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Abstract
A species’ population structure and history are critical pieces of information that can 
help guide the use of available native plant materials in restoration treatments and 
decide what new native plant materials should be developed to meet future restora‐
tion needs. In the western United States, Pseudoroegneria spicata (bluebunch wheat‐
grass; Poaceae) is an important component of grassland and shrubland plant 
communities and commonly used for restoration due to its drought resistance and 
competitiveness with exotic weeds. We used next‐generation sequencing data to 
investigate the processes that shaped P. spicata’s geographic pattern of genetic vari‐
ation across the Intermountain West. Pseudoroegneria spicata’s genetic diversity is 
partitioned into populations that likely differentiated since the Last Glacial Maximum. 
Adjacent populations display varying magnitudes of historical gene flow, with migra‐
tion rates ranging from multiple migrants per generation to multiple generations per 
migrant. When considering the commercial germplasm sources available for restora‐
tion, genetic identities remain representative of the wildland localities from which 
germplasm sources were originally developed, and they maintain high levels of het‐
erozygosity and nucleotide diversity. However, the commercial germplasm sources 
represent a small fraction of the overall genetic diversity of P. spicata in the 
Intermountain West. Given the low migration rates and long divergence times be‐
tween some pairs of P. spicata populations, using commercial germplasm sources 
could facilitate undesirable restoration outcomes when used in certain geographic 
areas, even if the environment in which the commercial materials thrive is similar to 
that of the restoration site. As such, population structure and history can be used to 
provide guidance on what geographic areas may need additional native plant materi‐
als so that restoration efforts support species and community resilience and improve 
outcomes.

K E Y W O R D S

bluebunch wheatgrass, commercial germplasm, cultivar, fastsimcoal, Great Basin, 
Intermountain West, Last Glacial Maximum, Pseudoroegneria spicata

www.wileyonlinelibrary.com/journal/eva
mailto:﻿
http://orcid.org/0000-0001-5854-5597
http://creativecommons.org/licenses/by/4.0/
mailto:rmassatti@usgs.gov


2026  |     MASSATTI et al.

1  | INTRODUC TION

Ecosystem disturbances are increasingly common due to natu‐
ral events (e.g., Balaguru, Foltz, & Leung, 2018; Wotton, Nock, & 
Flannigan, 2010) and human‐induced activities (Foley et al., 2005). 
In response, more resources are being devoted to the development 
and use of native plant materials (e.g., Basey, Fant, & Kramer, 2015; 
Erickson, 2008; Tischew, Youtie, Kirmer, & Shaw, 2011; Wood, 
Doherty, & Padgett, 2015), with the hope that restoration using 
native plant materials can help address specific environmental chal‐
lenges, rejuvenate ecosystem function, and improve the delivery 
of ecosystem services (Hughes, Inouye, Johnson, Underwood, & 
Vellend, 2008). Concurrent research has focused on ensuring that 
native plant materials are “appropriate” for restoration sites (see, 
e.g., guidance provided by Plant Conservation Alliance 2015, as well 
as McKay, Christian, Harrison, & Rice, 2005; Broadhurst et al., 2008; 
Havens et al., 2015). From a genetic perspective, appropriate native 
plant materials are those that avoid (or mitigate) risks associated with 
the mixing of local and nonlocal genotypes (Vander Mijnsbrugge, 
Bischoff, & Smith, 2010). For example, nonlocal genotypes may not 
be adapted to the local environment at a restoration site and there‐
fore have lower fitness (Bischoff, Vonlanthen, Steinger, & Muller‐
Scharer, 2006; Jones, Hayes, & Sackville Hamilton, 2001; Knight 
& Miller, 2004; Oduor, Leimu, & van Kleunen, 2016). In addition, 
nonlocal genotypes are increasingly being implicated in negatively 
impacting local plant and animal species (Bucharova et al., 2016; 
Keller, Kollman, & Edwards, 1999; Sinclair et al., 2015; Smith, 2007; 
Vandegehuchte, De La Pena, Breyne, & Bonte, 2012). Furthermore, 
the intraspecific hybridization of local and nonlocal genotypes could 
result in outbreeding depression due to the introgression of mal‐
adapted genes or hybrid breakdown (Edmands, 2007; Hufford & 
Mazer, 2003), or nonlocal genotypes may prove to be better adapted 
to local ones and become invasive (Saltonstall, 2002); however, the 
importance of these latter phenomena is debatable based on avail‐
able evidence (e.g., see Whitlock et al., 2013). Regardless of the 
potential intraspecific or interspecific impacts resulting from using 
nonlocal genotypes in restoration treatments, genetic diversity 
has been recognized as a unit of conservation concern (see Hoban 
et al., 2013 and references therein), suggesting the maintenance of 
geographic patterns of genetic variation by avoiding the mixture of 
local and nonlocal genotypes should be an implicit restoration goal 
(Bucharova et al., 2018). Therefore, gathering information on the 
genetics of native plants important to restoration is imperative for 
making the appropriate seed sourcing decisions for ecosystem res‐
toration (Breed et al., 2018).

Given the potentially negative impacts of using inappropriate 
native plant materials, multiple approaches have been developed to 
spatially guide their transfer (i.e., seed transfer zones). At a coarse 
scale, Bower, St. Clair, and Erickson (2014) created 64 provisional 
seed zones for the continental United States using biologically 
important climatic data, as well as regional ecological categoriza‐
tions (i.e., Omernik level III ecoregions; Omernik, 1987). However, 
these zones are not species‐specific, and regionally important 

environmental gradients may not be incorporated due to the conti‐
nental scale of their analysis (e.g., the monsoonal precipitation gra‐
dient across the Colorado Plateau is not represented, but important 
to species across this region). A species‐specific approach using dis‐
tribution data (e.g., from vetted herbarium records) and a broader 
suite of environmental data was developed by Doherty, Butterfield, 
and Wood (2017); this approach more closely captures and parti‐
tions the environmental space occupied by a species to inform seed 
transfer. Genecological studies that combine phenotypic trait data, 
as informed by common gardens and/or reciprocal transplants, and 
climate data have resulted in the inference of seed transfer zones for 
a variety of species across the western United States (summarized 
in Kilkenny, 2015). Finally, correlating adaptive genetic variation, as 
inferred from outlier loci, to climate data can help deduce environ‐
mental gradients important to species, thus assist the development 
of seed transfer zones (Shryock et al., 2017). These latter two ap‐
proaches are the most informative with respect to the transfer of 
native plant materials because they resolve species‐specific adapta‐
tion to environmental gradients. While all of these approaches may 
alleviate the potential problems of nonlocal native plant materials 
at a restoration site, they only tangentially address (if at all) how 
plants across their distributions are related to one another from an 
evolutionary perspective. An evolutionary perspective benefits res‐
toration because it reveals the genotypic suitability of native plant 
materials for a restoration site based on the relatedness of the mate‐
rials with local conspecifics.

