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Abstract: Keratins are one of the most abundant proteins in epithelial cells. They form a cytoskeletal
filament network whose structural organization seriously conditions its function. Dynamic keratin
particles and aggregates are often observed at the periphery of mutant keratinocytes related to the
hereditary skin disorder epidermolysis bullosa simplex, which is due to mutations in keratins 5 and
14. To account for their emergence in mutant cells, we extended an existing mathematical model
of keratin turnover in wild-type cells and developed a novel 2D phase-field model to predict the
keratin distribution inside the cell. This model includes the turnover between soluble, particulate
and filamentous keratin forms. We assumed that the mutation causes a slowdown in the assembly
of an intermediate keratin phase into filaments, and demonstrated that this change is enough to
account for the loss of keratin filaments in the cell’s interior and the emergence of keratin particles at
its periphery. The developed mathematical model is also particularly tailored to model the spatial
distribution of keratins as the cell changes its shape.

Keywords: keratin; epidermolysis bullosa simplex; mutation; phase-field model; reaction-diffusion-
advection equation

1. Introduction

The epidermis is the multilayered outer layer of skin, which functions as a protective barrier to
all internal tissues and organs. It consists of very tightly packed epithelial cells called keratinocytes.
The cytoskeleton of keratinocytes includes keratin intermediate filament (IF) proteins. These are
essential to cells since they provide not only mechanical resilience [1–4], but are also involved in
many cell and tissue functions such as cell growth, proliferation, wound healing, migration, etc. [5–15].
Altogether 54 keratin genes have been discovered so far [16]. Apart from the skin, keratins are also
abundant in skin appendages such as hair and nails [17,18]. Epidermal keratins are divided into type I
and type II proteins. Their genes are clustered on chromosomes 17 (type I) and 12 (type II). Unlike other
IF proteins, a type I keratin always pairs up with a specific type II partner, complexifying, thus forming
a keratin heterodimer [19,20]. The assembly process of intermediate filaments (IF) is very complex
and has been best analyzed for another IF protein, vimentin [21]. Nevertheless the same sequence of
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events has been observed also for other IF proteins, including keratins: first, the lateral association
of rod-like tetrameric complexes of IF proteins results in the so-called “unit-length filaments” (ULFs,
60 nm long structures). ULFs then associate longitudinally (end-to-end) to form shorter filaments,
which can subsequently anneal longitudinally to build longer filaments [22].

Mutations affecting keratin genes have been linked to a variety of hereditary cell fragility
disorders [23]. The most comprehensibly studied one is epidermolysis bullosa simplex (EBS),
a predominantly autosomal dominant disease linked to either keratin 5 or keratin 14 (K5 and K14)
gene mutations [24,25]. Their result is the inability of basal layer keratinocytes to resist physical
stresses, which manifests as (often severe) skin blistering and wounding. Extensive experiments
on EBS patient-derived cell lines have shown that cells retain some of these phenotypic differences
also in vitro [26–31]. The most typical difference is the presence of highly dynamic keratin particles
and aggregates at the cell’s periphery in some keratin mutants [27,28,30,32]. Interestingly, dynamic
IF aggregates or even smaller filament fragments have been frequently observed also in normal
physiological processes, such as during IF network reorganization [26–28,33–39]. In this respect p38
MAPK has been found as the major regulator of keratin filament remodeling, as well as keratin
aggregate formation and disappearance [36]. It has also been shown that keratin precursors appear
at the distal tips of actin stress fibers, then move alongside the stress fibers until they integrate
the peripheral keratin filament network [35]. Microtubule-dependent transport and dynamics of IF
proteins has also been demonstrated both for vimentin and keratin [38,39]. The general structure of
an IF protein consists of an extremely conserved central alpha-helical domain, interrupted by two
non-helical linkers, and the head and tail end domains, which vary in length and are less conserved.
The majority of mutations lie within the central rod domain, and in particular in two highly conserved
sequences at its ends (i.e., helix initiation and termination peptide motifs), which have been recognized
as important for the assembly of IF filaments [40,41]. The effect of mutations may vary, interfering both
at the structural level (at any stage of the filament assembly process), at the interaction with associated
proteins or at protein post-translational modifications [27,42].

