
526  |     Ecology and Evolution 2017; 7: 526–532www.ecolevol.org

Received: 26 September 2016  |  Revised: 22 October 2016  |  Accepted: 29 October 2016

DOI: 10.1002/ece3.2633

O R I G I N A L  R E S E A R C H

Variation in foraging success among predators and its 
implications for population dynamics

Toshinori Okuyama

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2016 The Author. Ecology and Evolution published by John Wiley & Sons Ltd.

Department of Entomology, National Taiwan 
University, Taipei, Taiwan

Correspondence
Toshinori Okuyama, Department of 
Entomology, National Taiwan University, 
Taipei, Taiwan.
Email: okuyama@ntu.edu.tw

Funding information
Ministry of Science and Technology of Taiwan, 
Grant/Award Number: 102-2311-B-002-038-
MY3 and 105-2311-B-002-019-MY3.

Abstract
The effects of the expected predation rate on population dynamics have been studied 
intensively, but little is known about the effects of predation rate variability (i.e., 
predator individuals having variable foraging success) on population dynamics. In this 
study, variation in foraging success among predators was quantified by observing the 
predation of the wolf spider Pardosa pseudoannulata on the cricket Gryllus bimaculatus 
in the laboratory. A population model was then developed, and the effect of foraging 
variability on predator–prey dynamics was examined by incorporating levels of variation 
comparable to those quantified in the experiment. The variability in the foraging success 
among spiders was greater than would be expected by chance (i.e., the random 
allocation of prey to predators). The foraging variation was density- dependent; it 
became higher as the predator density increased. A population model that incorporates 
foraging variation shows that the variation influences population dynamics by affecting 
the numerical response of predators. In particular, the variation induces negative 
density- dependent effects among predators and stabilizes predator–prey dynamics.
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1  | INTRODUCTION

Functional and numerical responses are important building blocks of 
population dynamics and are usually defined on a per capita basis. 
When f is a functional response that describes the predation rate per 
predator, the predation rate of a population of predators is obtained 
simply by fP, where P is the predator density (i.e., the functional 
response f is the predation rate of a predator population, when there is 
one predator per unit area, P = 1). Similarly, the numerical response β is 
typically defined as the reproduction rate per predator. Consequently, 
the reproductive output of a population of predators can be obtained 
as the product of the population density and the per capita effect, 
βP. These conventions are used in most theoretical investigations of 
consumer- resource dynamics (Case, 2000; McCann, 2012; Murdoch, 
Briggs, & Nisbet, 2003).

Empirical studies closely follow these conventions and quantify 
functional and numerical responses by emphasizing the per capita 
concept. The predominant experimental approach is to place one 
predator and a variable number of prey (because prey density is the 
main factor that influences the functional response) in the same envi-
ronment and count the number of prey eaten. Then, various functional 
response models are fit to the data (Okuyama & Ruyle, 2011). When 
the functional response f is independent of the predator density 
P (e.g., Holling, 1959), studies typically do not consider testing the 
assumption that fP describes the predation rate when there is more 
than one predator (P > 1), after characterizing f when P = 1 (i.e., one 
predator in an experimental arena). Nevertheless, regardless of how 
well a model might describe the predation rate when there is one 
predator, there is no guarantee that the predation rate can be extrap-
olated by fP when there are multiple predators. Such neglect of model 
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testing suggests that there might be little interest in the validity of the 
per capita assumption.

The per capita emphasis is the same when predator- dependent 
models (e.g., Arditi & Akçakaya, 1990; Arditi & Ginzburg, 1989; 
Beddington, 1975; DeAngelis, Goldstein, & O’Neil, 1975) are con-
sidered. In studies that consider predator- dependent functional 
responses, multiple levels of predator densities are tested by assum-
ing that fP (in which f is a predator- dependent functional response) 
describes the predation rate of a predator population (e.g., Elliott, 
2003; Hossie & Murray, 2016), but potential variation among pred-
ators is neglected. For example, when nine prey are eaten by three 
predators in a trial, one predator eating nine prey with the rest eating 
no prey and each predator eating three prey result in identical data. 
The per capita- based models (e.g., fP) assume that such variation is 
not important and that the average foraging success f can accurately 
describe the process. In fact, it can be argued that variation among 
predators is not important as long as a model can accurately predict 
the number of prey eaten (e.g., for prey population dynamics, which 
predator ate which prey is not important). However, that argument 
does not hold when we start considering the numerical response of 
predators.