Originating from mutation, genetic variation becomes structured 
by gene flow, recombination, random genetic drift, and natural se‐
lection (Hartl & Clark, 2006). Thus, contemporary population struc‐
ture reflects the historical events that caused a species’ populations 
to merge, split, shrink, expand, establish, and disappear. For many 
organisms around the world, and especially those distributed across 
higher latitudes in temperate and boreal climates, cyclical glaciations 
during the Pleistocene were a dominant force influencing popula‐
tion structure (Provan & Bennett, 2008; Shafer, Cullingham, Cote, 
& Coltman, 2010; Soltis, Morris, McLachlan, Manos, & Soltis, 2006), 
as fluctuating climates forced many species to track suitable habitat 
to persist (Avise, 2000). The last glacial period began to recede ap‐
proximately 20,000 years ago, intimating that organisms in habitats 
affected by glaciations have occupied their contemporary distribu‐
tions for fewer than 20,000 years. Furthermore, organisms’ current 
distributions may result from one or more historically connected 
or isolated glacial‐age populations (Lanier, Massatti, He, Olson, & 
Knowles, 2015; Satler & Carstens, 2017). Given that historical con‐
nectivity may have profound impacts on contemporary gene flow 
(Edmands, 2007; Frankham et al., 2011), defining population struc‐
ture and how those populations have interacted in the past should 
be of utmost importance when determining a local versus nonlocal 
genotype. This is underscored by the fact that individuals within a 
species can share phenotypic traits that are putatively adapted to 
a specific climate space yet have independent evolutionary histo‐
ries, such that crossing individuals from these localities may pro‐
duce unfit hybrids because of the breakdown of coadapted gene 
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complexes (McKay et al., 2005). Evolutionary histories are not usu‐
ally considered when constructing seed transfer zones (although see 
Bucharova et al., 2018 for an example of indirect consideration).

To demonstrate the utility of resolving population structure and 
history to restoration practices, we investigate the genetic patterns 
of Pseudoroegneria spicata (Pursh) Á. Löve (Poaceae; commonly re‐
ferred to as bluebunch wheatgrass, synonym includes Elymus spi‐
catus (Pursh) Gould). This drought resistant, perennial bunchgrass 
competes well with exotic weeds (Zlatnik, 1999) and is an important 
member of grassland and shrubland plant communities across the 
Intermountain West of the western United States. Native perennial 
grasses such as P. spicata are widely utilized for fire rehabilitation 
and other large‐scale restoration projects across the Intermountain 
West, where fire cycles influenced by exotic annual grasses have de‐
graded millions of hectares of sagebrush (Artemisia L.) steppe (Davies 
& Johnson, 2017). Several natural‐origin P. spicata germplasm 

sources (hereafter referred to as commercial germplasm sources) 
have been developed from the Palouse region of Washington (Jones 
et al., 2002; Larson, Jones, Hu, McCracken, & Palazzo, 2000; Ogle, 
St. John, & Jones, 2010). In addition, seed transfer zones have been 
delineated for P. spicata in the Intermountain West to guide the 
deployment of native plant materials (St. Clair, Kilkenny, Johnson, 
Shaw, & Weaver, 2013).

Here, we use a next‐generation sequencing dataset developed 
for P. spicata to elucidate the dynamics of P. spicata populations 
through time and the genetic relationships of the available commer‐
cial germplasm sources to regional wildland localities, with the goal 
of providing information relevant to the use of available native plant 
materials and the future development of additional native plant ma‐
terials. We first describe P. spicata’s population structure across the 
Intermountain West. Given P. spicata’s large geographic distribution 
over a topographically diverse landscape, it is unknown whether 

F I G U R E  1  Sampling localities across western North America. Symbols denote sampling localities containing only Pseudoroegneria spicata 
(blue circles) and localities containing Elymus wawawaiensis individuals (red triangles). Polygons delineate genetic clusters referred to in the 
text and include Wasatch (WAS), Eastern Great Basin (EGB), Western Great Basin (WGB), and Palouse/Wallowa (P/W)
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contemporary populations persisted in one refugium or multiple re‐
fugia during the last glacial period, or how frequent historical gene 
flow among populations may have been. Therefore, we use our pop‐
ulation structure results to inform coalescent modeling scenarios to 
estimate divergence times and migration rates between adjacent 
populations. Our analyses include P. spicata commercial germplasm 
sources that are commonly used in restoration to facilitate compari‐
son with wildland populations, as well as characterization of genome 
size and ploidy level, which varies across P. spicata’s distribution 
(Gibson, Fishman, & Nelson, 2017) and can have significant effects 
on restoration treatments (Kramer, Wood, Frischie, & Havens, 2018). 
This research strategy is widely applicable as more native plant ma‐
terials are generated and used in restoration and conservation proj‐
ects (Plant Conservation Alliance, 2015).

2  | METHODS

2.1 | Field sampling and DNA extraction

Pseudoroegneria spicata was sampled throughout the Intermountain 
West during multiple collection efforts (Figure 1). At each of 154 
wildland sampling localities (Supporting Information Table S1 and 
Figure 1), reproductive stalks were collected from 60 to 500 individ‐
uals distributed across 0.5–5 acres. Seeds were pooled by sampling 
locality, cleaned to remove chaff, and stored in airtight containers in 
a refrigerated room. From these collections, random samples of seed 
were germinated and grown in a greenhouse for leaf tissue to use 
in DNA extraction. These efforts resulted in 887 unique individuals 
from localities distributed across five western states (average of 5.8 
individuals per site, see Supporting Information Table S1).