Recently the understanding of keratin assembly kinetics, turnover and intracellular transport [43]
has advanced significantly. In particular, several parameters that determine keratin dynamics in
keratinocytes have been measured [44,45], such as the diffusion constant of keratin monomers and the
advection velocity of keratin fibers towards the nucleus. Furthermore, mathematical approaches have
been used to estimate the spatial dependence and numerical values of association and dissociation
rates of keratin monomers [44]. However, none of these studies have addressed keratin dynamics
in cells expressing mutant keratin. In this paper we extend a recent model of keratin turnover [44]
by employing a 2D phase-field approach to calculate the stationary distribution of keratin in the cell,
which mirrors already previously observed conditions in cells in vitro. In particular, our mathematical
model accounts for the appearance of keratin particles and aggregates at the cell’s periphery, and may
thus be applied also to the case of keratin turnover in mutant keratin expressing cells.

2. Results and Discussion

2.1. Turnover of Insoluble Keratin

With the aim of providing some visual background information that has led to the development of
our improved keratin dynamics mathematical model, we performed a few in vitro experiments, which
portray some of the main findings already published on keratin filament dynamics. Immunofluorescent
imaging (Figure 1A) of the keratin cytoskeleton of the isogenic EGFP-K14 WT and EGFP-K14 R125P
cell lines [30] depicts the structural differences that are often observed between keratin mutant and
wild-type keratinocytes. In the mutant EGFP-K14 R125P cells, a lot of tiny keratin particles (blue
arrows) are present at the cell’s periphery even when no stress is applied, which is in striking difference
from wild-type cells (Figure 1A). As shown in Movie S1 in the Supporting Material, these keratin
particles in mutant cells originate at the cell’s periphery where no keratin filaments are visible, assemble
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into larger particles, and are then either processed or incorporated into the existing keratin filament
network. The entire process is very dynamic and only a few minutes elapse between the formation of
the particles at the cell’s periphery and their disappearance/incorporation into filaments.

Figure 1. The effect of mutations on keratin turnover. (A) Immunofluorescence imaging of the keratin
intermediate filament network in the basal cellular part of isogenic (NEB1 background) EGFP-K14 WT
and EGFP-K14 R125P mutant keratinocytes (respective movies from which the images were derived
from are available as Supporting Material). Several small keratin particles (blue arrows) are visible at
the cell’s periphery of the K14 R125P mutant. (B) The mean measured keratin intensity profiles in WT
and mutant cells. (C) Diagram representing the kinetic model of keratin assembly. The keratin particles
(P) are an intermediate phase in the assembly of the soluble keratin pool (S) into the insoluble keratin
filaments (I). The model assumes that the mutation decreases the reaction rate KPI which regulates the
assembly of particles into filaments.

On the other hand, these particles are only rarely observed in the EGFP-K14 WT cells (Movie S2 in
the Supporting Material). This is further backed up by a quantitative measurement of the fluorescent
keratin signal profile in the direction from the nucleus to the cell’s periphery (Figure 1B): in EGFP-K14
WT cells the signal decreases from approximately 2000 [a.u.] to 500, whereas in mutant cells it
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increases from approximately 1000 to 2500. We also show the effect of actin filament knockdown (using
Cytochalasin D treatment) on keratin filaments and particles movement (Movie S3 and Movie S3CytD).
After the treatment, the keratin cytoskeleton concentrates around the nucleus, while the majority of
keratin particles at the cell’s periphery disappear and the inward movement of particles comes to a
halt almost completely.

