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Abstract: This paper examines the adaptive control of high-order nonlinear systems with strict-
feedback form. An adaptive fixed-time control scheme is designed for nonlinear systems with
unknown uncertainties. In the design process of a backstepping controller, the Lyapunov function,
an effective controller, and adaptive law are constructed. Combined with the fixed-time Lyapunov
stability criterion, it is proved that the proposed control scheme can ensure the stability of the error
system in finite time, and the convergence time is independent of the initial condition. Finally,
simulation results verify the effectiveness of the proposed control strategy.

Keywords: adaptive fixed-time control; neural network control; strict-feedback high-order nonlin-
ear systems

1. Introduction

Recently, the adaptive trajectory tracking control of uncertain nonlinear systems has
made a significant breakthrough [1–3]. In addition, neural network adaptive control
has become a popular method in the past decades [4–6]. Many remarkable results have
extended to strict-feedback systems, pure-feedback systems, and Brunovsky systems,
and neural networks are combined with various techniques, such as the backstepping
technique, the adaptive technique, and the sliding mode control method [7–9]. The neural
network is used to identify the nonlinear term of the uncertain system, which combines
the advantages of adaptive control. Many excellent articles and monographs have been
published. In the design of these control systems, the neural network is used as a general
approximator to the uncertain nonlinear term of the systems [10–12]. In these systems, the
unknown nonlinear systems are approximate by neural networks, which are valid only
within a compact set, and the neural network controller is designed. Based on Lyapunov
uniformly bounded (UUB) theory, the closed-loop error systems are bounded [13–15].
In order to overcome the problem of uncertainty or disturbance that does not meet the
specific matching conditions, the adaptive controller is usually constructed by combining
backstepping control technology with the adaptive neural network. The high-order system
is divided into multiple subsystems. The virtual controller of the low-order subsystem
is designed first. Then, the recursive design is used until the final design of the neural
network adaptive controller to achieve stability of the system, allowing it to possess the
desired performance indicators.

In practical engineering applications, the research of high-order nonlinear systems has
attracted much attention, and their application is also extensive, for example, as financial
systems, communication systems, biological systems, and machine systems [16–18]. Some
results regarding high-order system control have been obtained following the development
of adding a power integrator [19]. The problems studied in recent years involve robust
control [20,21], adaptive global stabilization [17], global asymptotic stabilization [22],
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output feedback stabilization [23], and state feedback output tracking [16]. Many methods
have been proposed, such as backstepping technology, adaptive technology, sliding mode
control, neural network control, and fuzzy control. However, the above results need to
be precise with some unknown coefficients in the system model. In [20], the unknown
function in the system is described by the mathematical model of an online neural network.
In addition to this pioneering result, high-order system control based on neural networks
has been widely developed and applied [24–26].

In the actual industrial process, such as in missile systems, aircraft attitude control sys-
tems, robot control systems and other industrial control systems, the purpose of controller
design is to achieve stability of the controlled system and maintain it for a limited time.
However, the control method without considering the convergence time cannot achieve
this objective. Compared with the traditional Lyapunov stability theory, the finite-time
Lyapunov stability theory has attracted the attention of many researchers because it can
make the controlled system stable near the equilibrium state in finite time [27–29].

Many researchers combine finite-time control with neural network adaptive control
for nonlinear systems with nonlinear functions and dynamic uncertainties based on back-
stepping and propose many related adaptive finite-time control schemes [30–32]. However,
there are still many problems to be solved in these existing control strategies. For finite-time
control, the convergence time is dependent on the initial condition. However, the ideal
weights of NNs are unknown, and it is difficult to obtain a convergence time. Therefore, to
solve this issue, fixed-time neural network control is an appropriate selection of the control
method.