In addition to wildland‐collected seed, we obtained seed from 
eight commercial germplasm sources that are commonly used in res‐
toration treatments. Leaf material was generated as described above 
and sampled for DNA extraction (10 individuals per commercial ger‐
mplasm source). Six of the commercial germplasm sources represent 
P. spicata (Anatone, Columbia, Goldar, P‐7, Wahluke, and Whitmar). 
The final two commercial germplasm sources, Secar and Discovery, 
represent Elymus wawawaiensis J.R. Carlson & Barkworth, which is 
an allotetraploid containing copies of the St (Pseudoroegneria) and 
H (Hordeum) genomes (Carlson & Barkworth, 1997; Mason‐Gamer, 
2001; Mott et al., 2011). Elymus wawawaiensis is codistributed with 
P. spicata throughout part of P. spicata’s distribution and separating 
the taxa can be difficult due to similar morphological characteristics. 
As such, inclusion of Secar and Discovery individuals allowed us to 
identify and exclude any E. wawawaiensis individuals in our dataset.

Approximately 15 mg of leaf tissue was ground using a bead mill, 
and DNA was extracted following the DNeasy plant extraction kit 
protocol (Qiagen, Germantown, MD, USA). Genome size and ploidy 
were determined for wildland‐collected individuals using a Partec 
Cyflow Space flow cytometer under UV fluorescence with an Atriplex 
canescens (Pursh) Nutt. internal standard. The sample and standard 
were finely chopped, and nuclei extraction and staining followed the 

Cystain UV Precise P assay procedure (Sysmex). Sampling localities 
were screened for polyploidy by randomly choosing three individu‐
als per locality. If polyploid individuals were identified, an additional 
three samples were assessed to estimate the proportion of poly‐
ploids at the sampling locality. While using only three individuals per 
sampling locality for the primary screening may have caused us to 
miss polyploids when present in low frequencies, we note that this 
method correctly identified all sampling localities containing allotet‐
raploids (i.e., E. wawawaiensis), regardless of their frequency in the 
population (as assessed using the genomic data—see Results).

2.2 | Next‐generation sequencing and 
data processing

A total of 967 individual plants (887 wildland‐collected + 80 individ‐
uals from commercial germplasm sources) were selected for geno‐
typing‐by‐sequencing (Elshire et al., 2011; Poland, Brown, Sorrells, 
& Jannink, 2012). Genomic DNA from individual plants was digested 
with PstI and MspI, followed by the ligation of Illumina adaptor se‐
quences; each individual was barcoded four times using unique, 
5–10 base pair barcodes. Ligation products were pooled, purified 
using QIAquick PCR kits (Qiagen), and amplified using 16 cycles of 
PCR with eight replicates. A Pippin Prep (Sage Science, Beverly, MA, 
USA) was used to size select amplicons from 400 to 500 base pairs. 
Nine 96‐sample genotyping‐by‐sequencing libraries, with four bar‐
codes for each sample (i.e., 384 unique indexes per library), were 
sequenced on a HiSeq 2500 (Illumina, San Diego, CA, USA) to gener‐
ate 1 × 125 base pair reads.

Raw data were demultiplexed, filtered, and assembled de novo 
using stacks version 1.46 (Catchen, Hohenlohe, Bassham, Amores, 
& Cresko, 2013). First, we used the process_radtags script to exclude 
raw reads containing more than four low‐quality sites, adapter con‐
tamination, and/or ambiguous barcodes. Reads were truncated to 
100 base pairs due to variation in barcode lengths, read lengths, 
and read quality at the end of raw reads. Next, each individual’s 
sequences were clustered into highly similar stacks (i.e., sets of 
sequences inferred to be from a single locus) with the ustacks pro‐
gram using a minimum stack depth (m) of 3 and a distance between 
stacks (M) of 2 (parameter choice was informed by Paris, Stevens, & 
Catchen, 2017). We constructed a catalog of consensus loci using 
the cstacks program that contained 34 individuals, and loci were 
merged across individuals if the distance between them (n) was ≤2. 
The individuals chosen to construct the catalog represent wildland 
sampling localities across the geographic distribution of our sampling 
scheme; we limited the sample size to minimize error and restrict 
the accumulation of loci found in only a few individuals (Catchen 
et al., 2013). The catalog was used to determine the allele(s) present 
in each individual at each homologous locus during the execution of 
the sstacks program.

To create datasets used in analyses, we first executed the popu-
lations program in the stacks pipeline using unrestrictive parameters 
(p = 1, r = 0) to generate a Variant Call Format (vcf) file. We utilized a 
custom script to read the vcf file and calculate θ based on the number 
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of segregating sites across loci in r (R Core Team, 2017). Using a 
95% quantile cutoff, we identified extremely variable loci (i.e., those 
that contained an abundance of single nucleotide polymorphisms, 
or SNPs) and created a “whitelist” (i.e., a list that excluded the ex‐
cessively variable loci) that was used in a second populations exe‐
cution with the same parameter values to create a filtered vcf file. 
The filtered vcf file was further processed with a separate script to 
exclude all SNPs with >70% missing data across individuals and indi‐
viduals missing >90% of loci (a threshold which identified a clear out‐
lier group of individuals). After filtering, the script wrote a structure 

formatted file, which was read into r using the adegenet (Jombart, 
2008) read.structure function. Major axes of genetic variation were 
visualized with principal component analysis (PCA) using the dudi.
pca function in r (center = T, scale = T with missing data replaced by 
the mean frequency of the corresponding allele). By iteratively using 
PCA and our filtering script, we were able to identify outlier indi‐
viduals (i.e., individuals displaying unique genetic identities resulting 
from unknown processes, but likely an artifact of library construc‐
tion or sequencing idiosyncrasies) and assess the impact of various 
amounts of missing data, thereby maximizing the number of SNPs 

F I G U R E  2  Schematics of fastsimcoal2 modeling scenarios. All italicized labels represent estimated parameters, except for the ancestral 
effective population size (NANC), which was set to 60,000 (see Methods). The rate of migration (m) is assumed to be directionally the same 
between population pairs. Each model has the same parameter values, though they vary in their order and/or representation. To crosswalk 
to K = 4 in Figure 4: NWAS = Wasatch sampling localities (red); NEGB = Eastern Great Basin (yellow); NP/W = Palouse/Wallowa (orange); and 
NWGB = Western Great Basin (blue)
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while minimizing the loss of information content (for further details, 
see Massatti, Doherty, & Wood, 2018).

