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Abstract: This paper examines the adaptive control of high-order nonlinear systems with strict-
feedback form. An adaptive fixed-time control scheme is designed for nonlinear systems with
unknown uncertainties. In the design process of a backstepping controller, the Lyapunov function,
an effective controller, and adaptive law are constructed. Combined with the fixed-time Lyapunov
stability criterion, it is proved that the proposed control scheme can ensure the stability of the error
system in finite time, and the convergence time is independent of the initial condition. Finally,
simulation results verify the effectiveness of the proposed control strategy.

Keywords: adaptive fixed-time control; neural network control; strict-feedback high-order nonlin-
ear systems

1. Introduction

Recently, the adaptive trajectory tracking control of uncertain nonlinear systems has
made a significant breakthrough [1–3]. In addition, neural network adaptive control
has become a popular method in the past decades [4–6]. Many remarkable results have
extended to strict-feedback systems, pure-feedback systems, and Brunovsky systems,
and neural networks are combined with various techniques, such as the backstepping
technique, the adaptive technique, and the sliding mode control method [7–9]. The neural
network is used to identify the nonlinear term of the uncertain system, which combines
the advantages of adaptive control. Many excellent articles and monographs have been
published. In the design of these control systems, the neural network is used as a general
approximator to the uncertain nonlinear term of the systems [10–12]. In these systems, the
unknown nonlinear systems are approximate by neural networks, which are valid only
within a compact set, and the neural network controller is designed. Based on Lyapunov
uniformly bounded (UUB) theory, the closed-loop error systems are bounded [13–15].
In order to overcome the problem of uncertainty or disturbance that does not meet the
specific matching conditions, the adaptive controller is usually constructed by combining
backstepping control technology with the adaptive neural network. The high-order system
is divided into multiple subsystems. The virtual controller of the low-order subsystem
is designed first. Then, the recursive design is used until the final design of the neural
network adaptive controller to achieve stability of the system, allowing it to possess the
desired performance indicators.

In practical engineering applications, the research of high-order nonlinear systems has
attracted much attention, and their application is also extensive, for example, as financial
systems, communication systems, biological systems, and machine systems [16–18]. Some
results regarding high-order system control have been obtained following the development
of adding a power integrator [19]. The problems studied in recent years involve robust
control [20,21], adaptive global stabilization [17], global asymptotic stabilization [22],
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output feedback stabilization [23], and state feedback output tracking [16]. Many methods
have been proposed, such as backstepping technology, adaptive technology, sliding mode
control, neural network control, and fuzzy control. However, the above results need to
be precise with some unknown coefficients in the system model. In [20], the unknown
function in the system is described by the mathematical model of an online neural network.
In addition to this pioneering result, high-order system control based on neural networks
has been widely developed and applied [24–26].

In the actual industrial process, such as in missile systems, aircraft attitude control sys-
tems, robot control systems and other industrial control systems, the purpose of controller
design is to achieve stability of the controlled system and maintain it for a limited time.
However, the control method without considering the convergence time cannot achieve
this objective. Compared with the traditional Lyapunov stability theory, the finite-time
Lyapunov stability theory has attracted the attention of many researchers because it can
make the controlled system stable near the equilibrium state in finite time [27–29].

Many researchers combine finite-time control with neural network adaptive control
for nonlinear systems with nonlinear functions and dynamic uncertainties based on back-
stepping and propose many related adaptive finite-time control schemes [30–32]. However,
there are still many problems to be solved in these existing control strategies. For finite-time
control, the convergence time is dependent on the initial condition. However, the ideal
weights of NNs are unknown, and it is difficult to obtain a convergence time. Therefore, to
solve this issue, fixed-time neural network control is an appropriate selection of the control
method.

The high-order systems’ neural network control problem is discussed in the articles [33–35].
The fixed-time neural network adaptive controller is present for nonlinear high-order
systems. Based on the fixed-time adaptive technology, the strict-feedback high-order
system has fixed-time Lyapunov stability based on Lyapunov stability theory [36–38]. The
convergence time of the system can be accurately calculated, and the settling time does not
rely on the initial situation. The main contributions of this article are as follows:

(1) The combination of the neural network adaptive control with fixed-time Lyapunov
stability theory for high-order nonlinear system control problems.

(2) The design of the fixed-time adaptive law of the error systems for neural networks.
The parameters of neural networks are iteratively in fixed time based on the Lyapunov
fixed-time stability theorem.

