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Abstract: Timely intervention for diabetic retinopathy (DR) lessens the possibility of blindness 

and can save considerable costs to health systems. To ensure that interventions are timely and 

effective requires methods of screening and monitoring pathological changes, including assessing 

outcomes. Fractal analysis, one method that has been studied for assessing DR, is potentially 

relevant in today’s world of telemedicine because it provides objective indices from digital 

images of complex patterns such as are seen in retinal vasculature, which is affected in DR. 

We introduce here a protocol to distinguish between nonproliferative (NPDR) and proliferative 

(PDR) changes in retinal vasculature using a fractal analysis method known as local connected 

dimension (D
conn

) analysis. The major fi nding is that compared to other fractal analysis methods, 

D
conn

 analysis better differentiates NPDR from PDR (p = 0.05). In addition, we are the fi rst to 

show that fractal analysis can be used to differentiate between NPDR and PDR using automated 

vessel identifi cation. Overall, our results suggest this protocol can complement existing methods 

by including an automated and objective measure obtainable at a lower level of expertise that 

experts can then use in screening for and monitoring DR.

Keywords: diabetes, proliferative retinopathy, automated clinical assessment, fractal dimension, 

complex systems

Introduction
Diabetes is a signifi cant and growing global public health problem, signifi cant not just in 

itself but also for its associated complications (Taylor and Keeffe 2001). One common 

major complication of the disease is diabetic retinopathy (DR). Currently, between 22% 

and 36% of people with diabetes have some form of DR, and in one-third of them, the 

disease has progressed to a severe, vision-threatening stage (NHMRC 1997b).

From a clinical perspective, DR is generally considered to progress through two 

broad stages that correspond to respectively lesser and greater levels of visual impair-

ment. From a pathological perspective, DR can be considered in terms of changes in 

retinal vascularization, where the two stages are classifi ed with respect to the absence 

or presence of abnormal neovascularization as either (1) nonproliferative (NPDR) 

or (2) proliferative (PDR). These categories are usually further graded by sever-

ity and the characteristics of lesions present within each. (ETDRS 1991; NHMRC 

1997a) During the earlier NPDR stages, microaneurysms and hemorrhages typically 

occur, the macula may swell as small retinal vessels leak fl uid, and cotton wool spots 

may also appear. Over time, retinal vessels may eventually close, leading to further 

vascular abnormalities, more hemorrhaging, and the formation of exudate. During 

the PDR stages, the pathology progresses to include abnormal neovascularization. In 

essence, as the disease continues, the number of non-perfused capillaries and resul-

tant ischemia increase and this eventually leads to new vessel growth, where the new 

vessels are abundant but dysfunctional and, rather than resupplying a starving retina, 

introduce further problems largely because they are fragile and often misplaced, with 
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severe consequences. Neovascularization may extend into 

the vitreous, for example, where it can cause hemorrhaging 

and contribute to retinal traction and detachment, leading to 

irreversible blindness. (Osborne et al 2004) Retinal holes 

may also develop near the proliferation. (Kanski 1989; Yam 

and Kwok 2007)

We examined ways to characterize changes in retinal 

vasculature in DR, which is why this paper naturally focuses 

on that aspect of the pathology. It is important to emphasize, 

however, that DR is more than simply disordered retinal 

vascularization, and that the precise mechanisms at every 

stage have not yet been identifi ed. Indeed, the knowledge 

base about underlying pathophysiologic changes in DR is 

currently changing dramatically and researchers are being 

challenged to approach the disease with new paradigms and 

perspectives. (Olson et al 1997; Krady et al 2005; Antonetti 

et al 2006)

As the knowledge base continues to grow, investigators 

are identifying potential leads that may eventually yield 

treatments (eg, changes in growth factors affecting neovas-

cularization), but currently there is no cure for DR. Despite 

that it is incurable, it is not currently unalterable. There are 

excellent opportunities for intervention at the incipient stages 

(such as improving glycemic control) that have the potential 

to reverse or prevent further progress of the disease. (De La 

Cruz et al 2004) Moreover, there are limited opportunities for 

intervention even at advanced stages. If disease is detected 

early enough, for instance, laser treatments can diminish 

visual loss (albeit in a trade off which may introduce other 

visual problems). (Doft and Blankenship 1984; Ferris 1993; 

Icks et al 1997; Lövestam-Adrian and Agardh; Lee et al 

2001a; Bek and Erlandsen 2006)