The numerical response β is usually modeled as a function of func-
tional response because reproduction requires the energy obtained 
by foraging (Hessen, 1992; Humphreys, 1979). It is most commonly 
assumed that β = bf, where b is the conversion efficiency (the ability 
of predators to convert consumed prey to offspring) (e.g., Case, 2000; 
McCann, 2012; Murdoch et al., 2003). However, β and f can be related 
nonlinearly (e.g., Crawley, 1975). For example, parasitoid wasps are 
often egg limited (Heimpel & Rosenheim, 1998), setting a constraint 
on reproduction. Time (e.g., required to develop or lay eggs) can also 
be a constraint (Kokwaro, 1983). Reproductive limitations imply that 
the relationship between β and f will not be indefinitely linear and will 
likely be concave, at least when the foraging success is sufficiently 
high.

The relationship between the numerical response β and the func-
tional response f can have important effects when we consider varia-
tion in the foraging success among predators (Okuyama, 2013). The 
effects emerge through Jensen’s inequality and can be illustrated as 
follows. Suppose that predation success is variable among predators 
and that fi describes the foraging success of the ith predator. Then, the 
total reproductive output of the predator population is 

∑P

i=1
β(fi). On 

the other hand, per capita- based modeling will predict β(f)P, where f is 
the average of fi. These two quantities are the same only when fi is the 
same for all i (no individual variation) or when the relationship between 
β and foraging success is linear. However, as discussed above, both 
conditions are almost inevitably violated. Despite its potential impor-
tance, there is little information on variation in foraging success among 
predators.

This study quantifies variation in the foraging success among 
predators in a setting that is commonly used in laboratory studies of 
functional response. When n prey are consumed by P predators, n/P 
prey are consumed on average by each predator, no matter which 
functional model is considered. Because the concept is invariant to 

functional response models, the study focuses solely on individual 
variation without considering functional response. A simple model 
describing variation in the number of prey captured among predators 
is a multinomial model, in which each consumed prey is randomly allo-
cated to predators (the model is discussed in detail below). Whether 
observed variation in the foraging success among predators is greater 
than the variation expected by the multinomial model and whether the 
variation changes with predator density were examined. A population 
model incorporating variable predators is developed and explored to 
examine the effects of the variation on population dynamics.

2  | MATERIALS AND METHODS

2.1 | Predation experiment

To quantify the level of individual variation in foraging success among 
predators, the predation of the wolf spider Pardosa pseudoannulata 
on the cricket Gryllus bimaculatus was examined. The aim of the study 
was to examine the level of individual variation, rather than quantify-
ing the average predation rate (i.e., functional response). Therefore, 
the average predation rate was fixed in the experiment. In a trial, 
P predators and N prey (specific values for P and N are described 
below) were introduced in an experimental arena (10 cm × 14 cm; 
height = 7.8 cm), and predation events were monitored using a video 
camera such that it was possible to quantify the number of prey con-
sumed by each predator. All experiments began between 09:00 and 
10:00 hr and ended within 9 hr in a temperature controlled (≈26°C) 
room. Three levels of predator density P = 2,3, and 4 were tested to 
examine the effect of predator density on foraging success variation. 
To control the average foraging success, the numbers of prey were 
fixed at N = 3P such that one spider ate three prey on average (in all 
trials, all prey were eaten). The number of replications for the three 
predator levels P = 2, 3, and 4 were 25, 25, and 23, respectively. Each 
spider was used only once in the study. The experimental design and 
structure (e.g., arena size) described above is comparable to those of 
conventional functional response studies (e.g., Cave & Gaylor, 1989; 
Jalali, Tirry, & De Clearcq, 2010; Khan, 2013; Líznarová & Pekár, 
2013). This makes it possible to quantify the level of foraging suc-
cess variation that might be common in numerous existing functional 
response studies in which the variation is not recorded (e.g., for logis-
tical reasons).