(3) The convergence time set by control parameters and adaptive law gain parameters
without initial conditions to ensure the control performance.

This article consists of the following sections: in Section 2, a strict-feedback high-order
nonlinear mathematical description of the problem is presented; in Section 3, the adaptive
fixed-time neural network control scheme for the strict-feedback high-order nonlinear
system is designed; in Section 4, simulation results show the effectiveness of the proposed
control strategy; in Section 5, the conclusion of the article is presented.

2. Problem Formation and Preliminaries

Consider the following strict-feedback high-order nonlinear system:

.
xi = gix

ηi
i+1 + fi(xi).

xn = gnuηn + fn(xn)
y = x1

(1)

where xi ∈ R is the state of the system; xi = [x1, . . . , xi]
T ∈ Ri is the state vector of the

system; fi(xi) : Ri → R is the unknown smooth function; y ∈ R is the output of the system;
u ∈ R is the corresponding control input of the system; ηi is the order of the system; gi is
the unknown control gain parameter and satisfies 0 < g

i
≤ gi ≤ gi, where g

i
, gi are known

parameters; and the desired trajectory yd and its derivative are continuous and bounded.
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Lemma 1. For positive real numbers p, q, p ∈ (0, 1), q ∈ (1, ∞) with a denominator and nu-
merator, both are odd numbers and positive real numbers ρ, σ, ρ1, ρ2, σ1, σ2; then, the following
inequalities hold:

−ρθ̃θ̂p ≤ −ρ1θ̃p+1 + ρ2θp+1

−σθ̃θ̂q ≤ −σ1θ̃q+1 + σ2θq+1
(2)

where ρ1, ρ2, σ1, σ2 are determined by p, q, ρ, σ [39].

Lemma 2. For any constant where x, y ∈ R and p, q are odd, the following inequality holds:

xξ − yξ ≤ ξ|x− y|
(

xξ−1 + yξ−1
)
≤ ζ|x− y|

(
(x− y)ξ−1 + yξ−1

)
(3)

where ξ = q
p and q > p > 1, ζ = ξ

(
2ξ−2 + 2

)
.

Proof. Assuming x ≥ y, for any constant, the following equation holds:

xξ − yξ

x− y
= ξcξ−1 (4)

where c is an existent constant and satisfies y ≤ c ≤ x; therefore,

xξ − yξ = ξcξ−1(x− y)

≤ ξcξ−1|x− y|
(5)

because y ≤ c ≤ x, then cξ−1 ≤ max
{

xξ−1, yξ−1} ≤ xξ−1 + yξ−1; therefore,

xξ − yξ ≤ ξ|x− y|
(

xξ−1 + yξ−1
)

(6)

On the other hand, based on ξ > 1, for xξ−1, (x− y)ξ−1, yξ−1, we have

xξ−1 ≤
{

(x− y)ξ−1 + yξ−1, 1 < ξ < 2
2ξ−2

(
(x− y)ξ−1 + yξ−1

)
, ξ ≥ 2

(7)

then, we choose
xξ−1 ≤

(
2ξ−2 + 1

)(
(x− y)ξ−1 + yξ−1

)
(8)

therefore,
xξ−1 + yξ−1 ≤

(
2ξ−2 + 2

)(
(x− y)ξ−1 + yξ−1

)
(9)

Then,
ξ|x− y|

(
xξ−1 + yξ−1

)
≤ ζ|x− y|

(
(x− y)ξ−1 + yξ−1

)
(10)

where ζ = ξ
(
2ξ−2 + 2

)
. �

3. Main Results

In this section, for the strict-feedback high-order nonlinear system, the neural network
is used to identify the nonlinear system, and an adaptive algorithm is used to adjust the
weight coefficient of the neural network. Based on fixed-time Lyapunov stability theory,
a neural network adaptive tracker based on backstepping control strategy is designed so
that the system state can track the preset trajectory. Theoretical proof and a numerical
simulation are given.