The high-order systems’ neural network control problem is discussed in the articles [33–35].
The fixed-time neural network adaptive controller is present for nonlinear high-order
systems. Based on the fixed-time adaptive technology, the strict-feedback high-order
system has fixed-time Lyapunov stability based on Lyapunov stability theory [36–38]. The
convergence time of the system can be accurately calculated, and the settling time does not
rely on the initial situation. The main contributions of this article are as follows:

(1) The combination of the neural network adaptive control with fixed-time Lyapunov
stability theory for high-order nonlinear system control problems.

(2) The design of the fixed-time adaptive law of the error systems for neural networks.
The parameters of neural networks are iteratively in fixed time based on the Lyapunov
fixed-time stability theorem.

(3) The convergence time set by control parameters and adaptive law gain parameters
without initial conditions to ensure the control performance.

This article consists of the following sections: in Section 2, a strict-feedback high-order
nonlinear mathematical description of the problem is presented; in Section 3, the adaptive
fixed-time neural network control scheme for the strict-feedback high-order nonlinear
system is designed; in Section 4, simulation results show the effectiveness of the proposed
control strategy; in Section 5, the conclusion of the article is presented.

2. Problem Formation and Preliminaries

Consider the following strict-feedback high-order nonlinear system:

.
xi = gix

ηi
i+1 + fi(xi).

xn = gnuηn + fn(xn)
y = x1

(1)

where xi ∈ R is the state of the system; xi = [x1, . . . , xi]
T ∈ Ri is the state vector of the

system; fi(xi) : Ri → R is the unknown smooth function; y ∈ R is the output of the system;
u ∈ R is the corresponding control input of the system; ηi is the order of the system; gi is
the unknown control gain parameter and satisfies 0 < g

i
≤ gi ≤ gi, where g

i
, gi are known

parameters; and the desired trajectory yd and its derivative are continuous and bounded.
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Lemma 1. For positive real numbers p, q, p ∈ (0, 1), q ∈ (1, ∞) with a denominator and nu-
merator, both are odd numbers and positive real numbers ρ, σ, ρ1, ρ2, σ1, σ2; then, the following
inequalities hold:

−ρθ̃θ̂p ≤ −ρ1θ̃p+1 + ρ2θp+1

−σθ̃θ̂q ≤ −σ1θ̃q+1 + σ2θq+1
(2)

where ρ1, ρ2, σ1, σ2 are determined by p, q, ρ, σ [39].

Lemma 2. For any constant where x, y ∈ R and p, q are odd, the following inequality holds:

xξ − yξ ≤ ξ|x− y|
(

xξ−1 + yξ−1
)
≤ ζ|x− y|

(
(x− y)ξ−1 + yξ−1

)
(3)

where ξ = q
p and q > p > 1, ζ = ξ

(
2ξ−2 + 2

)
.

Proof. Assuming x ≥ y, for any constant, the following equation holds:

xξ − yξ

x− y
= ξcξ−1 (4)

where c is an existent constant and satisfies y ≤ c ≤ x; therefore,

xξ − yξ = ξcξ−1(x− y)

≤ ξcξ−1|x− y|
(5)

because y ≤ c ≤ x, then cξ−1 ≤ max
{

xξ−1, yξ−1} ≤ xξ−1 + yξ−1; therefore,

xξ − yξ ≤ ξ|x− y|
(

xξ−1 + yξ−1
)

(6)

On the other hand, based on ξ > 1, for xξ−1, (x− y)ξ−1, yξ−1, we have

xξ−1 ≤
{

(x− y)ξ−1 + yξ−1, 1 < ξ < 2
2ξ−2

(
(x− y)ξ−1 + yξ−1

)
, ξ ≥ 2

(7)

then, we choose
xξ−1 ≤

(
2ξ−2 + 1

)(
(x− y)ξ−1 + yξ−1

)
(8)

therefore,
xξ−1 + yξ−1 ≤

(
2ξ−2 + 2

)(
(x− y)ξ−1 + yξ−1

)
(9)

Then,
ξ|x− y|

(
xξ−1 + yξ−1

)
≤ ζ|x− y|

(
(x− y)ξ−1 + yξ−1

)
(10)

where ζ = ξ
(
2ξ−2 + 2

)
. �

3. Main Results

In this section, for the strict-feedback high-order nonlinear system, the neural network
is used to identify the nonlinear system, and an adaptive algorithm is used to adjust the
weight coefficient of the neural network. Based on fixed-time Lyapunov stability theory,
a neural network adaptive tracker based on backstepping control strategy is designed so
that the system state can track the preset trajectory. Theoretical proof and a numerical
simulation are given.