Diabetic retinopathy assessment
Although early detection and ongoing monitoring of DR 

have great potential to save vision, paradoxically, much 

evidence has amassed indicating that patients often do not 

get the necessary screening and monitoring to optimally 

apply the interventions that are available. The problem 

exists globally, and many barriers to screening affecting 

different populations to different degrees have been identi-

fi ed, including factors like inadequate access to care, patient 

misconceptions about the value of regular eye examinations, 

costs of visits to specialists, distance required to travel, 

and cultural reasons (eg, indigenous people may remain 

in their communities rather than seeking health advice in 

larger urban centers). (Mukamel et al 1999; McGlynn et al 

2003; Paz et al 2006)

To address this serious problem, goals have been set 

nationally and internationally to increase the proportion of 

people being screened for DR (the Australian national target, 

for example, is 80%). (NHMRC 2001) Many programs with 

the goal of increasing awareness in the community have 

been implemented accordingly, but to solve the underlying 

problem – that is, to globally reduce the numbers of indi-

viduals seriously affected by PDR – another important goal 

is to develop and implement new or complementary models 

for effective assessment, treatment, and monitoring of DR. 

(Lee et al 2001)

One particular step towards ensuring that early and regu-

lar eye examinations become routine for people with diabetes 

regardless of geographic, economic, cultural, etc., consider-

ations, is to simplify current procedures in order to hand over 

responsibility to a more accessible level of technical training 

(Taylor and Keeffe 2001). The rising use of telemedicine has 

started to shift part of the burden of DR screening to trained 

but non-expert health personnel around the world and has 

stimulated opportunities to develop the technology around 

digital retinal imaging (eg, incorporating digital images in 

an electronic patient record can help in ensuring diagnostic 

accuracy and monitoring and measuring outcomes). In addi-

tion, new methods of acquiring and assessing information 

about retinal pathology are being developed at a rapid pace 

(Hutchinson et al 2000; Neubauer et al 2003; Conlin et al 

2006a; Conlin et al 2006b; Taylor et al 2007).

Whereas some studies so far having non-specialist 

health professionals identify PDR have found detection 

rates to be no better than 50%, with the success rate decreas-

ing with features such as eye obstruction and early stages 

of proliferation, other studies suggest problems with the 

identifi cation of PDR can be overcome using digital retinal 

photography and automated computer-based processes 

(Frame et al 1998; Maberley et al 2003; Olson et al 2006; 

Soares et al 2006).

Computer-based diabetic retinopathy 
detection
Methods for objectively identifying and quantitating patterns 

in retinal vasculature involve two main steps. The fi rst is iden-

tifying blood vessels within images or segmentation. Several 

segmentation methods that identify retinal vessels in either 

fl uorescein or color digital images of the fundus have been 

reported in the literature, including the use of mathematical 

morphology, matched fi lters, threshold probing, supervised 

classifi cation, deformable models, and tracking (Englmeier 

1997; Gao et al 2000; Hoover et al 2000; Zana and Klein 
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2000; Jiang and Mojon 2003; Kirbas and Quek 2004; Nain 

et al 2004; Staal et al 2004). In the work reported here, we 

identifi ed retinal vasculature patterns in digital images of 

fl uorescein angiograms using two-dimensional continuous 

wavelets. Recent advances using wavelet-based techniques 

have shown particular promise as these methods remove 

noise from images, are accurate, and can provide additional 

parameters that can be used to classify PDR and follow dis-

ease progression (Leandro et al 2003; Cornforth et al 2005; 

Cree et al 2005a; Cree et al 2005b; Soares et al 2006).

The second step is measuring the vessel pattern obtained. 

Many features that can be extracted from digital images of 

blood vessels (eg, density, total length, and curvature) have 

been used to quantitate patterns in retinal vasculature. In the 

present study, we assessed complex branching features of 

the retinal vascular tree that defy description with traditional 

Euclidean geometry but refl ect principles of fractal geometry 

(Daxer 1993a; Landini 1996; Cornforth et al 2002).