Variation in the foraging success among spiders was intentionally 
minimized by the experimental design. First, all spiders were sim-
ilarly sized immature individuals (average carapace width 1.8 mm, 
SD = 0.2 mm). Small spiders were used to minimize the effect of the 
small arenas. Using similarly sized individuals also eliminated the 
occurrence of cannibalism (none was observed in all trials). Prior to 
the trial, all spiders were starved for 7 days after they were satiated to 
control their satiation level. All prey crickets were the first instar. The 
minimized variation allowed us to quantify the minimal level of forag-
ing variation. For example, for a given level of variation characterized 
by the experiment, we would expect at least the same (but likely a 
much higher) level of variation to be realized in the field.
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2.2 | Statistical analysis

Based on the experimental design, the response variable is a vec-
tor of the numbers of prey eaten by each predator y = (y1,…, yP), 
where yi is the number of prey consumed by the ith predator and  
∑

i yi=3P. When each of 3P prey is randomly allocated to a preda-
tor, the values follow a multinomial distribution. Under the multi-
nomial model, the likelihood can be calculated using a probability 
mass function (shown below), whose size parameter is 3P, and the 
probability vector p = (p1,…, pP) is a P- tuple of 1/P (i.e., pi = 1/P for 
all i). Thus, the model has no free parameter to be estimated.

To examine whether the observed variation is greater than 
that expected on the basis of the multinomial model, the Dirichlet- 
multinomial distribution was also examined (Johnson, Kotz, & 
Balakrishnan, 1997). The Dirichlet- multinomial distribution is a com-
pound distribution in which the probability vector of the multinomial 
distribution is not fixed but follows another probability distribution, a 
Dirichlet distribution. The parameters of a Dirichlet distribution are a 
vector α = (α1, α2, …, αP). In this study, αi = α for all i is assumed, indicat-
ing that the expected number of prey captured by the each predator 
is the same.

Specifically, the probability mass functions of the multinomial dis-
tribution fM and the Dirichlet- multinomial distribution fDM are

where N = 3P in this study. In both cases, the expected number of prey 
for each predator is EM(Yi) = EDM(Yi) = N/P = 3 for all i. The variances 
for the multinomial and the Dirichlet- multinomial models, respec-
tively, are

for all i. The variance of the Dirichlet- multinomial distribution is 
always greater than that of the multinomial distribution (i.e., (N + αP)/
(1 + αP) > 1). When α = ∞, the Dirichlet- multinomial model converges 
to a multinomial distribution. The two models were compared using 
the likelihood ratio test. Rejection of the multinomial model indicates 
that the observed variation in the foraging success among predators 
is greater than would be expected by the random allocation model of 
the multinomial process.

2.3 | The population model

A model consisting of one predator species and one prey species was 
used to examine the effect of variation in foraging success among 
predators. The dynamics of populations are described by

where the density of prey and predator at time t are N(t) and P(t), 
respectively. R(t), B(t), and D(t) are random variables that describe the 
recruitment of the prey, the number of predator offspring, and the 
number of predator deaths, respectively. In each time step, predation, 
reproduction, and predator death take place in this order. The preda-
tor is assumed to die in a density- independent manner. D(t) follows a 
binomial distribution whose size parameter is P(t), and the probability 
parameter is e‒m, where m is the per capita mortality rate. The prey 
population grows in a self- limiting manner, for which the Beverton‒
Holt model was used (Beverton & Holt, 1957). The expected size of 
the prey population in the next time step is

where r and K are the intrinsic rate of increase and the carrying capac-
ity of the prey, respectively. S(t) is the number of prey that survive 
predation in the current time step (described below). N(t + 1) is sim-
ulated from a Poisson distribution with the specified expectation, 
E(R(t)).

The expected value of the number of prey eaten by predators Y(t) 
is determined by a type II functional response,

where a and h are the attack rate and the handling time, respectively, 
of the predator. Although the Lambert W function is used for con-
venience (Bolker, 2008; Okuyama & Ruyle, 2011), the same solution 
can be obtained using the random predator equation (Rogers, 1972). 
The actual number of prey eaten is simulated from a binomial distri-
bution whose size parameter is N(t), and the probability parameter is 
E(Y(t))/N(t). Supposing that y(t) is a realization of the random variable 
Y(t) (i.e., the total number of prey eaten by the predator population), 
the number of surviving prey used in equation (7) can be calculated as 
S(t) = N(t) − y(t).

If we assume that each predator receives an equal amount of 
resources, then y(t)/P(t) is consumed by each predator. The aim of the 
population model is to relax this assumption and allow for variability 
among predators. When multinomial variation is assumed,

where Yi(t) is the random variable describing the number of prey cap-
tured by the ith predator, pi = 1/P for all i, and 

∑
i Yi(t)=y(t). pi is the 

probability that a prey is captured by the ith predator, and thus the 
model describes the random distribution of the prey among the pred-
ators. The Dirichlet- multinomial distribution can also be used instead 
of a multinomial distribution.

where αi = α for all i. As discussed above, the two models are the same 
when α = ∞.