The design block diagram of the closed-loop system is shown in Figure 1. For high-
order nonlinear systems with strict-feedback form, a neural network adaptive controller is
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designed to make the system track a given target signal in finite time. The convergence
time is independent of the initial condition to achieve fixed-time Lyapunov stability of the
closed-loop error system. The controller design can be divided into the following N steps:

Step 1: First, for the system, the following variables are selected:

z1 = x1 − yd (11)

the dynamics of z1 can be obtained as

.
z1 = g1xη1

2 + f1(x1)−
.
yd (12)

Moreover, we have
f1(x1) = WT

1 Ψ(Z1) + ε1(Z1) (13)

where |ε1(x1)| ≤ ε1, we have

z1 f1(x1) ≤ θ1|z1|‖Ψ(Z1)‖+ |z1|ε1 (14)

θ1 = ‖W1‖ is defined, and the Lyapunov candidate functional is chosen as

V1 =
1
2

z2
1 +

1
2µ1

θ̃2
1 (15)

where µ1 > 0 is positive constant, and θ̃1 = θ̂1 − θ1. Differentiating V1 with respect to time
t yields

.
V1 ≤ g1z1xη1

2 + θ1|z1|‖Ψ(Z1)‖+ |z1|ε1 − z1
.
yd +

1
µ1

θ̃1

.
θ̂1 (16)

The virtual control signal α1 is selected as

α1 = −g
− 1

η1
1

(
sign(z1)θ̂1‖Ψ(Z1)‖+

z1ε2
1

|z1|ε1 + η1
+ sign(z1)

∣∣ .
yd
∣∣+ κ1zp

1 + ι1zq
1

) 1
θ1

(17)

Then, based on Lemma 2, we have

.
V1 ≤ c1g1|z1|

(∣∣∣zη1
2

∣∣∣+ |z2|x
η1−1
2

)
− |z1|θ̃1‖Ψ(Z1)‖+ δ1 +

1
µ1

θ̃1

.
θ̂1 − κ1zp+1

1 − ι1zq+1
1 (18)

where
z2 = x2 − α1 (19)

then the adaptive law design as

.
θ̂1 = µ1

(
|z1||Ψ1| − ρ1θ̂

p
1 − σ1θ̂

q
1

)
(20)

based on Equation (18), we have

.
V1 ≤ c1g1|z1|

(∣∣∣zη1
2

∣∣∣+ |z2|x
η1−1
2

)
− |z1|θ̃1‖Ψ(Z1)‖+ δ1 + θ̃1|z1||Ψ1|

−ρ1θ̃1θ̂
p
1 − σ1θ̃1θ̂

q
1 − κ1zp+1

1 − ι1zq+1
1

(21)

based on Lemma 1, we have

−ρ1θ̃1θ̂
p
1 ≤ −ς1θ̃

p+1
1 + υ1θ

p+1
1

−σ1θ̃1θ̂
q
1 ≤ −ω1θ̃

q+1
1 + ϑ1θ

q+1
1

(22)
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then

.
V1 ≤ c1g1|z1|

(∣∣∣zθ1
2

∣∣∣+ |z2|xθ1−1
2

)
+ δ1 − ς1θ̃

p+1
1 + υ1θ

p+1
1 −ω1θ̃

q+1
1 + ϑ1θ

q+1
1 − κ1zp+1

1 − ι1zq+1
1 (23)