Population genetics statistics were calculated for diploid P. spi‐
cata sampling localities and commercial germplasm sources using an 
independent iteration of populations (p = 2, r = 0.50). We assessed 
the impact of variation in the number of individuals per sampling 
locality/commercial germplasm source by including all individuals 
as well as subsampling down to four individuals per sampling local‐
ity/commercial germplasm source, which represented the smallest 
number of sampled individuals; subsampling and statistic calcu‐
lation were performed 20 independent times. A final execution of 
populations only included sampling localities pertaining to fastsim-
coal2 modeling (see below) and generated a phylip file, which was 
analyzed with PhyML (Guindon et al., 2010; Lefort, Longueville, & 
Gascuel, 2017), and fixation index (FST) statistics; together, these 
data informed the fastsimcoal2 modeling scenarios.

2.3 | Population structure

We used two approaches to infer genetic structure within P. spi‐
cata: (a) Bayesian clustering implemented in structure version 
2.3.4 (Falush, Stephens, & Pritchard, 2003; Pritchard, Stephens, 
& Donnelly, 2000) and (b) a multivariate ordination method that 
accounts for spatial patterns, spatial principal component analysis 
(sPCA), implemented in the adegenet package (Jombart, 2008) in r. 
We used both methods to allow comparison of results across ap‐
proaches with different sets of assumptions. For example, struc-
ture assumes that loci are in equilibrium and unlinked while sPCA 
does not. Furthermore, Bayesian clustering may be inappropriate 
when populations are structured across a gradient of introgres‐
sion (Jombart, Devillard, Dufour, & Pontier, 2008) because it may 
overestimate genetic structure, while a spatially explicit multivari‐
ate method can identify genetic structure, including clines, and ac‐
counts for spatial autocorrelation (Frantz, Cellina, Krier, Schley, & 
Burke, 2009). structure was run across K‐values ranging from 1 to 
10 without assigning population membership a priori. Twenty inde‐
pendent runs per K were conducted, each with 150,000 burn‐in and 
500,000 Markov chain Monte Carlo iterations, using an admixture 
model with correlated allele frequencies. structure harvester (Earl 
& VonHoldt, 2012) and distruct (Rosenberg, 2004) were used to 
visualize results, and the most probable K was chosen based on ΔK 
(Evanno, Regnaut, & Goudet, 2005). For sPCA analysis, geographic 
locations of individuals were created by jittering the latitude/longi‐
tude of their sampling localities (factor = 3), and a Delauney trian‐
gulation graph was used to create the connection network required 
by the sPCA function.

2.4 | Estimating population divergence, population 
size, and gene flow

In order to investigate the impact of Pleistocene glaciations on 
P. spicata, parameters including population divergence time 
(T ), population size (Ne), and gene flow (2Nm) were estimated 

from the SNP data using an allele frequency spectrum method 
(Gutenkunst, Hernandez, Williamson, & Bustamante, 2009) im‐
plemented in fastsimcoal2 (version 2603; Excoffier, Dupanloup, 
Huerta‐Sánchez, Sousa, & Foll, 2013). This procedure uses coa‐
lescent simulations to calculate the likelihoods of observed al‐
lele frequency spectra (see Nielsen, 2000) under user‐specified 
demographic models. Because the true relationships of P. spicata 
populations across the West are unknown, we estimated param‐
eters under three 4‐population models that were constructed 
using patterns resolved from population structure and phyloge‐
netic analyses (Figure 2). We did not include all sampled individu‐
als in our modeling efforts, but only those from localities most 
representative of the major genetic axes (i.e., see the most differ‐
entiated populations represented by spatial principal component 
2 and spatial principal component 3 in Supporting Information 
Figure S3, as well as Supporting Information Table S1 for popu‐
lation assignments). Allowing for multiple population histories 
allowed us to select the best‐supported model using Akaike infor‐
mation criterion (Akaike, 1974).

A folded joint site frequency spectrum (i.e., for the minor 
allele, in the absence of information for the derived state) was 
calculated for each population pair based on polymorphic loci re‐
corded in the whitelist‐filtered vcf file containing only P. spicata. 
One SNP per locus was randomly chosen to satisfy the fastsim-
coal2 likelihood assumption that SNPs are in linkage equilibrium. 
To remove all missing data for the calculation of the joint site 
frequency spectrum, each population was subsampled using 
easySFS.py (https://github.com/isaacovercast/easySFS) and only 
loci found in at least 13, 13, 24, and 22 individuals in the Wasatch, 
East Great Basin (EGB), Palouse/Wallowa, and West Great Basin 
(WGB) populations (see Results for population definitions), re‐
spectively, were retained to minimize errors with allele frequency 
estimates. Numbers of individuals per population were deter‐
mined based on the number of individuals and number of loci in 
each of the groups.

Divergence times (values of T) were estimated accounting 
for the possibility of migration (values of m) and variation in ef‐
fective population sizes (values of N) (Figure 2). To improve the 
performance of the models by reducing the number of estimated 
parameters (Excoffier et al., 2013), one population parameter was 
calculated directly from the data. Specifically, the ancestral effec‐
tive population size (NANC) was fixed, whereas the other param‐
eters were estimated based on the site frequency spectrum (see 
Figure 2). The ancestral effective population size was calculated 
using the equation: θπ/2/(mutation rate × generation time), assum‐
ing a genomewide SNP mutation rate similar to Arabidopsis thali‐
ana (7 × 10−9 per site per generation; Ossowski et al., 2012) and a 
generation time of 1 year (i.e., the time to first potential reproduc‐
tion for a newly established plant). One hundred runs per model 
were conducted and the global maximum likelihood solution is 
presented. Each run was performed with 200,000 simulations per 
likelihood estimation and 40 expectation‐conditional maximiza‐
tion (ECM) cycles. Parameter confidence intervals were calculated 

https://github.com/isaacovercast/easySFS


     |  2031MASSATTI et al.

from 100 parametric bootstrap replicates, by simulating site fre‐
quency spectra with the same number of SNPs from the maximum 
composite likelihood estimates and re‐estimating parameters each 
time (Excoffier et al., 2013).