2.2. Mathematical Model of Keratin Cycling in K14 Wild-Type and Mutant Cells

To gain insight into the stationary distributions of keratin in the K14 WT cells and K14 R125P
mutant cells, we present here the results of our mathematical model (see Materials and Methods),
specifically taking into account the keratin particles observed in the severe keratin mutant(s),
by assuming that the mutation affects an intermediate step in keratin assembly (Figure 1C). Our model
yields the time evolution and the stationary distribution of the soluble keratin pool in a cell.
We considered that keratin is found in three different forms: soluble, particulate, and insoluble
(organized into filaments). In a normal situation (WT keratin), the majority of keratin in cells is
in its filamentous (insoluble) form, with only a small part of it being present in the soluble form.
In mutant keratin expressing cells, on the other hand, this balance is shifted towards a significant
increase in the quantity of the soluble fraction, which also contains smaller aggregates of keratin
(particulate form) [46]. The keratin concentrations in these forms are represented by CS (soluble),
CP (particulate/aggregate) and CI (filaments). The model also takes into account that the particulate
and filamentous forms of keratin can bind to the actin filaments and be transported in the direction of
the cell’s nucleus. Furthermore, we also considered that the diffusion constant for the soluble form is
two orders of magnitude higher than the diffusion constants of the other two forms.

The reaction-diffusion equations for the three forms were solved within the cytoplasm of a generic
cell, defined through a phase-field model [47,48]. Importantly, we consider that the keratin filaments
can disassemble into the soluble form and that this soluble keratin can assemble back into the keratin
particles as shown in the diagram (Figure 1C). The filamentous keratin is the result of the assembly of
this intermediate particulate keratin, a process regulated by the rate KPI . The values of the parameters
of the model are detailed in the Materials and Methods section.

The choice of such keratin kinetics is supported by the particle dynamics mutant keratinocytes
display, which is also visible for the EGFP-K14 R125P mutant cell line (Figure 1A and Movie S1).
Namely, keratin particles are able to move in the direction of the cell’s nucleus, as well as clearly
assemble into filaments. The fact that they are not able to invade the interior of the cell and are
restricted to the vicinity of the membrane indicates that keratin particles can disassemble. In other
words, the particulate phase is not an absorbing state of the dynamics. In this way, the assembly and
disassembly processes described by our equations represent a minimal description of the processes
observed in vitro.

We then focused on the effect of the assembly rate, KPI , on the distribution of the particulate
and insoluble forms in a cell. In the case of higher values of KPI , the particulate form is not able
to accumulate in the cell, and the keratin is mainly observed in the other two forms, similarly to
what is usually observed in wild-type keratinocytes. On the other hand, for lower values of KPI the
concentration of keratin in the particulate form increases. In this way, by lowering the value of the
rate constant KPI , our model can account for the distribution of the different forms of keratin in the
severe K14 R125P mutant cells (KEB7 cell line). In the stationary state of our model and for high values
of KPI , i.e., in the wild-type, keratin filaments always accumulate close to the cell nucleus since they
mostly move along the actin filaments (Figure 2A). Similarly, the soluble keratin distribution follows
the same pattern as the insoluble (filamentous) keratin: its concentration is higher closer to the cell’s
nucleus (Figure 2B). However, due to the higher diffusion constant, the relative variation of the soluble
keratin concentration within the cell is lower than the corresponding variation of the concentration of
insoluble keratin.
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Figure 2. Keratin accumulates at the cell membrane in mutant. (A) Typical profile for the insoluble
keratin filaments in a cell: the concentration is higher closer to the nucleus. (B) Typical profile for the
soluble keratin pool concentration: the concentration is also higher closer to the nucleus. (C) Typical
profile for the concentration of the keratin particles in a mutant cell: the particles are located mainly at
the vicinity of the cell membrane. The arrows in (A,C) point in the direction of the advection velocity of
the filaments and particles (respectively). (D) Plot of the radially-averaged sum of the concentrations
of the particulate and the filamentous keratin forms as a function of the position. The value of KPI

increases from the solid blue to the green and to the purple curves (KPI = 0.36, 3.6 and 36 hour−1

respectively). In the wild-type most of the non-soluble keratin is located close to the nucleus (purple
curve). For lower values of KPI (green and blue curves), the total amount of the non-soluble keratin
forms decreases, but the concentration of these forms at the cell cortex is higher. The dashed orange and
yellow curves represent the concentration of the keratin filaments and particles, respectively, for the
lowest value of KPI .