The design block diagram of the closed-loop system is shown in Figure 1. For high-
order nonlinear systems with strict-feedback form, a neural network adaptive controller is
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designed to make the system track a given target signal in finite time. The convergence
time is independent of the initial condition to achieve fixed-time Lyapunov stability of the
closed-loop error system. The controller design can be divided into the following N steps:

Step 1: First, for the system, the following variables are selected:

z1 = x1 − yd (11)

the dynamics of z1 can be obtained as

.
z1 = g1xη1

2 + f1(x1)−
.
yd (12)

Moreover, we have
f1(x1) = WT

1 Ψ(Z1) + ε1(Z1) (13)

where |ε1(x1)| ≤ ε1, we have

z1 f1(x1) ≤ θ1|z1|‖Ψ(Z1)‖+ |z1|ε1 (14)

θ1 = ‖W1‖ is defined, and the Lyapunov candidate functional is chosen as

V1 =
1
2

z2
1 +

1
2µ1

θ̃2
1 (15)

where µ1 > 0 is positive constant, and θ̃1 = θ̂1 − θ1. Differentiating V1 with respect to time
t yields

.
V1 ≤ g1z1xη1

2 + θ1|z1|‖Ψ(Z1)‖+ |z1|ε1 − z1
.
yd +

1
µ1

θ̃1

.
θ̂1 (16)

The virtual control signal α1 is selected as

α1 = −g
− 1

η1
1

(
sign(z1)θ̂1‖Ψ(Z1)‖+

z1ε2
1

|z1|ε1 + η1
+ sign(z1)

∣∣ .
yd
∣∣+ κ1zp

1 + ι1zq
1

) 1
θ1

(17)

Then, based on Lemma 2, we have

.
V1 ≤ c1g1|z1|

(∣∣∣zη1
2

∣∣∣+ |z2|x
η1−1
2

)
− |z1|θ̃1‖Ψ(Z1)‖+ δ1 +

1
µ1

θ̃1

.
θ̂1 − κ1zp+1

1 − ι1zq+1
1 (18)

where
z2 = x2 − α1 (19)

then the adaptive law design as

.
θ̂1 = µ1

(
|z1||Ψ1| − ρ1θ̂

p
1 − σ1θ̂

q
1

)
(20)

based on Equation (18), we have

.
V1 ≤ c1g1|z1|

(∣∣∣zη1
2

∣∣∣+ |z2|x
η1−1
2

)
− |z1|θ̃1‖Ψ(Z1)‖+ δ1 + θ̃1|z1||Ψ1|

−ρ1θ̃1θ̂
p
1 − σ1θ̃1θ̂

q
1 − κ1zp+1

1 − ι1zq+1
1

(21)

based on Lemma 1, we have

−ρ1θ̃1θ̂
p
1 ≤ −ς1θ̃

p+1
1 + υ1θ

p+1
1

−σ1θ̃1θ̂
q
1 ≤ −ω1θ̃

q+1
1 + ϑ1θ

q+1
1

(22)
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then

.
V1 ≤ c1g1|z1|

(∣∣∣zθ1
2

∣∣∣+ |z2|xθ1−1
2

)
+ δ1 − ς1θ̃

p+1
1 + υ1θ

p+1
1 −ω1θ̃

q+1
1 + ϑ1θ

q+1
1 − κ1zp+1

1 − ι1zq+1
1 (23)

Step i: the tracking error can be described as

zi = xi − αi−1 (24)

Based on dynamics and tracking error, the dynamics of zi can be obtained as

.
zi = gix

θi
i+1 + fi(xi)−

.
αi−1 (25)

Moreover, we have
fi(xi)−

.
αi−1 = WT

i Ψ(Zi) + εi(Zi) (26)

where |εi(xi)| ≤ εi; we have

zi
(

fi(xi)−
.
αi−1

)
≤ θi|zi|‖Ψ(Zi)‖+ |zi|εi (27)

θi = ‖Wi‖ is defined, and the Lyapunov candidate functional is chosen as

Vi =
1
2

z2
i +

1
2µi

θ̃2
i (28)

where µi > 0 is positive constant and θ̃i = θ̂i − θi. Differentiating Vi with respect to time t,
yields

.
Vi ≤ gizix

θi
i+1 + θi|zi|‖Ψ(Zi)‖+ |zi|εi +

1
µi

θ̃i

.
θ̂i (29)

The virtual control signal αi is designed as

αi = −g
− 1

ηi
i

 ci−1sign(zi)gi−1|zi−1|
(

zηi−1−1
i + xηi−1−1

i

)
+ sign(zi)θ̂i‖Ψ(Zi)‖

+
ziε

2
i

|zi |εi+δi
+ κiz

p
i + ιiz

q
i


1
θi

(30)

then, based on Lemma 2, we have

.
Vi ≤ −ci−1gi−1|zi−1|

(∣∣∣zηi−1
i

∣∣∣+ |zi|x
ηi−1−1
i

)
+ cigi|zi|

(∣∣∣zηi
i+1

∣∣∣+ |zi+1|x
ηi−1
i+1

)
−|zi|θ̃i‖Ψ(Zi)‖+ ηi +

1
µi

θ̃i

.
θ̂i − κiz

p+1
i − ιiz

q+1
i

(31)

where
zi+1 = xi+1 − αi (32)