3  | RESULTS

3.1 | NGS data quality, processing, and dataset 
construction

Nine lanes of Illumina sequencing produced >2.5 billion reads 
across 967 individuals (average of 2.6 × 106 per individual), of 
which >940 million passed quality control (Supporting Information 
Table S1). Based on low coverage or low quality of reads, eight 
individuals were excluded from further analyses. After investigat‐
ing a range values for missing data across SNPs, we determined 
that a 20% threshold represented the best balance between mini‐
mizing potentially negative impacts of missing data on inference 
and minimizing the loss of information content (signal). Under this 
threshold, datasets included: a PCA dataset containing all individ‐
uals (P. spicata + E. wawawaiensis: 959 individuals, 8945 unlinked 
SNPs); a PCA dataset including only P. spicata (834 individuals, 
3,040 unlinked SNPs), which was filtered down to 776 individu‐
als (e.g., excluding individuals representing the commercial germ‐
plasm sources) and used in structure and sPCA. The vcf file from 
which the fastsimcoal2 site frequency spectrum was calculated 
included 295 individuals and 113 310 genotyping‐by‐sequencing 
loci; this dataset was also used to calculate corrected AMOVA FST 
values and generate a phylip file with 213,746 SNPs for the four 
populations resolved by structure and sPCA. Diversity statistics 

were calculated in populations from a vcf file containing 834 in‐
dividuals and 113,310 loci. Data sets are archived in the Dryad 
Digital Repository (https://doi.org/10.5061/dryad.rc1jr0v).

3.2 | Genetic differentiation, diversity, and structure

An initial PCA on the full dataset clearly differentiated E. wawawaien‐
sis (i.e., the Secar and Discovery commercial germplasm sources) 
from P. spicata individuals along principal component 1, while 
variation within P. spicata was described by principal component 2 
(Supporting Information Figure S1). We identified and excluded from 
further analyses 66 individuals from wildland sampling localities that 
clustered with (or near) E. wawawaiensis individuals (Supporting 
Information Table S1). The identification of mixed‐ploidy or tetra‐
ploid‐only sampling localities using genetic data precisely matched 
ploidy estimations for sampling localities made using flow cytom‐
etry, in terms of E. wawawaiensis. Flow cytometry identified two 
additional sampling localities as containing polyploids, but these 
localities did not contain E. wawawaiensis according to the PCA. 
Presumably, these sampling localities contained autotetraploid indi‐
viduals (Carlson & Barkworth, 1997; Gibson et al., 2017), and they 
were excluded from further analyses because stacks and other ana‐
lytical methods assume diploidy (see Supporting Information Table 
S1).

The PCA on diploid P. spicata individuals describes major geo‐
graphic groups across our sampling area (Figure 3). Principal com‐
ponent 1 is positively correlated with east‐to‐west variation (i.e., 
Wasatch Mountains in Utah to Oregon and Washington). Principal 
component 2 is dominated by variation predominantly sampled from 
localities on the eastern half of the Snake River Plain in Idaho. In 

F I G U R E  4  Results of structure 
analyses for K = 2 to K = 5. The posterior 
probabilities of individual assignments are 
averaged within sampling localities and 
represented by pie charts. Populations 
discussed in the text are noted for K = 5 
and include Palouse/Wallowa (P/W); 
Western Great Basin (WGB‐North and 
WGB‐South); Eastern Great Basin (EGB); 
and Wasatch (WAS)

K = 2 K = 3 

K = 4 K = 5 

WAS 

WGB-N 

P/W 

EGB 

WGB-S 

https://doi.org/10.5061/dryad.rc1jr0v
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general, individuals from sampling localities cluster with one an‐
other and close to individuals from geographically proximate lo‐
calities (Figure 3). Individuals representing commercial germplasm 
sources form a tight cluster that overlaps individuals from Oregon 
and Washington (Figure 3). Upon closer examination, commercial 
germplasm sources cluster with (i.e., are most genetically similar to) 
the wildland sampling localities closest to where the original founda‐
tional materials were collected (for the respective commercial germ‐
plasm source; as determined using Ogle et al., 2010).

structure analyses indicate K = 5 as the most likely number of 
genetic clusters (the K‐value with the highest ΔK, hereafter re‐
ferred to as the most likely K). We present illustrations of K = 2–5, 
as they are all helpful in unpacking the major, hierarchical axes 
of genetic variation within P. spicata (Figure 4). At K = 2, genetic 
variation breaks down into northwestern (blue) and southeast‐
ern (red) genetic clusters. An orange genetic cluster centered in 
southeastern Washington to northeastern Oregon is separated 
from the blue cluster at K = 3, and a yellow genetic cluster located 
primarily in the eastern Snake River Plain and eastern Nevada 
splits from the red cluster at K = 4. Finally, the blue genetic cluster 
decomposes again at K = 5, resulting in a southern gray cluster. In 
general, admixture is more common where genetic clusters meet, 
compared to the “cores” of their respective geographic distribu‐
tions. These structure results contrast with the 21 clusters of vari‐
ation reported by Larson, Jones, and Jensen (2004), which were 
based on a model selected solely from the log probability of data 
resolved by structure without consideration of model complex‐
ity, as suggested by Evanno et al. (2005). Despite the differences 

between these studies, Larson et al. (2004) break down hierarchi‐
cal variation into finer units we focus on here. While it is likely 
our genetic clusters would hierarchically decompose if analyzed in 
isolation (e.g., Massatti & Knowles, 2014; Ryan, Bloomer, Moloney, 
Grant, & Delport, 2007), this level of detail is not necessary for the 
questions at hand.

The first three sPCA eigenvalues associated with global struc‐
ture were used to characterize genetic variation among P. spicata 
sampling localities (Supporting Information Figure S2). In general, 
patterns among spatial principal components 1–3, which explain 
49.4% of genetic variation, reiterate the clusters resolved by struc-
ture analyses. Spatial principal component 1 identifies the north‐
western/southeastern grouping similar to K = 2, and spatial principal 
component 2 resolves differentiation between the southeastern 
Washington to northeastern Oregon sampling localities and lo‐
calities surrounding this area to the west and south (akin to K = 3; 
Supporting Information Figure S3). Finally, spatial principal compo‐
nent 3 differentiates sampling localities from the eastern half of the 
Snake River Plain and eastern Nevada from the rest (i.e., K = 4). Unlike 
structure analyses, where the blue genetic cluster breaks down from 
K = 4 to K = 5, sPCA does not resolve this as a significant genetic axis. 
Because sPCA accounts for geographic distance among sampling 
localities when identifying global and local structures, we hypoth‐
esize that K = 5 represents isolation by distance along a latitudinal 
cline of the blue genetic cluster identified at K = 4 (Figure 4) (see also 
Supporting Information Figure S4 for a RGB composite illustration 
of genetic similarity, which shows a continuous grade from the blue 
to gray genetic clusters). Hereafter, we focus on the genetic clusters 
(which we call “populations”) identified at K = 4. Furthermore, we as‐
sign these populations the following names, which are reiterated in 
Figure 4: red genetic cluster—Wasatch (WAS); yellow cluster—EGB; 
orange cluster—Palouse/Wallowa (P/W); and blue cluster—WGB. 
We further specify WGB‐North and WGB‐South to recognize the 
north/south differentiation in this population (i.e., the blue and gray 
clusters, respectively) discerned in the K = 5 structure result.