As the value of KPI becomes smaller, the particulate form of keratin accumulates. Strikingly, this
form is only able to accumulate in a ring in the neighborhood of the cellular membrane (Figure 2C) and
its concentration will be higher when the values for KPI are lower (Figure 2D). In addition, the value of
KPI affects the concentration of insoluble keratin filaments only quantitatively. In fact, even with low
KPI , the concentration of keratin subunits in the filamentous form is higher close to the cell’s nucleus,
and lower at the cell membrane. In Figure 2D we plot the sum of the concentrations of the particulate
and insoluble filamentous keratins as a function of the position in the cell, for different values of
reaction rate, KPI . For large values of KPI , this sum follows the pattern observed in the wild-type: there
are higher levels of insoluble keratin closer to the nucleus compared to the cell membrane. However,
as KPI decreases, the total amount of keratin in the insoluble and particulate forms decreases as well
but, strikingly, it also accumulates at the cell’s cortex. Therefore, this simple mathematical model
predicts that in mutant cells, where the assembly rate of keratin filaments is bottlenecked by a lower
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value of KPI , there should be an accumulation of the non-soluble forms of keratin at the cell’s cortex,
and this is in good agreement with the observations on keratin mutant and wild-type cells (Figure 1B).

2.3. Discussion Regarding Modeling Choices

These conclusions are robust to large variations in the value of the diffusion constant of the
non-soluble keratin forms. In fact, by varying the diffusion constant of the keratin filaments, DI ,
for over two orders of magnitude we observe that the advection of the filamentous keratin dominates
diffusion for the lower values of diffusion constant of the keratin filaments, pushing the filaments
into the neighborhood of the nucleus in the wild-type cells (see Figure 3A). Moreover, the lower DI is,
the larger will be the accumulation of filamentous keratin forms at the nucleus vicinity.

In the mutant case, for low values of KPI , we observe an accumulation of particulate keratin at
the cellular membrane for all tested values of the ratio DS/DI that lead to a substantial accumulation
of the keratin filaments at the nucleus vicinity in the wild-type cell (Figure 3B). Therefore, whenever
the diffusion constant of the soluble keratin is much larger than the diffusion constants of the keratin
particles and filaments, the keratin filaments accumulate at the nucleus vicinity in the wild-type cells,
and the keratin particles accumulate close to the cell membrane for the keratin mutant.

The conclusions are also robust to different expressions for the function γR(~r), a localizing function
for the reactions. In Figure 3C we plot the concentration of the filamentous plus particulate keratin
concentrations for the wild-type and mutant cell for constant keratin filament disassembly rate, and for
when the keratin filament disassembly rate is larger at the cell’s center. We still observe, for both
situations, that for high values of KPI the keratin filaments accumulate near the nucleus, while for low
values of KPI the insoluble keratin accumulates near the cell membrane.

More complex models could have been constructed, more specifically by distinguishing different
types of particles, or different types of keratin filaments. A reasonable first step in complexifying
the model would be to divide the population of keratin particles in two types: the particles that can
merge into fibers (P1) and the particles that cannot (P2). Therefore, distinguishing these two pools
of keratin particles the simulated pathway would be the one described in Figure 3D. Since there is
no permanent increase in time of the concentration of keratin particles and since the particles can
clearly disassemble back into the soluble phase as they move towards the cell nucleus, in Figure 3D we
need to include reactions transforming both keratin particle types into soluble keratin. Importantly,
this system would have three more reactions than the one in Figure 1C and five more reactions than
the model introduced in [44]. In this more complex system, a reasonable choice to regulate the cell
mutation would be to increase the reaction rate from keratin particles P1 to keratin particles P2 (by
increasing KP1P2, for example). This increase would lead to the accumulation of keratins in the form P2.
In the model of Figure 1C we consider just one keratin particle phase with a concentration of particles
that corresponds to the sum of all types of keratin particles. Therefore, this concentration would be the
sum of the concentrations of the two pools of keratin of the more complex model, i.e., CP = CP1 + CP2.
In this complex model the particles can disassemble by two processes with rates KP1SCP1 and KP2SCP2.
Therefore, if KP1S ≈ KP2S = KPS, the total rate of particle disassembly rate would be