Fractal geometry in proliferative 
retinopathy
Fractal geometry was fi rst introduced in 1960 by Richardson 

to describe coastlines. He pointed out that depending on the 

scale used to measure a coastline, the total length arrived 

at would vary. Specifi cally, with a decrease in scale would 

come a nonlinear increase in length (Richardson 1960). What 

Richardson described was a general phenomenon applicable 

to many types of objects and patterns whereby as the scale 

or magnifi cation at which something is observed changes, 

the detail measured, be that length, area, or volume, changes 

nonlinearly. This basic principle of fractal geometry is illus-

trated in Figure 1.

Richardson’s general idea of fractal geometry was popu-

larized by Mandelbrot and developed into fractal analysis, 

which is in use today in many parts of pure and clinical 

science (Mandelbrot 1993; Losa and Nonnenmacher 1996). 

Fractal analysis rests on the general point that the relationship 

between the resolution or scale at which an object is measured 

and the measured outcome can be quantitatively expressed 

as the fractal dimension (D
F
) of the object (Liebovitch 

and Sullivan 1987; Bittner et al; McGinley et al 1994; Gitter 

and Czerniecki 1995; Iannaccone and Khokha 1995; Bernard 

et al 2001; Feltrin et al 2001; Goldberger et al 2002; Masters 

2004; Naschitz et al 2004).

To elaborate, the similarity dimension (D
S
), is one 

instance of a D
F
. Its derivation is perhaps easiest understood 

starting with simple, ideal shapes. A straight line segment, 

for example, when measured using pieces 3-1 times its size, 

is found to be made of 3 such scaled pieces, in a relationship 

that holds through an infi nite number of such scalings. For-

mally, a power law defi nes this trivial (ie, simple) but infi nite 

self-similar scale-invariance, the D
S
 being the exponent in 

that power law as in the equation below:

N
r
 = r–Ds

In this equation, N
r
 is the number of equal pieces that 

resemble the original form when r is the ratio or scale applied 

to the object to make the equal pieces. Manipulating this 

equation gives a solution for the D
S:

1

log

log
r

s
N

D
r−=

The D
S
, thus, quantitates complexity, defi ned as how 

the detail or number of self-similar parts changes as scale 

changes (eg, the D
S
 for the line described above is log 3/

log 3 = 1.0 and for Figure 1 it is log 32/log 8 = 1.67) .

Various measures related to the D
S
 are readily calculated 

by different types of morphological image analysis software. 

These approximations are not always numerically identical, 

but they are generally relatively similar. The box counting 

dimension (D
B
), which we used in this paper, is calculated 

using a method that approximates the D
S
 by measuring pat-

terns in digital images using squares of decreasing size, r, 

instead of actually counting new parts at decreasing scales. In 

this case, N
r
 is the number of squares of each size, r, required 

to cover the image, and the D
B
 is the slope of the log-log 

regression line for these two values. More details on obtaining 

D
F
s are provided elsewhere (Feder 1988; Smith et al 1989; 

Peitgen et al 1992; Iannaccone and Khokha 1995).

Correlation dimension
Another numerically simple approximation for the D

F
 that 

can be applied in clinical science and ophthalmology is the 

correlation dimension (CD) (Grassberger 1983; Family 

et al 1989; Daxer 1992; Masters 2004). It is a probabilistic 

dimension that allows the differentiation of true stochastic 

processes from deterministic chaos. The CD is based on the 

integral function C(ε) that defi nes the probability that two 

arbitrary points on an orbit are closer together than ε and is 

expressed as:

0

log ( )
lim

log

CCD
ε

ε
ε→

=

Local connected fractal dimension
Yet another dimension relevant to retinal vessels is the con-

nected dimension. True fractals are scale invariant, meaning 
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one scaling factor holds for all magnifi cations at which 

the fractal is measured. Biological objects, in contrast, are 

generally only statistically invariant, meaning they scale 

consistently over only a defi ned range (eg, whereas the scal-

ing in the pattern in Figure 1 theoretically goes on infi nitely, 

scaling in the retinal vasculature tree is limited by the sizes 

of the smallest and largest vessels) (Voss and Wyatt 1991; 

Dollinger et al 1998; Fernandez and Jelinek 2001). In addi-

tion, biological structures are generally infl uenced by many 

processes, both microscopic and macroscopic, that can 

create local variation in scaling (Vicsek and Vicsek 1997). 

The retinal vascular tree, for instance, is subject to glucose 

and insulin levels, nutrient availability, changing pressures 

and pressure gradients, the constitution of its external envi-

ronment, interactions with cellular components, growth 

factors, genetic and developmental factors, the confi nes of 

the physical space within the eye, etc (Antonetti et al 2006). 