(1)fM(y1,… ,yP|N,p)=
N!

y1!… yP!

∏P

i=1

1

Pyi

(2)fDM(y1,… ,yP|N,�)=
(N!)Γ(αP)

Γ(N+αP)

∏P

i=1

Γ(yi+α)

(yi!)Γ(α)

(3)VM(Yi)=N
1

P

(
1−

1

P

)

(4)VDM(Yi)=N
1

P

(
1−

1

P

)(
N+αP

1+αP

)

(5)N(t+1)=R(t)

(6)P(t+1)=B(t)+[P(t)−D(t)]

(7)E(R(t))=

(
erS(t)

1+[(er−1)∕K]S(t)

)
,

(8)E(Y(t))=N(t)−
1

ah
LambertW

(
ahN(t)e−a(P(t)−hN(t))

)
,

(9)
(
Y1(t),Y2(t),… ,YP(t)(t)

)
∼Multinominal(y(t),p),

(10)
(
Y1(t),Y2(t),… ,YP(t)(t)

)
∼Dirichle-multinominal(y(t),�),
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The relationship between reproduction and foraging success for a 
predator is assumed to be a concave function, byi(t)/(q + yi(t)), where b 
and q are the parameters that shape the relationship, and yi(t) is the 
number of prey eaten by the ith predator individual (i.e., yi(t) is a reali-
zation of the random variable Yi(t)). The number of offspring, Bi(t), pro-
duced by the ith predator is a random variable that follows a Poisson 
distribution with mean byi(t)/(q + yi(t)). Therefore, the total number of 
offspring is

which completes the model specification.
The population model was used to understand the effect of 

individual variation on population dynamics through the numerical 
response B(t). Therefore, the dynamics under three different models 
were compared: (1) no variation (Yi = yi(t)/P(t) for all i), (2) intermediate 
variation (Yi follows a multinomial distribution), and (3) strong varia-
tion (Yi follows the Dirichlet- multinomial distribution). The responses 
of the three models to environmental enrichment (i.e., increase in K) 
were compared.

3  | RESULTS

3.1 | Predation experiment

The raw data of the experiment are shown in Figure 1. When the 
predator density was high (P = 3 and 4), the Dirichlet- multinomial 
model better described the data than the multinomial model (Table 1; 
likelihood ratio test, p < .05). When P = 4, one individual ate 11 prey, 
which might be considered an outlier, but removing this sample does 
not change the conclusion of the analysis. When P = 2, the multino-
mial model was not rejected.

As predator density increased, the parameter, α, of the Dirichlet- 
multinomial model decreased (Table 1), indicating that the variation 
in the foraging success is density- dependent and becomes stronger 
as the predator density increases. However, even when α is constant 
over predator density, variation in the foraging success is still density- 
dependent (discussed further below).

3.2 | Population dynamics

Increasing the carrying capacity K destabilizes predator–prey dynam-
ics, a well- known result (Rosenzweig, 1971). How variation in foraging 
success might influence the effect of enrichment was examined.

Variation among predators makes community persistence (i.e., 
both the predator and prey persist without becoming extinct) robust 
to environmental enrichment. Although persistence becomes impos-
sible when K is sufficiently high, regardless of the level of predator 
variation, the possibility of persistence is extended to much higher 
levels of K when variation in foraging success among predators is high 
(Figure 2).

When persistence is possible, the dynamics are cyclic, partly 
owing to demographic stochasticity (McKane & Newman, 2005; 
Okuyama, 2015a). As variation in the foraging success among pred-
ators increases, the amplitude of nonequilibrium dynamics decreases, 
and the minimum prey population densities become high (e.g., random 
prey extinction becomes less likely) (Figure 3).

The effect of variability among predators on stability is revealed 
by predator isoclines (conditions that satisfy a zero growth rate, 
P(t + 1)/P(t) = 1). The population growth rate of the predator 
P(t + 1)/P(t) was numerically estimated for various combinations of 
P(t) and N(t). Before discussing the effect of variable predators, it is 
important to note that the model contains predator–predator interac-
tions even without variation among predators (i.e., the tilted isocline 
in Figure 4). This density dependence will not appear in the continuous 
model. If we use a continuous model,