KP1SCP1 + KP2SCP2 ≈ KPS(CP1 + CP2) = KPSCP

i.e., equal to the disassembly rate for the model in Figure 1C, and independent of the mutation.
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Figure 3. (A) Plot of the filamentous plus particulate keratin concentrations for high values of KPI

(wild-type) for different diffusion constants, DI , of the non-soluble filamentous keratin form. From the
purple to the yellow line, DI decreases taking the values DS (purple), 0.1DS (teal), 0.02DS (blue),
0.01DS (orange) and 0.005DS (yellow). For all cases DS = 0.88 µm2 s−1, and the diffusion constant of
the particulate keratin is set equal to the diffusion constant of the filamentous keratin. The advection
towards the nucleus dominates diffusion for the lower diffusion constants of the keratin filaments,
pushing the filaments into the neighborhood of the nucleus. (B) Plot of the filamentous plus particulate
keratin distributions for low values of KPI (mutant), for different diffusion constants, DI , of the
filamentous keratin form. From the purple to the yellow line, DI decreases taking the values DS (purple),
0.1DS (teal), 0.02DS (blue), 0.01DS (orange) and 0.005DS (yellow). For all cases DS = 0.88 µm2 s−1,
and the diffusion constant for the particulate keratin is set equal to the diffusion constant of the
filamentous keratin. We always observe an accumulation of particulate keratin at the cell membrane of
the mutant cell for values of DS/DI large enough to permit the accumulation of the keratin filaments at
the nuclear membrane in the wild-type (blue, orange and yellow lines). (C) Plot of the filamentous plus
particulate keratin concentrations for the high (wild-type, orange and blue curves) and low (mutant,
green and purple curves) values of KPI . The plots in blue and purple represent the concentrations for
constant keratin filament disassembly rate, KSP (in these curves we set γR(~r) = 0.5, i.e., independent
of the position within the cytoplasm). The orange and green curves are obtained with the keratin
filament disassembly rate larger at the cell center, i.e., they are the same results presented in Figure 2D
of the manuscript. We observe that in both situations for high values of KPI , the keratin filaments
accumulate near the nucleus, while for the low values of KPI the insoluble keratin accumulates near
the cell membrane. (D) Diagram representing a more complex model for keratin assembly. In this
model the keratin particles are separated in two pools P1 and P2, where only keratin particles P1 can
polymerize into filaments. We assume in this case that the mutation increases the reaction rate KP1P2.
This model can describe the distinction between different types of the keratin particles but recovers the
same keratin particle spatial distribution as the simpler model.
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Regarding keratin filament assembly, in the more complex model, the keratin particles can
assemble into filaments by a single process with rate KPICP1. Note that in the manuscript we model
filament assembly by the rate KPICP = KPI(CP1 + CP2). For the complex model, in the wild-type case,
CP2 would be approximately zero (low KP1P2), and both filament assembly rates (the one from the
Figure 1C model and the one from the complex model) are equal. Strikingly, in the mutated cells,
CP2 would become much higher than CP1 and so the simulated model is able to recover the same order
of magnitude for the reaction rate obtained in the complex model by decreasing KPI , which is exactly
how we model the mutation.

In conclusion, while the model simulated in this work does not describe the distinction between
different types of the keratin particles (for which we would require more complex models, as the one
exemplified above), it is able to recover the same keratin particle distribution in the mutated cells,
since it can reproduce the reaction rates of more complex models between the keratin particles and the
other keratin phases.