As such, whereas the vascular tree may unto itself bear a 

certain scaling dimension, it may also carry areas of unique 

subscaling within it.

One way to measure the complexity of any number of 

subsections within an object is to analyze local dimensions 

Figure 1 A 32-segment quadric fractal.  The basic pattern shown in the upper box can be seen repeated throughout the structure at different scales.  When the fi gure is 
viewed at a scale factor of 8 relative to the previous view, the pattern repeats itself with 32 pieces, each 1/8 the length of the original of which it is a part.
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(Voss and Wyatt 1991). In contrast to global fractal analyses 

that generate single values for entire images, local analyses 

generate arrays of local dimensions that can be visualized 

as distributions (eg, in color-coded images and histrograms) 

or summarized using the mean and standard deviation of 

the local array. The local connected dimension (D
conn

) is a 

local dimension that is pertinent to DR because it takes into 

consideration the degree of contiguous branching within a 

particular area. To elaborate, for digital images, a D
conn 

can be 

calculated for each signifi cant pixel, P(x, y), corresponding 

in DR to parts of the retinal vasculature. First, the connected 

set of pixels within some defi ned area around and all trace-

able to P is identifi ed, then the D
conn

 is determined based on 

that set. This is generally done by centering on P a series 

of concentric sampling elements (eg, squares or circles) of 

decreasing size, r, and counting the pixels that fall in both 

the sampling element and the connected set at P. The D
conn 

is then calculated as the slope of the regression line for the 

double logarithmic plot between r and the number of pixels 

counted at r (see Figure 2) (Landini et al 1995; Fernandez 

and Jelinek 2001; Karperien 2007).

The D
conn

 has so far only been used to differentiate 

between normal and occlusion angiograms in manually 

traced retinal vascular patterns (Landini et al 1995). Our work 

expanded on this to use the D
conn

 to differentiate PDR from 

images with no proliferative changes based on variation in the 

complexity of patterns extracted from the retinal vasculature 

tree using automated segmentation procedures.

Methods
Twenty seven fl uorescein labeled images from patients with 

varying degrees of retinopathy and eye disease ranging from 

no eye disease to PDR, both with and without neovascular-

ization, were collected from patients attending the Albury 

Eye Clinic for eye assessment. Fluorescein was injected 

under supervision of an ophthalmologist and images were 

acquired using a Topcon digital camera (1024 × 1024 pixels) 

combined with the Image 2000 software package. This was 

a retrospective study of patients attending the clinic who 

required fl uorescein labeling to determine the progression 

of their DR. Digital images were available for only one year 

as the clinic had only recently changed from using 35 mm 

slides to digital images. Two sets of skeletonised, binary 

images for analysis were prepared from the initial images. 

For one, the pattern of the retinal vasculature in each image 

was traced manually using a WACOM Graphire tablet to 

generate intermediate (nonskeletonised) images, and the 

resulting patterns were skeletonised using ImageJ (Rasband 

1997–2007); for the other set, an automated segmentation 

was applied and then the result skeletonised.

Automated blood vessel segmentation
Blood vessels were segmented as described in detail else-

where (Soares et al 2006). The continuous wavelet transform 

(CWT) is a powerful tool to analyze non-stationary signals 

(Costa and Cesar Jr 2001). Vessel-pixels responded strongly 

to the two-dimensional Gabor wavelet, because the wavelet 

is directional and could be specially tuned for vessel detec-

tion (Antoine et al 1993). The wavelet was superimposed 

onto each pixel of the image at various angles and scales. In 

order to detect the blood vessels, for each scale value cho-

sen, the transform was calculated over the range of 0–170 

degrees, at steps of 10 degrees, and the feature space was 

updated with the maximum value at each pixel position. 

The magnitude of the parameters associated with the Gabor 

wavelet transform were empirically determined in order to 

reach the best matching between wavelet and vessels. Once 

determined, the parameter confi guration did not have to be 

changed from image to image. The modulus of the wavelet 

transform using four different wavelet scales – chosen as to 

span all possible vessel widths – at each pixel was taken as 

a pixel feature, as well as the original gray scale intensity, 

yielding fi ve wavelet coeffi cients per pixel to compound the 

fi nal feature space.