The relationships among the four populations are supported 
by the hierarchical decomposition of the genetic variation from 
K = 2 to K = 5 (Figure 4) and from spatial principal components 1–3 
(Supporting Information Figure S3), as well as by FST values and the 
maximum likelihood tree reconstruction. P/W and WGB are the most 
similar populations, as inferred from the lowest FST value (Table 1) 
and the short branches in the maximum likelihood tree (Supporting 
Information Figure S5). Each of these populations is differentiated 
from EGB and WAS as would be expected based on geographic dis‐
tance (Table 1). While WAS and EGB are highly supported as sister 
populations (Supporting Information Figure S5), they are also the 
most differentiated (Table 1). Given that the highest levels of hierar‐
chical variation (i.e., K = 2 and spatial principal component 1) group 
WAS and EGB sampling localities together, these results justify our 
choice of alternative models used for fastsimcoal2 model selection 
and parameter estimation, which include the relationships proposed 
by the maximum likelihood tree (Model 1) and two isolation by dis‐
tance scenarios (Models 2 and 3; Figure 2).

F I G U R E  5  Comparison of genetic diversity statistics across 
populations identified in the K = 4 structure analysis (red—WAS, 
yellow—EGB, blue—WGB, and orange—P/W; see Figures 1 and 
4 for population definitions). The white box‐and‐whisker plots 
represent the commercial germplasm sources. For each summary 
statistic (HEXP, expected heterozygosity; π, nucleotide diversity; 
FIS, inbreeding coefficient), the median, first and third quantiles, 
standard deviation, and range across populations are shown
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Genetic diversity statistics were similar across the P. spicata pop‐
ulations (Figure 5 and Supporting Information Table S2). The eastern 
and western populations (as defined by K = 2 in Figure 4) have similar 
ranges of expected heterozygosities (HEXP), nucleotide diversities (π), 
and inbreeding coefficients (FIS) (i.e., when considering WAS + EGB 
vs. P/W  +  WGB), and both have a genetic cluster that has, on aver‐
age, lower diversity (i.e., WAS and P/W), and a cluster with a greater 
range of diversity (i.e., the EGB and WGB). The EGB genetic cluster 
in Figure 5 can be broken into two groups: one group containing the 
eastern Snake River Plain sampling localities, which have genetic di‐
versity statistics generally above the median expected heterozygos‐
ity and nucleotide diversity; and a second group containing eastern 
Nevada and northwestern Utah localities, which have genetic diver‐
sity statistics generally below the median expected heterozygosity 
and nucleotide diversity (Figure 5 and Supporting Information Table 
S2). Subsampling to four individuals per sampling locality had no ef‐
fect on the distribution of diversity statistics across the populations, 

and we present only statistics calculated on the full dataset (i.e., 
Figure 5 and Supporting Information Table S2).

3.3 | Demographic parameter estimation

The P. spicata population history represented by Model 3 has the 
lowest Akaike information criterion (148,750) compared to Models 
1 and 2 (Akaike information criteria = 149,266 and 149,388, respec‐
tively); in other words, Models 1 and 2 minimize information loss 
negligibly compared to Model 3 (each is 0 times as probable for mini‐
mizing loss; Figure 2). Similarly, Model 1 is much more likely and mini‐
mizes information loss considerably, compared to Model 2. There are 
many similarities in parameter estimations under the three alterna‐
tive population histories (Table 2), and especially between Models 3 
and 1. Estimates of present‐day effective population sizes (N values) 
are similar among all three models, including in relative differences 
among populations, with the WAS (NWAS) and WGB (NWGB) popula‐
tions inferred as having the largest and smallest effective population 
sizes, respectively. Migration rates (m values) are also similar (relative 
to one another and in magnitude), with the highest rates inferred be‐
tween WGB and P/W, and the lowest rates occurring between WAS 
and the EGB (Table 2). Notable differences between the models are 
(a) the history of population expansions and contractions during di‐
vergence events and (b) the timing of divergence of the ancestral 
population (T3)—in Models 1 and 3, divergence coincides roughly 
with the end of the Last Glacial Maximum, while in Model 2 the di‐
vergence of the ancestral population is near the height of the last 
glacial period.

TA B L E  1  Pairwise corrected AMOVA FST calculated between 
the populations used in fastsimcoal2 modeling. All values are 
significant at p < 0.05. See Table S1 to determine which sampling 
localities are included in each population

WGB EGB WAS

P/W 0.041 0.068 0.075

WGB 0.079 0.085

EGB 0.099

Note. P/W: Palouse/Wallowa; WGB: Western Great Bain; EGB: Eastern 
Great Basin; WAS: Wasatch.

TA B L E  2  Results of parameter estimation with fastsimcoal2 under three alternative models. Composite maximum likelihood estimates of: 
effective population sizes (N) are presented as the number of individuals per population; divergence times (T) are presented as the number 
of generations (i.e., number of years ago, as 1 generation = 1 year); and migration rates (m) are presented as 2Nm. See Figure 2 to determine 
where each parameter maps onto the respective model. 95% confidence intervals were calculated from 100 parametric bootstrap replicates

Parameter

Model 1 Model 2 Model 3

Point estimate 95% CI Point estimate 95% CI Point estimate 95% CI

N1 3,699 3,659–4,258 506,615 485,887–519,774 8,033 7,839–8,405

N2 288,066 264,045–301,009 116,398 104,249–143,609 3,014 2,698–3,420

NWAS 53,347 52,773–53,855 49,589 49,020–49,805 62,936 62,546–63,308

NEGB 34,107 33,867–34,589 37,414 37,070–37,658 45,907 45,597–46,245

NP/W 21,833 21,504–22,027 37,272 36,979–37,482 30,800 30,698–31,094

NWGB 11,813 11,559–11,917 6,858 6,832–6,920 10,363 10,257–10,411

T1 16,007 15,903–16,140 13,835 13,697–13,985 15,211 14,942–15,343

T2 13,513 13,325–13,619 29,483 29,267–29,682 23,171 23,156–23,501

T3 21,781 21,265–22,107 30,923 30,638–31,004 24,740 24,559–24,946

mwe 0.03 0.02–0.04 0.13 0.13–0.14 0.46 0.45–0.48

mew 0.05 0.03–0.06 0.18 0.17–0.19 0.64 0.62–0.65

mep 0.65 0.64–0.66 0.66 0.65–0.66 0.68 0.68–0.70

mpe 1.02 1.00–1.04 0.67 0.66–0.67 1.02 1.01–1.04

mpw 4.94 4.89–5.08 4.72 4.66–4.90 4.23 4.17–4.25

mwp 9.13 9.04–9.39 25.64 25.27–26.61 12.57 12.38–12.63
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4  | DISCUSSION