Then, the adaptive law design as

θ̂i = µi

(
|zi||Ψi| − ρi θ̂

p
i − σi θ̂

q
i

)
(33)

based on Equation (31), we have

.
Vi ≤ −ci−1gi−1|zi−1|

(∣∣∣zηi−1
i

∣∣∣+ |zi|x
ηi−1−1
i

)
+ cigi|zi|

(∣∣∣zηi
i+1

∣∣∣+ |zi+1|x
ηi−1
i+1

)
− |zi|θ̃i‖Ψ(Zi)‖+ ηi

+θ̃i|zi||Ψi| − ρi θ̃i θ̂
p
i − σi θ̃i θ̂

q
i − κiz

p+1
i − ιiz

q+1
i

(34)

based on Lemma 1, we have

−ρi θ̃i θ̂
p
i ≤ −ςi θ̃

p+1
i + υiθ

p+1
i

−σi θ̃i θ̂
q
i ≤ −ωi θ̃

q+1
i + ϑiθ

q+1
i

(35)
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then
.

Vi ≤ −ci−1gi−1|zi−1|
(∣∣∣zηi−1

i

∣∣∣+ |zi|x
ηi−1−1
i

)
+ cigi|zi|

(∣∣∣zηi
i+1

∣∣∣+ |zi+1|x
ηi−1
i+1

)
+ δi − ςi θ̃

p+1
i + υiθ

p+1
i

−ωi θ̃
q+1
i + ϑiθ

q+1
i − κiz

p+1
i − ιiz

q+1
i

(36)

Step n: the time derivative of zn can be described as

zn = xn − αn−1 (37)

Based on dynamics and tracking error, the dynamics of zn can be obtained as

.
zn = gnuηn + fn(xn)−

.
αn−1 (38)

Moreover, we have
fn(xn)−

.
αn−1 = WT

n Ψ(Zn) + εn(Zn) (39)

where |εn(xn)| ≤ εn, we have

zn
(

fn(xn)−
.
αn−1

)
≤ θn|zn|‖Ψ(Zn)‖+ |zn|εn (40)

θn = ‖Wn‖ is defined, and the Lyapunov candidate functional is chosen as

Vn =
1
2

z2
n +

1
2µn

θ̃2
n (41)

where µn > 0 is positive constant and θ̃n = θ̂n − θn. Differentiating Vn with respect to time
t yields

.
Vn ≤ gnznuθn + θn|zn|‖Ψ(Zn)‖+ |zn|εn +

1
µn

θ̃n

.
θ̂n (42)

The actual control is designed as

u = −g−
1

ηn
n

 cn−1sign(zn)gn−1|zn−1|
(

zθn−1−1
n + xθn−1−1

n

)
+ sign(zn)θ̂n‖Ψ(Zn)‖

+ znε2
n

|zn |εn+δn
+ κnzp

n + ιnzq
n

 1
ηn

(43)
then, based on Lemma 2, we have

.
Vn ≤ −cn−1gn−1|zn−1|

((∣∣∣zηn−1
n

∣∣∣+ |zn|xηn−1−1
n

))
− |zn|θ̃n‖Ψ(Zn)‖+ ηn

+ 1
µn

θ̃n

.
θ̂n − κnzp+1

n − ιnzq+1
n

(44)

then, the adaptive law design as

θ̂n = µn

(
|zn||Ψn| − ρn θ̂

p
n − σn θ̂

q
n

)
(45)

based on Equation (20), we have

.
Vn ≤ −cn−1gn−1|zn−1|

((∣∣∣zηn−1
n

∣∣∣+ |zn|xηn−1−1
n

))
+ ηn − κnzp+1

n − ιnzq+1
n − ρn θ̃n θ̂

p
n − σn θ̃n θ̂

q
n (46)

based on Lemma 1, we have

−ρn θ̃n θ̂
p
n ≤ −ςn θ̃

p+1
n + υnθ

p+1
n

−σn θ̃n θ̂
q
n ≤ −ωn θ̃

q+1
n + ϑnθ

q+1
n

(47)
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then .
Vn ≤ −cn−1gn−1|zn−1|

∣∣∣zηn−1
n

∣∣∣+ δn − κnzp+1
n − ιnzq+1

n

−ςn θ̃
p+1
n + υnθ

p+1
n −ωn θ̃

q+1
n + ϑnθ

q+1
n

(48)

Figure 1. Block diagram of the closed-loop system.