A normal transformation was applied to all features to 

obtain dimensionless values, which allows a comparison 

between features and avoids mistakes in classifi cation. With 

the normal transformation, all features present zero mean and 

unitary standard deviation with respect to the training set.

The fi nal segmentation was obtained by classifying the 

original input image pixels into two classes, namely vessel-

pixels and non-vessel pixels, according to the supervised 

classifi cation approach (Costa and Cesar Jr 2001). A Bayes-

ian classifi er was adopted in which class likelihoods were 

described using Gaussian mixture models, providing a fast 

classifi cation while still allowing complex decision surfaces. 

The class priors were estimated by the fraction of each class’s 

pixels present in the training set composed of labeled samples, 

while the distribution parameters for each class’s Gaussian 

mixture model were estimated from the training set through 

the Expectation-Maximization algorithm (Theodoridis 1999). 

The training set was obtained from manually segmented fun-

dus images, providing us with the 2 classes (ie, vessels and 

non-vessels). Once the normalized training set from the hand-

drawn vascular trees was obtained and the classifi ers param-

eters were estimated, the classifi cation itself took place.
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The classifi er output is a binary image with pixels labeled 

as vessel or non-vessel.

Some misclassifi ed pixels appeared as undesirable noise 

in the output and as only boundaries were classifi ed for 

some vessels, post-processing was necessary. The post-

processing operations applied were ‘area open’ to eliminate 

small noisy components, ‘dilation’ and ‘area close’ to fi ll 

the vessels, followed by ‘skeletonisation’ to extract the 

vessel pattern and resulting in a 1-pixel-wide connected 

structure. The multiscale skeletonisation algorithm based 

on exact dilations was applied in this last step (Costa and 

Cesar Jr 2001).

Determination of fractal dimensions
The CD was calculated as previously discussed in the lit-

erature (Family et al 1989). This procedure leads to a graph 

C(ε) versus ε from which a log-log plot-based line fi tting is 

able to estimate the CD. The extremities of the linear portion 

of the log-log slope were determined by taking the wavelet 

transform of the log-log plot using the 3rd derivative of the 

P(x,y)

Figure 2 Calculating the local connected fractal dimension (Dconn).  Each pixel, P(x, y), that represents part of the vascular tree in a retinal vessel image has an associated 
local connected set for every distance that can be defi ned around that pixel.  As illustrated at the bottom left of the fi gure, the local connected set includes only the pixels 
that can be traced along a continuous path from P(x, y).  As illustrated at the bottom right, this set is used to calculate the Dconn at (x, y).  The image shows the data gathering 
process in which concentric squares of decreasing size are laid on the connected set and a local dimension is determined accordingly (see text). 
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Gaussian as mother wavelet and fi nding its zero-crossing 

points (Cesar and Jelinek 2003).

The D
B
 and D

conn
 were calculated using the morphologi-

cal image analysis software FracLac for ImageJ (Karperien 

2007). The D
B
 was calculated using a relative maximum 

box size of 50% of image size and a minimum box size of 2 

pixels. The D
conn

 for each pixel of the skeletonised patterns 

was calculated using a connected set within a square of 

width equal to 10% of image size, which was also the value 

used for the maximum box size, and a minimum box size 

of 2 pixels. To obtain a single value equivalent to the global 

dimension, the average of all D
conn

 values (μD
conn

) was also 

calculated for each image.

Results
Receiver operating characteristics provided an indication 

of precision when using automated segmentation of the 27 

images compared to the manual drawings used as the gold 

standards (Figure 3).

Global DB and μDconn results for all images
Figure 4 shows the global D

B
 and the μD

conn
 for all images, 

PDR and control combined, for each segmentation method. 

For the entire sample of manually segmented images, the 

mean global D
B
 was 1.61 ± 0.05 and for the entire sample 

of automatically segmented images, it was lower, 1.52 ± 
0.06. The mean μD

conn
 for manually segmented images was 

1.21 ± 0.04 and for automatically segmented images was 

1.14 ± 0.03.