(11)B(t)=
∑P(t)

i=1
Bi(t),

F IGURE  1 Raw data in dot plots for the three levels of predator density (P = 2, 3, and 4). The same letter (within the same P) indicates the 
same replication. For example, in P = 3, the letter “a” is seen for two, three, and four (number of prey eaten), indicating that the three spiders in 
the group ate these numbers of prey, respectively. When P = 4, one spider ate 11 prey (group “s”) that are outside the plotted range
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TABLE  1 Summary of statistical tests. P: number of predators. LM: 
negative log- likelihood for the multinomial model. LDM: negative 
log- likelihood for the Dirichlet- multinomial model. α: maximum- 
likelihood estimate for the Dirichlet- multinomial model. D: test 
statistic for the likelihood ratio test. When p- value is <.05, the 
multinomial model is rejected

P LM LDM α D p- value

2 43.33 42.9 9.48 0.85 .85

3 99.65 94.54 2.43 10.24 .001

4 144.84 135.14 2.81 19.40 1.06 × 10−5
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whether β is linear (e.g., β(f) = bf) or nonlinear (e.g., β(f) = bf/(q + f)), 
the predator isoclines (dP/dt = 0) are vertical, and predator density 
does not influence the sign of dP/dt, provided that there is no indi-
vidual variation among predators and that f is independent of pred-
ators (e.g., a type II functional response model). Thus, the way the 
model was formulated (i.e., prey are depleted within a time step; 
equation (8)) introduced a density dependence that would otherwise 
not exist.

The mechanism in which variation in foraging success enhances 
persistence is that the variation will strengthen the predator–preda-
tor interaction. This is seen in the effect of the variation on the slope 
of the isocline (Figure 4). As the variation becomes stronger, the iso-
cline is more strongly tilted. This negative density dependence (i.e., 
self- limitation) is a general stability mechanism for many consumer- 
resource dynamics (Case, 2000; Hastings, 1997).

4  | DISCUSSION

Variation in the number of prey consumed by predators is generally 
assumed to be unimportant in population dynamics. Consequently, 
we have little information regarding variability among predators. This 
study revealed the presence of a large variation in foraging success 
among predators. In particular, for a given number of prey consumed 
by a group of spiders, variation in the number of prey eaten by each 
predator is greater than that expected on the basis of random assign-
ment of prey to predators. A mathematical model that incorporates 
predation variability indicates that this variation can stabilize preda-
tor–prey interactions. These results suggest that understanding fac-
tors that create variability in foraging success are important for devel-
oping a mechanistic understanding of population and community 
dynamics.

In the laboratory experiment, various factors were standardized 
to minimize variation in results, but significant variation (e.g., multi-
nomial and greater) was observed. One could argue that at least the 
multinomial variation is expected naturally. However, this is not the 
case (more significantly, it being the case would further strengthen 
the importance). Under the conventional predation scheme in 
which the functional response was developed, a predator is either 
searching for prey or handling prey (Holling, 1959; Okuyama, 2012). 
Supposing that there are three predators, and only one of them 
is currently handling a prey, then the next prey is most likely con-
sumed by one of the searching predators. That is, allocation of prey 
is not random but systematic. This systematic expectation holds for 
most conventional functional response models, including predator- 
dependent ones. Therefore, models predict more uniform foraging 
success among predators than that expected on the basis of the 
multinomial model. Furthermore, high variability was observed 
despite the fact that variability in the amount of time required to 
find a prey is minimized by the use of the simple experimental arena. 
These results suggest that the predation process is more complex 
than the common assumptions used to develop functional response 
models suggest.

The study considers all predators are identical, and the variation 
in foraging success results by chance. However, another factor that 

(12)dP

dt
=�(f)P−mP,

F IGURE  2 Effects of carrying capacity on persistence possibility. 
Successful persistence indicates the persistence of the two species 
for 10,000 time steps. The probability of persistence was calculated 
based on 100 independent simulation runs. For the Dirichlet- 
multinomial model, α = 1 is used. Parameters: a = 0.001, h = 0.05, 
b = 0.15, r = .5, m = 0.05, q = 0.25
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contributes to the observed variation is the actual difference among 
individuals. For example, some individuals might have been more 
aggressive than others (e.g., Mazué, Dechaume- Moncharmont, & 
Godin, 2015; Pellegrini, Wisenden, & Sorensen, 2010), creating 
uneven predation success among individuals. Although functional 
response is not considered in the study (i.e., the average number 
of prey eaten was fixed), it is likely that predator–predator inter-
actions (e.g., Arditi & Akçakaya, 1990; Arditi & Ginzburg, 1989; 
Beddington, 1975; DeAngelis et al., 1975) influenced the observed 
variability in predation. Although the analysis assumed pi = 1/P for 
all i, if there is a true difference between individuals (e.g., p1 > p2 
when P = 2), it will further increase the forging variation among 
predators.