Pseudoroegneria spicata genetic diversity is partitioned across west‐
ern North America into populations that are robust and repeatable 
across analyses. Modeling results suggest that these populations 
have differentiated since the Last Glacial Maximum, and that ad‐
jacent populations exchanged migrants at different rates following 
divergence. This information may significantly contribute to ongoing 
use of P. spicata plant materials in restoration projects, as well as in‐
form the development of new materials.

4.1 | Population history of P. spicata

Pleistocene climatic oscillations had a profound impact on the 
genetic structure of many organisms in western North America 
(Carstens, Brunsfeld, Demboski, Good, & Sullivan, 2005; Knowles 
& Massatti, 2017; Shafer et al., 2010). Especially at higher latitudes 
in temperate and boreal climates, organisms had opportunities to 
be separated for prolonged periods of time due to range shifts con‐
cordant with climatic oscillations and isolation into allopatric refugia 
with reduced or absent gene flow (Lanier et al., 2015; Richardson 
& Meyer, 2012). Alternatively, species presently occupying higher 
elevation habitat may have had larger, more connected distribu‐
tions during glacial periods (e.g., Galbreath, Hafner, Zamudio, & 
Agnew, 2010; Massatti & Knowles, 2016). Population divergence 
times suggest that P. spicata distributed across the landscape was 
highly affected by glaciations, as genetic variation coalesces to a sin‐
gle, panmictic population roughly concordant with the Last Glacial 
Maximum (Table 2). Hypothetically, P. spicata persisted within a ref‐
ugium during the last glacial period, and when the climate warmed 
and deglaciation commenced about 20 KYA, it dispersed into newly 
suitable habitat to eventually occupy its current distribution. As new 
locations were occupied and new climates were encountered, neu‐
tral and adaptive evolutionary processes facilitated differentiation 
(Hartl & Clark, 2006).

Determining the location of a refugium is an inherently difficult 
task (e.g., He, Prado, & Knowles, 2017). Paleovegetation and pre‐
historic climate data compiled from sites across the West suggest 
cooler climatic conditions during the Last Glacial Maximum (Grayson, 
2006; Ray & Adams, 2001; Thompson & Anderson, 2000), especially 
in the Great Basin (Waltari & Guralnick, 2009), where P. spicata is 
currently restricted to moderate elevations in mountain ranges. 
Pseudoroegneria spicata grows during cooler parts of the year (i.e., 
it is a C3 species), and we hypothesize that a cooler climate during 
the last glacial period may have supported a cohesive P. spicata pop‐
ulation at lower elevations (compared to its present Great Basin dis‐
tribution) somewhere in the vicinity of the Central Basin and Range 
ecoregion (Omernik, 1987). A southerly Great Basin refugium would 
support the fastsimcoal2 model with the lowest Akaike information 
criterion (Model 3, or isolation by distance with the earliest diver‐
gence being the WAS population)—as the climate warmed and P. spi‐
cata spread north (and/or east and west), the Wasatch Mountains 
were colonized early on. As the climate continued to warm, this 

population became more isolated as lower elevation habitat became 
inhospitable, while the geographic distribution of the species con‐
tinued to expand northward. Sampling P. spicata throughout its re‐
maining (i.e., unsampled), US distribution would help determine how 
many refugia persisted during the Last Glacial Maximum and may 
facilitate better predictions on where the refugia were located.

Dispersal from a common refugium since the Last Glacial 
Maximum does not preclude long‐term isolation among contempo‐
rary populations. Estimates of migration rates indicate that alleles 
have been exchanged between adjacent populations, although at 
drastically different rates. While several migrants per generation (on 
average) have been exchanged between P/W and WGB since their 
divergence, it has taken multiple generations, on average, for one 
effective migrant to be exchanged between WAS and EGB (Table 2). 
Habitat connectivity likely plays a large role in this disparity, as suit‐
able P. spicata habitat is separated by inhospitable, lower elevation 
basins in much of southern Oregon, Nevada, and Utah (e.g., see her‐
barium voucher records on swbiodiversity.org/seinet/collections). 
For example, the WAS population is highly differentiated from lo‐
calities to the west in northwest Utah and eastern Nevada repre‐
senting the EGB population (Supporting Information Figure S3), a 
pattern that may be attributed to low habitat suitability across the 
Bonneville Salt Flats in north‐central Utah. Another steep cline of 
genetic differentiation exists between the P/W and WGB popula‐
tions in Oregon and Washington (Supporting Information Figure S4). 
Here, alternative explanations facilitating differentiation would have 
to be investigated, because there are no clear areas of low habitat 
suitability and these populations have regularly exchanged alleles 
through time (Table 2). Such a steep cline despite high relative levels 
of gene flow may be indicative of a strong selective regime, perhaps 
imposed by the precipitation gradient driven by the rain shadow of 
the Cascade Range (Siler, Roe, & Durran, 2013). While multiple pro‐
cesses likely affect P. spicata across its range (i.e., both neutral and 
adaptive), it is likely that isolated P. spicata localities throughout the 
Intermountain West function to maintain some level of cohesive‐
ness for the species (i.e., a metapopulation framework sensu Hanski, 
1998; Supporting Information Figure S4).