The lower values for the automatically segmented images 

appears to be an effect of noise that obscures essential fea-

tures of the vascular tree and leaves gaps in the fi nal image 

when using the automated method. The ultimate effect is that 

some areas that are traced by the manual method tend to be 

“erased” by the automated method. Further evidence for this 

interpretation is found in the point that the average number of 

foreground pixels was lower in the automatically segmented 

images compared to the manually segmented ones. Inspection 

of the images revealed that common areas of differences were 

1
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Figure 3 The range for area under the curve (AUC) was between 0.7185 to 0.9492, with an average and standard deviation of 0.8832 ± 0.0397. The accuracy values average 
and standard deviation was 0.903 ± 0.018. 
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areas with fi ne vessels at the ends of branches (these were 

sometimes omitted in the automated method), areas where 

fl uorescein was unevenly distributed (see Figure 5), and areas 

with noteworthy hemorrhages or laser scars.

Despite these diffi culties, on the whole the automated 

segmentation method identifi ed the retinal vascular tree 

very well. An automated segmented blood vessel pattern is 

illustrated in Figure 6. The fl uorescein image clearly shows 

a homogenous distribution of the dye throughout the ves-

sel pattern and was correctly segmented using the wavelet 

approach.

Comparison of pathological status using 
means
Tables 1a and 1b show the results for the four feature 

parameters we analysed for the automated and manually 

segmented images. As shown there, the only measure that 

was signifi cantly different for PDR and control images in 

both the manually and the automatically segmented images 

was the μD
conn

.

The distribution of the μD
conn

 comparing control versus 

PDR for all of the automatically segmented images is shown 

in Figure 7. As shown in the tables above and in the fi gure, 

overall the μD
conn

 for PDR was signifi cantly higher compared 

to the control images.

Comparison of pathological status using 
the distribution of the Dconn
To further investigate the signifi cant results reported above, 

we looked in more depth at local variation over individual 

images. Figure 8 below shows the distribution of individual 

D
conn

 values per pixel for two images that were signifi cantly 

different from each other in the μD
conn

 (p = 0.02). Not 

shown here, we also investigated the distributions shown 

in the fi gure using color-coded maps that color each pixel 

according to its D
conn

. This analysis further suggests that 

D
conn

 analysis is a suitable method able to differentiate PDR 

from other patterns in retinal vasculature in automatically 

segmented images.

Discussion
Global increases in the age of the population and the preva-

lence of diabetes are bringing a concomitant increase in dia-

betic retinopathy. On the heels of that increase is a mounting 
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Figure 4 Results of the box-counting analysis and the local connected dimension analysis using all 27 images, for the manually segmented group and the automatically 
segmented group.  Image names prefaced by PDR are the proliferative retinopathy images, and images with no letter in front are the control images. Box Counting:  The 
fi gure shows the global box counting dimension (DB) for each image.  Local Connected Dimension:  The fi gure shows the mean local connected fractal dimension 
(μDconn ) for each image, calculated by averaging the Dconn values for each pixel in each image. 
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need for accessible, early, and effective identifi cation of 

proliferative changes and monitoring of disease progress 

and treatment outcomes. Practical and effective quantitative 

indices of DR are therefore essential, and may be found in 

fractal analysis. In general, our results showed that the D
conn

, 

an objective and readily obtainable measure, distinguishes 

between images of more severe and less severe pathology 

of the retina, where the μD
conn

 is higher for pathological as 

compared to nonpathological retinal branching patterns in 

skeletonised automated images and both skeletonised and 

nonskeletonised manually drawn images.

Automated procedures should aim to be comparable to 

the results obtained by ophthalmologists. Using an automated 

method that can detect changes in the eye associated with 

diabetes with a minimum sensitivity of 60% is therefore a 

useful advancement as it would lessen the burden on ophthal-

mologists during initial population screening. (Daxer 1993a) 

For clinical use, however, the methods should exceed 80% 

accuracy. (BDA 1994; NHMRC 2001) Overall, our work 

suggests that CWT-based segmentation and D
conn

 analysis can 

provide the required levels of sensitivity and accuracy.

These fi ndings are encouraging, but further work (eg, 

using a larger sample) is required, and several points about 

our results need to be discussed, including the point that none 

of the other fractal analysis methods we assessed yielded 

signifi cant results.

The global D
F
 of the retinal vasculature has been studied 

for some time (Family et al 1989; Masters 1989). Several 

research groups have demonstrated that the normal retinal 

vasculature has fractal-like properties with a global D
F
 gen-

erally falling between 1.60 and 1.88 (Daxer 1992; Landini 

et al 1993; Cesar and Jelinek 2003; Jelinek et al 2005). Our 

results suggest that the manually segmented images we 

analyzed were a valid representation inasmuch as the global 

D
B
 was within this usually reported range (Table 1), but the 

same conclusion cannot be drawn for the automatically seg-

mented images, because the mean global D
B
 for that group 

fell below the range reported in the literature. Reasons we 

identifi ed for this include that the entire sample was pushed 

to a consistently lower D
B
 by an overall relative insensitivity 

to the fi nest level of branching in the segmenting method, 

and that certain images were further affected by factors such 

as uneven signaling and scarring.