Step i: the tracking error can be described as

zi = xi − αi−1 (24)

Based on dynamics and tracking error, the dynamics of zi can be obtained as

.
zi = gix

θi
i+1 + fi(xi)−

.
αi−1 (25)

Moreover, we have
fi(xi)−

.
αi−1 = WT

i Ψ(Zi) + εi(Zi) (26)

where |εi(xi)| ≤ εi; we have

zi
(

fi(xi)−
.
αi−1

)
≤ θi|zi|‖Ψ(Zi)‖+ |zi|εi (27)

θi = ‖Wi‖ is defined, and the Lyapunov candidate functional is chosen as

Vi =
1
2

z2
i +

1
2µi

θ̃2
i (28)

where µi > 0 is positive constant and θ̃i = θ̂i − θi. Differentiating Vi with respect to time t,
yields

.
Vi ≤ gizix

θi
i+1 + θi|zi|‖Ψ(Zi)‖+ |zi|εi +

1
µi

θ̃i

.
θ̂i (29)

The virtual control signal αi is designed as

αi = −g
− 1

ηi
i

 ci−1sign(zi)gi−1|zi−1|
(

zηi−1−1
i + xηi−1−1

i

)
+ sign(zi)θ̂i‖Ψ(Zi)‖

+
ziε

2
i

|zi |εi+δi
+ κiz

p
i + ιiz

q
i


1
θi

(30)

then, based on Lemma 2, we have

.
Vi ≤ −ci−1gi−1|zi−1|

(∣∣∣zηi−1
i

∣∣∣+ |zi|x
ηi−1−1
i

)
+ cigi|zi|

(∣∣∣zηi
i+1

∣∣∣+ |zi+1|x
ηi−1
i+1

)
−|zi|θ̃i‖Ψ(Zi)‖+ ηi +

1
µi

θ̃i

.
θ̂i − κiz

p+1
i − ιiz

q+1
i

(31)

where
zi+1 = xi+1 − αi (32)

Then, the adaptive law design as

θ̂i = µi

(
|zi||Ψi| − ρi θ̂

p
i − σi θ̂

q
i

)
(33)

based on Equation (31), we have

.
Vi ≤ −ci−1gi−1|zi−1|

(∣∣∣zηi−1
i

∣∣∣+ |zi|x
ηi−1−1
i

)
+ cigi|zi|

(∣∣∣zηi
i+1

∣∣∣+ |zi+1|x
ηi−1
i+1

)
− |zi|θ̃i‖Ψ(Zi)‖+ ηi

+θ̃i|zi||Ψi| − ρi θ̃i θ̂
p
i − σi θ̃i θ̂

q
i − κiz

p+1
i − ιiz

q+1
i

(34)

based on Lemma 1, we have

−ρi θ̃i θ̂
p
i ≤ −ςi θ̃

p+1
i + υiθ

p+1
i

−σi θ̃i θ̂
q
i ≤ −ωi θ̃

q+1
i + ϑiθ

q+1
i

(35)
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then
.

Vi ≤ −ci−1gi−1|zi−1|
(∣∣∣zηi−1

i

∣∣∣+ |zi|x
ηi−1−1
i

)
+ cigi|zi|

(∣∣∣zηi
i+1

∣∣∣+ |zi+1|x
ηi−1
i+1

)
+ δi − ςi θ̃

p+1
i + υiθ

p+1
i

−ωi θ̃
q+1
i + ϑiθ

q+1
i − κiz

p+1
i − ιiz

q+1
i

(36)

Step n: the time derivative of zn can be described as

zn = xn − αn−1 (37)

Based on dynamics and tracking error, the dynamics of zn can be obtained as

.
zn = gnuηn + fn(xn)−

.
αn−1 (38)

Moreover, we have
fn(xn)−

.
αn−1 = WT

n Ψ(Zn) + εn(Zn) (39)

where |εn(xn)| ≤ εn, we have

zn
(

fn(xn)−
.
αn−1

)
≤ θn|zn|‖Ψ(Zn)‖+ |zn|εn (40)