Theorem 1. For the strict-feedback high-order nonlinear system with unknown nonlinearity (1),
based on the feasible virtual control signal (17), (30), actual controller (43), and adaptive function
(20) (33), the error system is fixed-time Lyapunov stable, and the convergence time is independent
of the initial condition.

Proof. Based on Lyapunov candidate functional (15), (28), (41), the Lyapunov candidate
functional is chosen.

V =
n

∑
j=1

Vi (49)

The virtual control signal is chosen as (17), (30), and the fixed-time adaptive function is
chosen as (20), (33); the controller is designed as (43) according to the fixed-time Lyapunov
stability theory. Based on fixed-time adaptive neural network control and backstepping
technology, and taking the trajectory along the system, we have

.
V ≤ −

n
∑

j=1
κjz

p+1
j −

n
∑

j=1
ιjz

q+1
j −

n
∑

j=1
ς j θ̃

p+1
j −

n
∑

j=1
ωj θ̃

q+1
j

+
n
∑

j=1
ηj +

n
∑

j=1
υjθ

p+1
j +

n
∑

j=1
ϑjθ

q+1
j

≤ −aV
p+1

2 − bV
q+1

2 + c

(50)

where

a =
min{κj∈N ,ς j∈N}(

max
{

1
2 , 1

2µj∈N

}) p+1
2

, b =
(2n)

1−q
2 min{ιj∈N , ωj∈N}(

max
{

1
2 , 1

2µj∈N

}) q+1
2

c =
n
∑

j=1
δj +

n
∑

j=1
υjθ

p+1
j +

n
∑

j=1
ϑjθ

q+1
j

(51)

Therefore, according to the lemma in [39], all closed-loop signals possess fixed-time Lya-
punov stability. �

The design details are summarized in Figure 2 to show the procedure of the con-
trol process.
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Figure 2. Design procedure.

4. Numerical Examples

In this paper, the feasibility and effectiveness of the algorithm are verified by numerical
simulation. A strict-feedback high-order system is considered as follows:

.
x1 = g1xη1

2 + f1(x1).
x2 = g2uη2 + f2(x1, x2)
y = x1

(52)



Entropy 2021, 23, 963 9 of 12

where the function f1(x1) = x1(t) + sin(0.1x1(t)), f2(x1, x2) = x2(t), g1 = 1, g2 = 1,
η1 = 5

3 , η2 = 7
5 , and the control input under the adaptive law is designed

.
θ̂1 = 0.01

(
|z1||Ψ1| − 0.1θ̂

5
3
1 − 0.1θ̂

1
3
1

)
(53)

.
θ̂2 = 0.01

(
|z2||Ψ2| − 0.1θ̂

5
3
2 − 0.1θ̂

1
3
2

)
(54)

the control input is designed as

u(t) =

 −5sign(z2(t)) ∗ |z1(t)| ∗
(
|z2(t)|+ |x2(t)|

2
5
)
+ sign(z2(t))θ̂2Ψ2(Z2)

+ 0.01z2
0.1|z2(t)|+0.1 + 5z2(t)

1
3 + 5z2(t)

5
3

 5
7

(55)

The desired reference signal is yd = sin(t). The initial condition is selected as x1(0) = 1,
x2(0) = 1, θ̂1(0) = 1, θ̂2(0) = 1. The neural network consists of seven nodes, centers
c = [−3,−2,−1, 0, 1, 2, 3], and widths b = 1.

Figure 3 shows that under the action of the neural network adaptive controller, the
state of the controlled system state can track the preset trajectory in finite time. Figure 4
shows the state trajectory of the error system. It can be seen from the figure that under
the action of the controller, the error system achieves fixed-time Lyapunov stability. The
adaptive function curve is shown in Figure 5. For fixed-time control, α1 is designed by
f1(x1), which is approximated by NNs, but its derivative is not easy to approximate;
therefore, f2(x2)−

.
α1 is not easy to approximate, and the amplitude is inevitable. Figure 6

shows that the system’s controllers are bounded. It can be seen from the figures that the
designed method is effective.

