. 18  Garsubelline A (71) and aromatic compounds with neurotrophic effects

Fig. 19  Increase of neurite number affected by 74 and 75. The data 
are expressed ± S.E. (n = 80); student’s t test vs. control, ##p < 0.01; 
Dunnett’s t test vs. control, **p < 0.01 [138]
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Finally, it should be noted that a comprehensive review 
on (–)-talaumidin, a neurotrophic 2,5-biaryl-3,4-dimethyl-
hydrofuran lignan, has been published quite recently [149]. 
Given the increasing interest in neurotrophin-mimic com-
pounds, we suggest that readers refer to a recent review 
covering another topic of neurotrophic natural products.

Conclusions

In this review, we have introduced neurotrophin-mim-
icking natural products discovered by our group and 
have focused on the chemical and biological features of 
neurotrophic compounds but have not emphasized their 
synthetic achievements, because there are already some 
excellent reviews on this subject [18, 104, 150] that sum-
marize the overview of their organic syntheses. Endog-
enous neurotrophins (NGF, BDNF etc.) are a class of 
polypeptidyl agents that promote neurogenesis, neuron 
survival, process outgrowth, and synaptic connectivity in 
the development of the neuronal system and neuronal plas-
ticity in adult neurons. As mentioned in the introduction, 
the application of neurotrophins to treat neurodegenerative 
diseases suffers serious drawbacks in practice due to their 
unfavorable properties. Consequently, a small molecule 
non-peptidyl agent that mimics the functions of neuro-
trophic factors would be an attractive alternative for the 
treatment and/or protection of neurodegenerative diseases. 
This idea prompted us to search for plant-derived small 
molecules that have neurotrophic effects on three neuronal 
cells: PC12 cells, primary cultured rat cortical neurons, 
and MEB5 neuronal stem cells. Beginning in 1988, struc-
turally unique isocuparane dimers, mastigophorenes A 
(1) and (2) were discovered as neurotrophic compounds 
by our group. Since then, a number of compounds with 
neurotrophic activity have been discovered from various 
plants. However, many active compounds have not gained 
access to detailed biological investigations, in particular, 
to in vivo animal models and their underlying neurotrophic 
mechanisms remain obscure because insufficient quanti-
ties of material are an often-encountered problem associ-
ated with natural products. To overcome this issue, many 
groups have been engaged in the synthesis of neurotrophic 
natural products. Jiadifenolide (32) is a good example. 
Chemical synthesis has supplied a sufficient quantity of 
32 to undertake detailed biological studies, which leads to 
the possibility of clinical utility for jiadifenolide.

Through this review, we hope that organic chemists and 
medicinal chemists will share their interests and efforts 
with neurotrophin-mimicking small molecules, which are 
expected to not only play a critical role in chemical control 
over each step in the neural circuit life model (neurogenesis, 

differentiation, neurite outgrowth, death), as proposed in 
Fig. 1, but also make a positive contribution to protecting 
cognitive impairment in a superaged society.
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