θn = ‖Wn‖ is defined, and the Lyapunov candidate functional is chosen as

Vn =
1
2

z2
n +

1
2µn

θ̃2
n (41)

where µn > 0 is positive constant and θ̃n = θ̂n − θn. Differentiating Vn with respect to time
t yields

.
Vn ≤ gnznuθn + θn|zn|‖Ψ(Zn)‖+ |zn|εn +

1
µn

θ̃n

.
θ̂n (42)

The actual control is designed as

u = −g−
1

ηn
n

 cn−1sign(zn)gn−1|zn−1|
(

zθn−1−1
n + xθn−1−1

n

)
+ sign(zn)θ̂n‖Ψ(Zn)‖

+ znε2
n

|zn |εn+δn
+ κnzp

n + ιnzq
n

 1
ηn

(43)
then, based on Lemma 2, we have

.
Vn ≤ −cn−1gn−1|zn−1|

((∣∣∣zηn−1
n

∣∣∣+ |zn|xηn−1−1
n

))
− |zn|θ̃n‖Ψ(Zn)‖+ ηn

+ 1
µn

θ̃n

.
θ̂n − κnzp+1

n − ιnzq+1
n

(44)

then, the adaptive law design as

θ̂n = µn

(
|zn||Ψn| − ρn θ̂

p
n − σn θ̂

q
n

)
(45)

based on Equation (20), we have

.
Vn ≤ −cn−1gn−1|zn−1|

((∣∣∣zηn−1
n

∣∣∣+ |zn|xηn−1−1
n

))
+ ηn − κnzp+1

n − ιnzq+1
n − ρn θ̃n θ̂

p
n − σn θ̃n θ̂

q
n (46)

based on Lemma 1, we have

−ρn θ̃n θ̂
p
n ≤ −ςn θ̃

p+1
n + υnθ

p+1
n

−σn θ̃n θ̂
q
n ≤ −ωn θ̃

q+1
n + ϑnθ

q+1
n

(47)
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then .
Vn ≤ −cn−1gn−1|zn−1|

∣∣∣zηn−1
n

∣∣∣+ δn − κnzp+1
n − ιnzq+1

n

−ςn θ̃
p+1
n + υnθ

p+1
n −ωn θ̃

q+1
n + ϑnθ

q+1
n

(48)

Figure 1. Block diagram of the closed-loop system.

Theorem 1. For the strict-feedback high-order nonlinear system with unknown nonlinearity (1),
based on the feasible virtual control signal (17), (30), actual controller (43), and adaptive function
(20) (33), the error system is fixed-time Lyapunov stable, and the convergence time is independent
of the initial condition.

Proof. Based on Lyapunov candidate functional (15), (28), (41), the Lyapunov candidate
functional is chosen.

V =
n

∑
j=1

Vi (49)

The virtual control signal is chosen as (17), (30), and the fixed-time adaptive function is
chosen as (20), (33); the controller is designed as (43) according to the fixed-time Lyapunov
stability theory. Based on fixed-time adaptive neural network control and backstepping
technology, and taking the trajectory along the system, we have

.
V ≤ −

n
∑

j=1
κjz

p+1
j −

n
∑

j=1
ιjz

q+1
j −

n
∑

j=1
ς j θ̃

p+1
j −

n
∑

j=1
ωj θ̃

q+1
j

+
n
∑

j=1
ηj +

n
∑

j=1
υjθ

p+1
j +

n
∑

j=1
ϑjθ

q+1
j

≤ −aV
p+1

2 − bV
q+1

2 + c

(50)

where

a =
min{κj∈N ,ς j∈N}(

max
{

1
2 , 1

2µj∈N

}) p+1
2

, b =
(2n)

1−q
2 min{ιj∈N , ωj∈N}(

max
{

1
2 , 1

2µj∈N

}) q+1
2

c =
n
∑

j=1
δj +

n
∑

j=1
υjθ

p+1
j +

n
∑

j=1
ϑjθ

q+1
j

(51)

Therefore, according to the lemma in [39], all closed-loop signals possess fixed-time Lya-
punov stability. �

The design details are summarized in Figure 2 to show the procedure of the con-
trol process.
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Figure 2. Design procedure.