Figure 3. Trajectories of x1 and yd of a strict-feedback high-order nonlinear system.
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Figure 4. Trajectories of error states of a strict-feedback high-order nonlinear system.

Figure 5. Trajectories of adaptive functions of a strict-feedback high-order nonlinear system.

Figure 6. Trajectories of system input of a strict-feedback high-order nonlinear system.
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5. Conclusions

In this paper, based on backstepping adaptive control technology, a neural network
is used to approximate some unknown signals in a system. Combined with Lyapunov
stability theorem and fixed time stability, an effective adaptive control scheme is designed.
A class of strict-feedback high-order systems is further studied. The main contributions
of this paper are as follows: the fixed-time control problem of strict-feedback high-order
nonlinear systems is solved; the Lyapunov function is designed for each subsystem; at the
same time, combined with adaptive backstepping technology, an adaptive neural network
fixed-time controller is designed. The tracking error converges in finite time through
stability analysis, and the convergence time does not relay on the initial condition. The
most popular controller is designed in a linear control strategy, which controls the state’s
exponential stability. At present, the adaptive neural network control method based on
backstepping has some limitations, and many problems need to be further studied and
solved. In the finite-time adaptive control method for the multi-agent system, the finite
time obtained by most finite-time control strategies often depends on the initial conditions
of the system. Therefore, a finite-time control scheme independent of the initial value for a
multi-agent system must be designed.

Author Contributions: Conceptualization, Y.L. and J.Z.; methodology, Y.L.; software, X.Y.; validation,
Y.L., J.Z. and X.Y.; formal analysis, J.Z.; investigation, Y.L.; resources, C.S.C.; data curation, C.S.C.;
writing—original draft preparation, Y.L.; writing—review and editing, Y.L.; visualization, Y.L.;
supervision, Y.L.; project administration, Y.L.; funding acquisition, Y.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Utkin, V.I. Sliding Mode Control Design Principles and Applications to Electric Drives. IEEE Trans. Ind. Electron. 2002, 40, 23–36.

[CrossRef]
2. Li, H.; Wang, Y.; Yao, D.; Lu, R. A Sliding Mode Approach to Stabilization of Nonlinear Markovian Jump Singularly Perturbed

Systems—ScienceDirect. Automatica 2018, 97, 404–413. [CrossRef]
3. Zhou, J.; Wen, C. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation. IFAC Proc. Vol. 2006,

39, 149–154. [CrossRef]
4. Niu, B.; Duan, P.; Li, J.; Li, X. Adaptive Neural Tracking Control Scheme of Switched Stochastic Nonlinear Pure-Feedback

Nonlower Triangular Systems. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 975–986. [CrossRef]
5. Li, X.; Cheah, C.C. Adaptive Neural Network Control of Robot Based on a Unified Objective Bound. IEEE Trans. Control Syst.

Technol. 2014, 22, 1032–1043. [CrossRef]
6. Dai, S.L.; Wang, C.; Wang, M. Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems.

IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 111–123.
7. Park, J.; Kim, S.; Park, T. Output-Feedback Adaptive Neural Controller for Uncertain Pure-Feedback Nonlinear Systems Using a

High-Order Sliding Mode Observer. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1596–1601. [CrossRef]
8. Ge, S.S.; Wang, C. Adaptive NN control of uncertain nonlinear pure-feedback systems. Automatica 2002, 38, 671–682. [CrossRef]
9. Zhao, Q.; Lin, Y. Adaptive dynamic surface control for pure-feedback systems. Int. J. Robust Nonlinear Control 2012, 22, 1647–1660.

[CrossRef]
10. Na, J.; Ren, X.; Zheng, D. Adaptive control. for nonlinear pure-feedback systems with high-order sliding mode observer. IEEE

Trans. Neural Netw. Learn. Syst. 2013, 24, 370–382.
11. Sun, G.; Wang, D.; Peng, Z. Adaptive control based on single neural network approximation for non-linear pure-feedback systems.

IET Control Theory Appl. 2012, 6, 2387–2396. [CrossRef]
12. Wang, H.; Chen, B.; Lin, C.; Sun, Y. Observer-based adaptive neural control for a class of nonlinear pure-feedback systems.

Neurocomputing 2015, 171, 1517–1523. [CrossRef]
13. Wang, H.; Liu, P.X.; Bao, J.; Xie, X.J.; Li, S. Adaptive neural output-feedback decentralized control for large-scale nonlinear

systems with stochastic disturbances. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 972–983. [CrossRef]
14. Zhou, Q.; Zhao, S.; Li, H.; Lu, R.; Wu, C. Adaptive neural network tracking control. for robotic manipulators with dead zone.

IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3611–3620. [CrossRef] [PubMed]

http://doi.org/10.1109/41.184818
http://doi.org/10.1016/j.automatica.2018.03.066
http://doi.org/10.3182/20060329-3-AU-2901.00017
http://doi.org/10.1109/TSMC.2019.2894745
http://doi.org/10.1109/TCST.2013.2293498
http://doi.org/10.1109/TNNLS.2018.2861942
http://doi.org/10.1016/S0005-1098(01)00254-0
http://doi.org/10.1002/rnc.1774
http://doi.org/10.1049/iet-cta.2011.0538
http://doi.org/10.1016/j.neucom.2015.07.103
http://doi.org/10.1109/TNNLS.2019.2912082
http://doi.org/10.1109/TNNLS.2018.2869375
http://www.ncbi.nlm.nih.gov/pubmed/30346291


Entropy 2021, 23, 963 12 of 12

15. Zhang, X.; Wang, Y.; Chen, X.; Su, C.Y.; Li, Z.; Wang, C.; Peng, Y. Decentralized adaptive neural approximated inverse control
for a class of large-scale nonlinear hysteretic systems with time delays. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2424–2437.
[CrossRef]

16. Qian, C.; Lin, W. Practical output tracking of nonlinear systems with uncontrollable unstable linearization. IEEE Trans. Autom.
Control 2002, 47, 21–36. [CrossRef]

17. Lin, W.; Pongvuthithum, R. Nonsmooth adaptive stabilization of cascade systems with nonlinear parameterization via partial-state
feedback. IEEE Trans. Autom. Control 2003, 48, 1809–1816. [CrossRef]

18. Zhang, Y.; Li, S.; Liao, L. Consensus of High-Order Discrete-Time Multiagent Systems with Switching Topology. IEEE Trans. Syst.
Man Cybern. Syst. 2021, 51, 721–730. [CrossRef]

19. Lin, W.; Qian, C. Robust regulation of a chain of power integrators perturbed by a lower-triangular vector field. Int. J. Robust
Nonlinear Control 2000, 10. [CrossRef]

20. Zhao, X.; Shi, P.; Zheng, X.; Zhang, J. Intelligent tracking control for a class of uncertain high-order nonlinear systems. IEEE Trans.
Neural Netw. Learn. Syst. 2016, 27, 1976–1982. [CrossRef]

21. Khandekar, A.A.; Malwatkar, G.M.; Patre, B.M. Discrete sliding mode control for robust tracking of higher order delay time
systems with experimental application. ISA Trans. 2013, 52, 36–44. [CrossRef]

22. Gao, F.; Wu, Y. Further results on global state feedback stabilization of high-order nonlinear systems with time-varying delays.
ISA Trans. 2015, 55, 41–48. [CrossRef]

23. Sun, Z.Y.; Zhang, X.H.; Xie, X.J. Global continuous output-feedback stabilization for a class of high-order nonlinear systems with
multiple time delays. J. Frankl. Inst. 2014, 351, 4334–4356. [CrossRef]

24. Feng, S.S.; Sun, Z.Y.; Zhou, C.Q.; Chen, C.C.; Meng, Q. Output tracking control via neural networks for high-order stochastic
nonlinear systems with dynamic uncertainties. Int. J. Fuzzy Syst. 2021, 23, 716–726. [CrossRef]

25. Shahriari-Kahkeshi, M.; Afrush, A.; Pham, V.T. Adaptive consensus control of high-order uncertain nonlinear multi-agent systems
with fuzzy dead-zone. Int. J. Fuzzy Syst. 2021, 23, 743–754. [CrossRef]

26. Aghababa, M.P.; Moradi, S. Robust adaptive dynamic surface back-stepping tracking control of high-order strict-feedback
nonlinear systems via disturbance observer approach. Int. J. Control 2020, 17. [CrossRef]

27. Bhat, S.P.; Bernstein, D.S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans.
Autom. Control 1998, 43, 678–682. [CrossRef]

28. Bhat, S.P.; Bernstein, D.S. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 2000, 38, 751–766.
[CrossRef]

29. Qian, C.; Li, J. Global finite-time stabilization by output feedback for planar systems without observable linearization. IEEE Trans.
Autom. Control 2005, 50, 885–890. [CrossRef]