3. Materials and Methods

3.1. Cell Lines and Culture Conditions

Real-time imaging experiments were performed on two previously reported isogenic cell lines [30]
that were engineered by introducing and stably expressing an extra copy of EGFP labeled K14 WT or
K14 R125P construct. In brief, the human K14 wild-type cDNA (NM _000526) was originally cloned
into the EGFP-C1 vector (Clontech, Mountain View, CA, USA) and tested by transient transfection
of control keratinocyte cells (NEB1). This vector was then used to prepare the mutant construct by
introducing the K14 R125P mutation using the QuikChange Site-Directed Mutagenesis Kit (Stratagene,
San Diego, CA, USA). To generate the stable cell lines used in this study, the K14 wild-type and
mutant cDNAs were cut out of the EGFP-C1 constructs and re-cloned into the pLEGFP-C1 (Clontech,
Mountain View, CA, USA) retroviral vector using the HindIII and BamHI restriction sites, and the
resulting retroviral wild-type and mutant constructs were used to transfect the NEB1 (control) cell line.
After single cell cloning and antibiotic selection with G418, clones were tested by Western blotting
for the expression level of the EGFP construct, and the ones that were producing the EGFP K14
construct (WT and mutant) at a 1:1 ratio with the endogenous wild-type K14 were expanded and
used. Cells were grown in serum-free EpiLife medium supplemented with EpiLife defined growth
supplement and gentamicin/amphotericin (Cascade Biologics, Thermo Fischer Scientific, Waltham,
MA, USA), at 37 ◦C and 5% CO2.

3.2. Real-Time Microscopy

Coverslips with live cells were assembled into a perfusion open-closed chamber, a miniature
climate box system suitable for cultivation and live cell imaging of eukaryotic cells (POC chamber, H.
Saur, Reutlingen, Germany). The chamber temperature was kept at 37 ◦C during imaging by a heater.
Images (512× 512 pixels) were collected using a 100× 1.4 NA oil immersion objective on a Nikon C1
confocal system mounted on an inverted microscope Nikon TE2000 Eclipse equipped with a motorized
Z stage. Stacks of optical sections 500 nm apart were acquired for each time point. Time points were at
a 30 s interval during a period of 10 min. Image analysis and the resulting movies (Movie S1, Movie S2,
Movie S3 and Movie S3CytD) were done with NIS-Elements AR software.

3.3. Cytohalasin-D Experiments

One day after plating, the initial state and dynamics of the keratin cytoskeleton under normal
culture conditions in EGFP-K14 R125P cells (3× 104 cells/mL ) was first recorded using the live cell
imaging set up described above (Movie S3), after which cells were treated with a 10 µm solution of
Cytohalasin D (Sigma-Aldrich, St. Louis, MO, USA) in growth medium, for 25 min, at 37 ◦C in a
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humidified atmosphere with 5% (v/v) CO2. After treatment, live cell imaging was performed again to
record the effects of actin depolymerization on the keratin cytoskeleton (Movie S3CytD).

3.4. Assessment of Keratin Distribution in WT and Mutant Cells

NIS Elements (Nikon) software was used to obtain the maximum intensity projections from the
confocal images of cells expressing an extra copy of EGFP labeled K14 WT or K14 R125P construct.
Representative intensity profiles spanning from the cell nucleus towards the cell border (N = 13 for
K14 WT cells and N = 18 for K14 R125P mutant cells) were then obtained by FiJi image analysis
software [49]. Each profile was first interpolated and then rescaled by Mathematica (WolframResearch),
so that the coordinate of the nucleus (obtained by manual selection using Fiji software) was set to 0
and the coordinate of the cell border (obtained by manual selection using Fiji software) was set to 1,
and the mean of the rescaled intensity profiles was calculated for each cell type.

3.5. Mathematical Model

The mathematical model we implemented to describe keratin dynamics is a 2D extension of
the work presented by Portet et al. [44], which involved two keratin phases: the soluble keratin
pool and the insoluble keratin filaments. In wild-type keratinocytes the keratin filaments are mostly
concentrated at the perinuclear region (see Figure 1A,B) [44]. Our model introduces an additional
intermediate phase describing the keratin particles observed close to the cellular membrane of mutant
cells (see Figure 1A,B). These keratin particles are highly dynamic and can both integrate into filaments,
as well as disassemble to the soluble keratin pool (see Figure 1A and Movie S1). We assumed
that the mutation affects an intermediate step in the complex scheme of keratin assembly [43] (see
Figure 1C). Since biological systems are inherently complex, when constructing a mathematical model
we implement a simplified version of the system that takes into account the main mechanisms that drive
its evolution. In the particular case of the dynamics of the keratin mutants, we need to describe not
only the soluble keratin and the keratin filaments, as was done before in [44], but also keratin particles.
To this effect we added two new reactions to the model in [44], and we control the strength of the
mutation by changing the value of the reaction rate KPI (see Figure 1C). In the absence of experimental
characterization of the assembly and disassembly rates of keratin oligomers and filaments in the
keratin mutants, as we make the model more complex we need to be careful to control the number of
parameters in the model, while at the same time being able to describe the spatial distribution of the
keratin particles in mutant cells.