The mathematical model shows that individual variation will sta-
bilize predator–prey interactions (Figure 2). One factor is Jensen’s 
inequality (Ruel & Ayres, 1999). Because the relationship between 
numerical and functional response is assumed to be concave as a 
result of some reproductive limitation, the presence of individual 
variation in functional response will decrease the reproduction 
rate of the predator population (Okuyama, 2013). Another import-
ant factor is the multinomial (or the Dirichlet- multinomial) model 
used to describe variability among predators (Okuyama, 2015b). In 
the population model, it was assumed that the functional response 
model can predict the number of prey consumed by the population 
of predators accurately (equation (8)). Given a number of prey con-
sumed, the multinomial- type models are convenient for describing 
how the prey are allocated to existing predators. One of the char-
acteristics of these models is that as the number of elements (i.e., P 
in the model) increases, variation among the elements of a response 
also increases (for a fixed mean). For example, when the total 
 number of prey eaten is y and each predator eats yi prey (i = 1,…,P) 

such that 
∑

i yi=y, the variation among predators in the number of 
prey eaten (i.e., the variability of y1, …,yp) increases as P increases 
(when pi = 1/P for all i). The same is true for the symmetric Dirichlet- 
multinomial model for a constant, αi = α for all i. In other words, vari-
ability in foraging success among predators increases with predator 
density. This is why even when α is constant for levels of P, this does 
not indicate that variation is density- independent, and the density- 
dependent α characterized by the experiment (Table 1) strengthens 
the pattern further.

Spiders are known to exhibit partial consumption (e.g., Pollard, 
1988; Samu, 1993) in which prey are only partially consumed. 
Therefore, we cannot simply assume a linear relationship between the 
number of prey eaten and the energy gain as assumed in the popu-
lation model. The effect of partial consumption is likely complex. It 
may decrease the variation in energy gain as successful foragers may 
not consume much energy from each prey. At the same time, partial 
consumption may increase the variation in energy gain if partially 
consumed prey become unavailable to other predators. Although the 
occurrence of partial consumption certainly makes the relationship 
between foraging success and energy gain more complex, the concept 
discussed in this study is still valid. Whether the presence or absence 
of partial consumption, it is still unreasonable to assume that the 
energy gain is identical among all predators. In addition, although spi-
ders were used as the study subject, the stability mechanism discussed 
here applies to any consumers including ones that do not exhibit par-
tial consumption.

Despite the recognition of the importance of individual varia-
tion, quantifying foraging variability among predators is difficult. In 
this study, accurate quantification was possible because the envi-
ronmental arena was sufficiently simple that the entire space was 
clearly monitored by video recording. In the field, tracking the same 
individual over time and recording its foraging events are difficult 
to impossible, despite advancements in the technology for tracking 
the positions of individuals (Cooke et al., 2004, 2013). One possible 
resolution is that if it is possible to record the same individual over 
time, recording the body weight of an individual over time will give 
some information about its foraging success (Jakob, Marshall, & Uetz, 
1996), thereby allowing estimation of individual variability. Another 
approach for examining the prediction/assumption of the study is to 
test the per capita assumption discussed in Introduction. Even when 
it is impossible to quantify individual- level data, it is often possible 
to quantify population- level responses (e.g., common functional 
response studies). This allows testing of whether βP can accurately 
predict the numerical responses for various levels of the predator 
density P.

Individual variation is recognized as an important factor in 
ecological processes (Bolnick et al., 2011), but we still largely lack 
concrete theory to connect variation with explicit ecological pre-
dictions. Consequently, even though many empirical studies have 
begun quantifying individual variation, its roles are still unclear 
despite acknowledgment of its importance. This study described 
how individual variation can create density- dependent interactions 
among predators and showed that a simple fundamental reality (i.e., 

F IGURE  4 Predator isoclines for three models. When the 
combination of prey density N and predator density P is on the right 
side of the line, the predator density is expected to increase. On the 
left side, the density will decrease. Parameters: a = 0.001, h = 0.05, 
b = 0.15, m = 0.05, q = 0.25
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foraging variation among predators) has a profound effect on pop-
ulation dynamics. Generating testable predictions and refining the 
models of individual variation can be expected to be a promising 
approach for the development of a mechanistic theory of population 
dynamics.
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