30. Ma, L.; Zong, G.; Zhao, X.; Huo, X. Observed-based adaptive finite-time tracking control for a class of nonstrict-feedback nonlinear
systems with input saturation. J. Frankl. Inst. Eng. Appl. Math. 2020, 357, 11518–11544. [CrossRef]

31. Li, Y.; Li, K.; Tong, S. Adaptive Neural Network finite-time control for multi-input and multi-output nonlinear systems with
positive powers of odd rational numbers. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 2532–2543. [CrossRef] [PubMed]

32. Na, J.; Wang, S.; Liu, Y.J.; Huang, Y.; Ren, X. Finite-time convergence adaptive neural network control for nonlinear servo systems.
IEEE Trans. Cybern. 2020, 50, 2568–2579. [CrossRef] [PubMed]

33. Wang, M.; Wang, Z.; Chen, Y.; Sheng, W. Adaptive neural event-triggered control for discrete-time strict-feedback nonlinear
systems. IEEE Trans. Cybern. 2020, 50, 2946–2958. [CrossRef] [PubMed]

34. Huang, J.; Zhang, M.; Ri, S.; Xiong, C.; Li, Z.; Kang, Y. High-order disturbance-observer-based sliding mode control for mobile
wheeled inverted pendulum systems. IEEE Trans. Ind. Electron. 2020, 67, 2030–2041. [CrossRef]

35. Fang, L.; Ma, L.; Ding, S.; Zhao, D. Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output
constraint. Appl. Math. Comput. 2019, 358, 63–79. [CrossRef]

36. Xin, B.; Liu, L.; Hou, G.; Ma, Y. Chaos synchronization of nonlinear fractional discrete dynamical systems via linear control.
Entropy 2017, 19, 351. [CrossRef]

37. Li, R.; Zhu, Q.; Narayan, P.; Yue, A.; Yao, Y.; Deng, M. U-model-based two-degree-of-freedom internal model control of nonlinear
dynamic systems. Entropy 2021, 23, 169. [CrossRef]

38. Olvera-Guerrero, O.A.; Prieto-Guerrero, A.; Espinosa-Paredes, G. Non-linear stability analysis of real signals from nuclear power
plants (boiling water reactors) based on noise assisted empirical mode decomposition variants and the shannon entropy. Entropy
2017, 19, 359. [CrossRef]

39. Zhang, J.; Li, Y.; Fei, W. Neural network-based nonlinear fixed-time adaptive practical tracking control for quadrotor unmanned
aerial vehicles. Complexity 2020, 2020, 13. [CrossRef]

http://doi.org/10.1109/TSMC.2018.2827101
http://doi.org/10.1109/9.981720
http://doi.org/10.1109/TAC.2003.817932
http://doi.org/10.1109/TSMC.2018.2882558
http://doi.org/10.1002/(SICI)1099-1239(20000430)10:5&lt;397::AID-RNC477&gt;3.0.CO;2-N
http://doi.org/10.1109/TNNLS.2015.2460236
http://doi.org/10.1016/j.isatra.2012.09.002
http://doi.org/10.1016/j.isatra.2014.08.014
http://doi.org/10.1016/j.jfranklin.2014.05.003
http://doi.org/10.1007/s40815-020-01000-x
http://doi.org/10.1007/s40815-020-01005-6
http://doi.org/10.1080/00207179.2020.1712478
http://doi.org/10.1109/9.668834
http://doi.org/10.1137/S0363012997321358
http://doi.org/10.1109/TAC.2005.849253
http://doi.org/10.1016/j.jfranklin.2019.07.021
http://doi.org/10.1109/TNNLS.2019.2955438
http://www.ncbi.nlm.nih.gov/pubmed/31869807
http://doi.org/10.1109/TCYB.2019.2893317
http://www.ncbi.nlm.nih.gov/pubmed/30736011
http://doi.org/10.1109/TCYB.2019.2921733
http://www.ncbi.nlm.nih.gov/pubmed/31329140
http://doi.org/10.1109/TIE.2019.2903778
http://doi.org/10.1016/j.amc.2019.03.067
http://doi.org/10.3390/e19070351
http://doi.org/10.3390/e23020169
http://doi.org/10.3390/e19070359
http://doi.org/10.1155/2020/8828453

	Introduction 
	Problem Formation and Preliminaries 
	Main Results 
	Numerical Examples 
	Conclusions 
	References