We have solved the reaction-diffusion-advection equations associated with the model in Figure 1C
inside an irregular domain representing the cell cytoplasm, defined by a phase-field order parameter
φ(~r, t): φ ≈ 1 inside the cell’s cytoplasm and φ ≈ 0 elsewhere i.e., outside the cell and inside its nucleus.
Following [47], the concentration of soluble keratin CS(~r, t) is given by CS(~r, t) = cS(~r)φ(~r, t), where
cS(~r, t) is an auxiliary field that can be nonzero outside the cell’s cytoplasm. The concentrations of the
keratin in the soluble, particulate and filamentous form obey the following reaction-diffusion-advection
equations (that give the time derivative of concentration of the forms as a function of each keratin’s
concentration and their spatial derivatives):

∂(φcS)

∂t
= DS∇ · (φ∇cS) +

KISγR(~r)φcI
kI + cI

+ KPSγR(~r)φcP −
KSPδ(~r)φcS

kS + cS

∂(φcP)

∂t
= DP∇ · (φ∇cP)−∇ · (~vφcP)− KPSγR(~r)φcP +

KSPδ(~r)φcS
kS + cS

− KPIφcP

∂(φcI)

∂t
= DI∇ · (φ∇cI)−∇ · (~vφcI)−

KISγR(~r)φcI
kI + cI

+ KPIφcP

where KSP = 9.8 s−1, KIS = 0.99 s−1, kS = 570 µM and kI = 970 µM are constants that characterize
the Michaelis–Menten dynamics of assembly of the soluble keratin pool and disassembly of the
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keratin filaments (see Figure 1C); these values were also used by Portet et al. [44]. In these equations
DS, DP and DI are the diffusion constants of the three keratin forms, KPI and KPS are the reaction
rates associated with the formation of filaments from keratin particles and with the disassembly of
keratin particles, respectively. ~v is the advection velocity of the keratin particles and filaments along
the actin fibers, while δR(~r) and γR(~r) are functions that modulate the reaction kinetics in different
regions of the cell. For the diffusion constants we used DS = 0.88 µm2 s−1 for the soluble form
and DI = DP = 0.0088 µm2 s−1 for the particulate and filamentous keratins [44]. The value for the
diffusion constant DS has been measured with precision and published [45]. In regard to keratin
filaments, the advection velocity towards the cell’s center is the main driver behind their dynamics.
This velocity has been determined to be in the range of 100 to 600 nm s−1 [33,45]. The value we used
in our simulation is |~v| = 150 nm s−1 which is inside the range of typical velocities. To simplify the
analysis, we used the same velocity for keratin particles and filaments. The diffusion constant of
these two keratin species needs to be small enough for diffusion not to dominate the advection term.
Therefore, in this study, we chose values for DI and DP that are 100 times smaller than DS. We explored
several different values of DI and DP but did not observe significant qualitative differences in the
equilibrium spatial distribution of the three phases (refer to Results section).

We used mass-action kinetics for the disassembly of the keratin particles and for its assembly
into keratin filaments. We observed the distribution of the different keratin forms when we varied
the rate of filament assembly, given by KPI . The value used for keratin particle disassembly rate is
KPS = 0.0099 s−1. The model assumes that keratin assembly occurs mainly at the cell membrane [35,50].
Thus, the assembly rate is proportional to the function δR(~r), which is equal to 1 in the neighborhood
of the cell membrane, and 0 elsewhere; at the same time the disassembly rates reach their highest
value at the nucleus (the function γR(~r) decreases linearly from the nucleus, where it is equal to 1,
down to the cell membrane, where it becomes equal to 0). This dependence of the disassembly rate
on the distance to the nucleus was found in [44] to fit the distribution of keratin in wild-type cells.
However, our conclusions do not change even when we chose a constant value for the disassembly
rate (i.e., if γR(~r) is constant, see above).