The μD
conn

 values were also lower than the reported 

range for the global D
B
, in this case for both the manually 

and automatically segmented sets of images. This does not 

refl ect the limitations of the segmentation method described 

above, however. Rather, it highlights differences between 

global and local connected analyses. Whereas global dimen-

sions sample entire images at once, the μD
conn

 for an image 

is calculated from a sampling at each pixel of a pattern (ie, 

it is comparable to an average of averages). Moreover, each 

AutomatedManual AutomatedManual

16459__3_ 20_201_

Figure 5 Noise affected automated segmentation.  Shown here are two original fl uorescein images (bottom) and their respective segmented and skeletonised vessel pat-
terns (top).  In image 16459__3_ on the left, fl uorescein was relatively evenly distributed and the two patterns yielded similar global DBs (automated = 1.54 and manual = 
1.59; see Figure 4 also).  In image 20_201_  on the right, however, fl uorescein was unevenly distributed, which caused some areas that were traced in the manual group to 
be left blank in the automated group, and the global DBs consequently differed more (automated = 1.52 and manual = 1.66).  



Clinical Ophthalmology 2008:2(1)118

Karperien et al

pixel’s D
conn

 considers scaling only over a contiguous area 

(refer to Figure 2), and in our analysis, we further limited 

those areas to relatively small parts of the image in order to 

better capture local variation in scaling.

The fi rst study that reported automated segmentation of 

blood vessels combined with fractal analysis used 30 mm 

SLR photographs of the retinal posterior pole that were 

scanned into a computer and segmented by the CWT. (Cesar 

and Jelinek 2003) Automated segmentation of fl uorescein-

labeled retinal vessels and analysis using the CD has also 

been reported in a study of digital images of the posterior 

pole with automated vessel segmentation followed by using 

8 feature patterns including the CD, which was able to dif-

ferentiate proliferative changes. (Jelinek et al 2005) However 

the CDs did not contribute signifi cantly to our outcome. This 

is refl ected again in Table 1.

The CWT is a powerful and versatile tool that has been 

applied in many different image processing problems, includ-

ing shape analysis (Costa and Cesar Jr 2001). We found in 

Table 1a Results of t-tests for automatically segmented images

 Control  PDR*  P value
 (mean ± stdev) (mean ± stdev)
 N = 11 N = 16

DB 1.53 ± 0.05 1.52 ± 0.07 0.40
CDg 1.483 ± 0.04 1.49 ± 0.05 0.12
CDm 1.38 ± 0.1 1.44 ± 0.08 0.68
μDconn 1.10 ± 0.04 1.14 ± 0.06 0.05

Table 1b Results of t-tests for manually segmented Images

 Control  PDR  P value
 (mean ± stdev) (mean ± stdev)
 N = 11 N = 16

DB 1.62 ± 0.04  1.61 ± 0.05 0.23
CDg 1.59 1.58 0.51
CDm 1.7 1.66 0.15
μDconn 1.19 ± 0.03 1.22 ± 0.04 0.03
μDconn 

nonskeletonized 1.40 ± 0.03  1.43 ± 0.05 0.02
*PDR = proliferative retinopathy; DB = box counting dimension; CDg = global 
correlation dimension; CDm = median correlation dimension; μDconn = mean local 
connected fractal dimension; μDconn 

nonskeletonized = mean local connected fractal dimen-
sion for intermediate, nonskeletonised manually segmented images.

A

C

B

Figure 6 Automated segmentation of a retinal blood vessel pattern.  A. The original fl uorescein labeled image 18_393__.  B. The automatically segmented and skeletonised 
vascular pattern from the image.  C. The automatically segmented pattern from B, dilated to a uniform diameter and shown overlain on the original image as a dark vessel 
pattern over the fl uorescein-labeled (white) vessels to illustrate the correspondence of the automatically selected pattern with vessels in the original.   
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pilot work for our study (results not shown) that selecting only 

images that convey what are considered the essential patterns 

associated with neovascularization and comparing these with 

control images that have no visible retinopathy improves 

the discerning ability of the D
conn

 and indeed of any feature 

parameter. To be practical, however, DR screening methods 

will have to be able to address all the possibilities that will 

arise in retinal imaging scenarios. Thus, our test sample was 

deliberately not idealized; rather, we included images with 

various commonly encountered complicating factors.