Assumptions relied upon in a coalescent modeling framework 
(e.g., mutation rate and generation time) have the capacity to in‐
fluence parameter estimations. In general, it is assumed that more 
data, such as is generated using next‐generation sequencing tech‐
nologies, should lead to more precise estimates of parameters such 
as population divergence (Edwards & Beerli, 2000). The influence of 
assumptions on parameters is exacerbated when relying on external 
information, though there are rarely better options when working 
with nonmodel species. Here, we utilized a direct estimate of the 
genomewide SNP mutation rate from Arabidopsis thaliana (Ossowski 
et al., 2012), and its relevance to species in Poaceae may be sus‐
pect because ancestors of these groups likely diverged in the Upper 
Jurassic (Huang et al., 2016). Perhaps a larger concern is the genera‐
tion time, which we assumed to be 1 year for P. spicata. Within a co‐
alescent modeling framework, generation time represents the time 
to the first potential reproduction of a plant, and not the lifespan of 
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the plant within the community. When a species within a community 
reaches carrying capacity, individuals will be replaced, on average, 
at a rate equivalent to their generation time, regardless of how long 
an individual can persist. We note that P. spicata may have a longer 
generation time (e.g., 2–3 years) in natural communities. However, 
our preliminary modeling trials using a range of generation times, 
as well as independent research (e.g., Satler & Carstens, 2017), sug‐
gest that estimated divergence times between populations would be 
greater when using longer generation times. Such results reinforce 
our interpretation of how population history would affect the use 
and development of native plant materials.

4.2 | Management implications

4.2.1 | Applicability of genetic analyses to 
restoration and conservation efforts

Genetic analyses of genomewide SNP variation yielded information 
pertinent to restoration efforts. With respect to native plant ma‐
terials available for restoration, the commercial germplasm sources 
remain genetically representative of the wildland localities from 
which plant materials were originally collected (Figure 3). However, 
the commercial germplasm sources represent a small fraction of the 
overall genetic diversity of P. spicata. Given the close relationship 
and highest resolved migration rate between the WGB and P/W 
populations, the risk of unintended consequences (e.g., the negative 
impacts of nonlocal genotypes on local plant and animal species or 
outbreeding depression) may be lowest when the commercial germ‐
plasm sources are used in restoration treatments across the geo‐
graphic area covered by these populations. Risks may increase when 
commercial germplasm sources are used in restoration treatments 
located within the distribution of the WAS or EGB genetic clusters 
due to the low levels of gene flow and/or long divergence times be‐
tween these populations and the P/W and WGB populations from 
which commercial germplasm sources were developed. As such, 
future restoration treatments outside of the geographic area cov‐
ered by P/W and WGB may benefit from the development of plant 
materials representing the EGB and/or WAS genetic identity. We 
note that the ultimate test of negative consequences that may be 
realized by using restoration materials outside of their optimal geo‐
graphic range (i.e., in areas occupied by highly divergent populations) 
would be a crossing experiment between the commercial germplasm 
source and the local plants that would track seed production and the 
subsequent germination/survival rate of the seedlings.

The collection, development, and deployment of plant materi‐
als as suggested by the seed zones of St. Clair et al. (2013) may also 
be informed by spatial patterns of genetic variation and population 
history. These seed zones were developed using a genecological ap‐
proach, which utilized phenotypic data from common gardens and cli‐
matic variability across the northwestern United States. Considering 
the geographic distributions of the populations resolved here in re‐
lation to the distribution of the seed zones (see their Figure 3), we 
note that each of our populations is distributed across several, if not 

all, of the seed transfer zones. Given that sampling localities within a 
population are more closely related to one another (in a phylogenetic 
sense) than they are to localities from another population, we infer 
that the ancestors of all four populations independently adapted into 
the environmental space represented by the seed zones. This speaks 
to the adaptability of wildland populations and supports the idea that 
managing for genetic diversity should be an important conservation 
goal (Hoban et al., 2013). In addition, all populations except WAS are 
distributed across multiple level III ecoregions (Omernik, 1987), and 
similarly, almost all level III ecoregions contain multiple populations. 
Practically, this suggests, for example, that while individuals distrib‐
uted in Seed Zone 1 (see red in Figure 3 from St. Clair et al., 2013) 
in the western, central, and eastern Central Basin and Range ecore‐
gion may have similar phenotypic characteristics that are putatively 
adapted to that specific climate, they also have different genetic back‐
grounds that should be considered prior to transferring plant materi‐
als across this ecoregion. The discordance between populations and 
level III ecoregions exemplifies the practical knowledge gained from 
investigating geographic patterns of genetic variation and population 
histories—namely, resolving populations and their histories facilitates 
the identification of broad‐scale seed transfer zones so that practi‐
tioners do not have to rely on environmental proxies (e.g., ecoregions) 
that likely correspond poorly with the biology and history of a species 
of interest (e.g., Lesica, Adams, & Smith, 2016).

4.2.2 | Genetic diversity and P. spicata commercial 
germplasm sources

Including commercial germplasm sources in our study design allowed 
us to assess their genetic diversity in relation to each other and wild‐
land P. spicata. Genetic diversity within the commercial germplasm 
sources is, on average, similar to or greater than the diversity repre‐
sented by the four P. spicata populations (Figure 5). However, there 
are wildland sampling localities in most populations that exceed 
the levels of diversity represented by the commercial germplasm 
sources. These results contrast with the genetic diversity patterns 
resolved for other developed restoration materials (e.g., Broadhurst, 
Hopley, Li, & Begley, 2017). Furthermore, when expected heterozy‐
gosity and nucleotide diversity are directly compared between the 
commercial germplasm sources and all of the wildland sampling lo‐
calities surrounding their putative origins (this includes some, but not 
all, of the sampling localities in the P/W and WGB populations), the 
median expected heterozygosity and nucleotide diversity are higher 
for the commercial germplasm sources than the wildland sampling 
localities (Supporting Information Table S2, graphic representation 
not shown). We hypothesize that the elevated diversity of commer‐
cial germplasm sources results from heterosis. For example, if devel‐
opers of the commercial germplasm sources continuously selected 
individuals and/or populations that had elevated performance met‐
rics and these were, in part, due to elevated heterozygosity (Stuber, 
1994), this variation should still be present. High genetic diversity is 
a goal of plant materials development and resolving the processes 
that have generated/maintained genetic diversity in commercial 
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germplasm sources may be informative for developing future res‐
toration materials.

4.3 | Conclusion

Investigating a species’ genetic variation can play a foundational role 
in the use and development of native plant restoration materials. 
Characterizing the genetic diversity and geographic distribution of 
populations can guide the development of diverse and representa‐
tive plant materials. Furthermore, generating estimates of diver‐
gence times and migration rates among populations can provide 
restoration professionals with knowledge to deploy appropriate ma‐
terials to project sites, with the goal of supporting species and com‐
munity resilience and improving restoration outcomes.
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