4. Conclusions

In this paper we have implemented a mathematical model of the keratin turnover in mutant cells
that accounts for the appearance of keratin particles at the cell’s periphery. In particular, we extended
the recent model of keratin turnover [44] and employed a 2D phase field approach to calculate the
stationary distribution of keratin in the cell. The phase-field description is of particular interest, since
it can be coupled to force fields describing cell deformation and cell adhesion to other cells or to ECM
fibers [51]. This will be of importance to predict the localization of keratin when the cell is deformed
under mechanical stress, which is particularly relevant to the mutant cell. Moreover the model can
easily be extended to 3D. In a future work we will be using this model to predict how the keratin
distribution can affect cell mechanics in mutated cells. An extension of the phase-field model presented
in this work is being developed, in order to account for deformations of the cell membrane. At the
same time, experimental work was carried out to study how the K14 R125P mutation affects the cortical
rigidity of the cell when compared to WT keratinocytes [52].

The cell line with the K14 R125P mutation was selected as the mutation lies in the helix initiation
motif of K14 and represents the most frequently mutated amino acid in K14, with over 65 reported
cases and several resulting amino acid changes (R125H, R125C, R125S and R125P). Earlier, Herrmann
and colleagues [22] analyzed the impact of the R125H change on in vitro filament polymerization,
and surprisingly found that the mutant K14 R125H monomers were still able to form functional keratin
IFs in vitro when mixed with wild-type K5. The authors deduced that keratin aggregates visible in
mutant keratinocytes might not only be consequence of disrupted filament assembly and that other
mechanistic explanations are needed. This more complex interplay between wild-type and mutant
keratin will be explored in a future work.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/7/
2596/s1, Movie S1: Time-lapse microscopy of mutant keratinocytes expressing the EGFP-K14 R125P construct.
Coverslips with live cells were assembled into a perfusion chamber kept at 37 ◦C during imaging by a heater.
Stacks of optical sections 500 nm apart were acquired for each time point, with a resolution of 512× 512 pixels.
Time points were at a 30 s interval during a period of 15 min. Dynamic keratin particles can be observed at the
cell’s periphery, which disappear within minutes, implying that they are in dynamic equilibrium with the soluble
keratin pool. Some of the particles seem to merge with the filaments; Movie S2: Time-lapse microscopy of wild
type keratinocytes expressing the EGFP-K14 WT construct. Coverslips with live cells were assembled into a
perfusion chamber kept at 37 ◦C during imaging by a heater. Stacks of optical sections 500 nm apart were acquired
for each time point, with a resolution of 512× 512 pixels. Time points were at a 30 s interval during a period of
10 min. The dynamic keratin particles visible in mutant cells at the cell’s periphery are in this case not visible
and easy to spot; Movie S3: Time-lapse microscopy of mutant keratinocytes expressing the EGFP-K14 R125P
construct before Cytochalasin D treatment. Coverslips with live cells were assembled into a perfusion chamber
kept at 37 ◦C during imaging by a heater. Stacks of optical sections 500 nm apart were acquired for each time
point. Time points were at a 15 s interval during a period of 5 min. This is a control experiment to observe the
state of the keratin IF network before the administration of Cytochalasin D, a known inhibitor of the actin filament
network. Highly dynamic particles are visible at the cell periphery, along with a constant inward movement
until their disappearance at the edge of the keratin filament network; Movie S3CytD: Time-lapse microscopy of
mutant keratinocytes expressing the EGFP-K14 R125P construct after incubation with Cytochalasin D. Cells were
treated for 25 min with a 10 µmol solution of Cytochalasin D (Sigma-Aldrich) in the growth medium, after which
they were imaged as in the control experiment. After the treatment, the keratin filament network rearranged and
concentrated more around the cell nucleus, while at the cell’s periphery much fewer keratin particles or particles
are visible. The dynamic movement has come to an almost complete halt, although some dynamic particles
are still visible, and their movement is saltatory and directed both inward (towards the nucleus) and outward
(towards the cell periphery).
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