As was discussed above, these factors, such as laser 

scars, vessel drop out, microaneurysms, and hemorrhage, 

probably did affect the absolute results for each image and 

may have been a major reason why segmentation using the 

CWT was unsuccessful except when followed by analysis 

with the D
conn

. Reasons the D
conn

 but not other methods were 

successful in distinguishing PDR may also be linked to at 

least some of the reasons behind the range in values reported 

in the literature. That range refl ects a host of additional 

methodological issues known to infl uence the absolute results 

of fractal analyses including the type of D
F
, image size and 

resolution, feature extraction methods such as variation in 

the use of skeletonisation (eg, unlike skeletonised images, 

nonskeletonised images preserve differences in vessel diam-

eter in the fi nal pattern), and whether red free or fl uorescein 

images are used (Masters 2004).

In addition to such factors, previous studies using D
F
s 

have found various types of local differences within the 

retinal vascular tree. Differences have been reported between 

D
F
s for arteries and veins, for example (Mainster 1990; 

Landini et al 1993). Different investigators have also found 

contradictory trends in the D
F
 associated with an increase in 

pathological status. Avakian and collaborators, for example, 

applied fractal analysis to region-based vascular changes in 

non-proliferative retinopathy (Avakian et al 2002). They 

found that the D
F
 was signifi cantly higher in the normal macu-

lar region compared to the NPDR macular region, although 

not elsewhere in the retina. Daxer also used fractal analysis 

of region-based vascular changes, but applied to proliferative 

retinopathy, using a method which requires that neovascu-

larization be identifi ed in the fi rst instance. More in keeping 

with the results we found, Daxer reported that the D
F
 was 

signifi cantly higher for vessel patterns with neovasculariza-

tion at the disk than without (Daxer 1993b).

Distribution of the Local Connected Fractal 
Dimension for 27 

Automatically Segmented Retinal Images
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Figure 7 The distribution of the μDconn per image for all automatically segmented images.  The group of PDR images, which were more severely pathological, had a signifi -
cantly higher μDconn (see Table 1a). 
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Such variable and sometimes contradictory results can be 

reconciled using the D
conn

. To elaborate, if vessels disappear 

from an extracted pattern for any reason, such as from being 

occluded or by being obscured to the camera by hemorrhage, 

the local D
F
s calculated in that area of the pattern would be 

expected to decrease. Conversely, if vessels increase over 

some area, as seen in PDR, the local D
F
s in that area would 

be expected to increase. Global fractal dimensions smooth 

away such variety, but the D
conn

 is likely to capture and 

quantitate the interplay without confl ict because it quantifi es 

complexity over the entire branching pattern but also locally 

within it, thus, does not lose important details inherent in 

that local variation. This was illustrated in Figure 8 shown 

earlier, which compared the distribution of the D
conn

 over 

two automatically segmented, skeletonised patterns. The 

patterns shown in the fi gures were extracted from, respec-

tively, one image of PDR with extensive capillary closure 

and one of normal retinal vasculature. The two images dif-

fer signifi cantly in the frequency distribution of the D
conn

, 

which, as was discussed, can provide both a single objective 

index and various types of objective graphic representations 

(histograms and color-coded maps of the original retinal 

images) of the relative differences in the distributions of 

pathology between them.

Conclusion
Screening for and monitoring DR can decrease visual impair-

ments and nationwide healthcare costs, and are important 

to expanding existing knowledge and improving treatments 

for DR. Automated methods and objective indices are vital 

components of this equation. Segmentation of vascular 

patterns using the CWT and analysis with the D
conn

 shows 

promise in automating DR assessment, and appears robust 

to the realistic confounding factors that affect retinal images. 

With advances in digital imaging and the development of 

computerized grading systems as suggested by the work 

reported here, automated reading and assessment of diabetic 

eye disease, especially relevant to underserved populations, is 

coming closer to being a reality, but further work is required 

to verify the protocol introduced here and fully investigate 

the utility of the CWT and D
conn

 in this regard.
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