4. Numerical Examples

In this paper, the feasibility and effectiveness of the algorithm are verified by numerical
simulation. A strict-feedback high-order system is considered as follows:

.
x1 = g1xη1

2 + f1(x1).
x2 = g2uη2 + f2(x1, x2)
y = x1

(52)
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where the function f1(x1) = x1(t) + sin(0.1x1(t)), f2(x1, x2) = x2(t), g1 = 1, g2 = 1,
η1 = 5

3 , η2 = 7
5 , and the control input under the adaptive law is designed

.
θ̂1 = 0.01

(
|z1||Ψ1| − 0.1θ̂

5
3
1 − 0.1θ̂

1
3
1

)
(53)

.
θ̂2 = 0.01

(
|z2||Ψ2| − 0.1θ̂

5
3
2 − 0.1θ̂

1
3
2

)
(54)

the control input is designed as

u(t) =

 −5sign(z2(t)) ∗ |z1(t)| ∗
(
|z2(t)|+ |x2(t)|

2
5
)
+ sign(z2(t))θ̂2Ψ2(Z2)

+ 0.01z2
0.1|z2(t)|+0.1 + 5z2(t)

1
3 + 5z2(t)

5
3

 5
7

(55)

The desired reference signal is yd = sin(t). The initial condition is selected as x1(0) = 1,
x2(0) = 1, θ̂1(0) = 1, θ̂2(0) = 1. The neural network consists of seven nodes, centers
c = [−3,−2,−1, 0, 1, 2, 3], and widths b = 1.

Figure 3 shows that under the action of the neural network adaptive controller, the
state of the controlled system state can track the preset trajectory in finite time. Figure 4
shows the state trajectory of the error system. It can be seen from the figure that under
the action of the controller, the error system achieves fixed-time Lyapunov stability. The
adaptive function curve is shown in Figure 5. For fixed-time control, α1 is designed by
f1(x1), which is approximated by NNs, but its derivative is not easy to approximate;
therefore, f2(x2)−

.
α1 is not easy to approximate, and the amplitude is inevitable. Figure 6

shows that the system’s controllers are bounded. It can be seen from the figures that the
designed method is effective.

Figure 3. Trajectories of x1 and yd of a strict-feedback high-order nonlinear system.
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Figure 4. Trajectories of error states of a strict-feedback high-order nonlinear system.

Figure 5. Trajectories of adaptive functions of a strict-feedback high-order nonlinear system.

Figure 6. Trajectories of system input of a strict-feedback high-order nonlinear system.
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5. Conclusions

In this paper, based on backstepping adaptive control technology, a neural network
is used to approximate some unknown signals in a system. Combined with Lyapunov
stability theorem and fixed time stability, an effective adaptive control scheme is designed.
A class of strict-feedback high-order systems is further studied. The main contributions
of this paper are as follows: the fixed-time control problem of strict-feedback high-order
nonlinear systems is solved; the Lyapunov function is designed for each subsystem; at the
same time, combined with adaptive backstepping technology, an adaptive neural network
fixed-time controller is designed. The tracking error converges in finite time through
stability analysis, and the convergence time does not relay on the initial condition. The
most popular controller is designed in a linear control strategy, which controls the state’s
exponential stability. At present, the adaptive neural network control method based on
backstepping has some limitations, and many problems need to be further studied and
solved. In the finite-time adaptive control method for the multi-agent system, the finite
time obtained by most finite-time control strategies often depends on the initial conditions
of the system. Therefore, a finite-time control scheme independent of the initial value for a
multi-agent system must be designed.
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