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Abstract

Objectives: Systemic Lupus Erythematosus is a complex autoimmune disease that leads to significant worsening of quality of life and
mortality. Flares appear unpredictably during the disease course and therapies used are often only partially effective. These challenges
are mainly due to the molecular heterogeneity of the disease, and in this context, personalized medicine-based approaches offer major
promise. With this work we intended to advance in that direction by developing MyPROSLE, an omic-based analytical workflow for
measuring the molecular portrait of individual patients to support clinicians in their therapeutic decisions.
Methods: Immunological gene-modules were used to represent the transcriptome of the patients. A dysregulation score for each
gene-module was calculated at the patient level based on averaged z-scores. Almost 6100 Lupus and 750 healthy samples were used
to analyze the association among dysregulation scores, clinical manifestations, prognosis, flare and remission events and response
to Tabalumab. Machine learning-based classification models were built to predict around 100 different clinical parameters based on
personalized dysregulation scores.
Results: MyPROSLE allows to molecularly summarize patients in 206 gene-modules, clustered into nine main lupus signatures. The
combination of these modules revealed highly differentiated pathological mechanisms. We found that the dysregulation of certain
gene-modules is strongly associated with specific clinical manifestations, the occurrence of relapses or the presence of long-term
remission and drug response. Therefore, MyPROSLE may be used to accurately predict these clinical outcomes.
Conclusions: MyPROSLE (https://myprosle.genyo.es) allows molecular characterization of individual Lupus patients and it extracts
key molecular information to support more precise therapeutic decisions.
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Introduction
Systemic Lupus Erythematosus (SLE) is a heterogeneous
autoimmune disease with a nonlinear clinical course
and unpredictable patterns of flares and remissions with
involvement of a wide range of tissues and organs [1].
SLE causes significant suffering and mortality, and with

only three new FDA-approved SLE therapies in 65 years,
there is a large unmet need to develop new and effective
therapeutic approaches [2, 3]. One contributing cause
of treatment failure is the heterogeneous dysregulation
of molecular mechanisms that are uncharacterized at
the individual patient level [4]. A large proportion of

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-8440-312X
https://orcid.org/0000-0002-5186-0735
https://orcid.org/0000-0002-6173-7255
https://myprosle.genyo.es


2 | Toro-Domínguez et al.

patients show none or partial response to therapies,
which are prescribed based on a trial-and-error approach
that clearly requires improvement [5].

It is during periods of disease activity, either chronic or
flares, when organs suffer most damage. Disease activity
indexes, such as the SLE Disease Activity Index (SLEDAI),
the British Isles Lupus Assessment Group Index (BILAG)
or the Physician Global Assessment (PGA), are used by
clinicians as a support for the immediate therapeutic
decision [6, 7]. These indexes are based on a summation
of organ manifestations, sometimes in a weighted fash-
ion. An equal activity index value can be generated by
different combinations of manifestations, thus hinder-
ing systematic comparisons across patients. In addition,
activity indexes do not reflect the molecular portrait of
the patients, that is, the dysregulated biological pathways
and molecular mechanisms associated with the disease
status, which may also be different between patients and
even throughout the course of the disease. The molecular
portrait impacts on the clinical manifestations and the
response to drugs. Currently, the use of personalized
therapies based on molecular information is advanced in
some diseases, such as cancer [8–10], and it is considered
a promising strategy to overcome disease heterogeneity.
However, in autoimmunity, individualized prescription of
therapies based on molecular patterns does not exist for
routine clinical care, mainly due to the lack of specific
and easy-to-use tools for these purposes.

Despite this, there is an increasing interest to address
such heterogeneity both in autoimmunity [11–13] as
in SLE specifically through molecular stratification
[14–16] and biomarker discovery for specific conditions
[17]. While stratification studies have shown how
different molecular patterns reflect different pheno-
types, clustering results depend on technical variables
such as the cohort features, the sample sizes and the
statistical approaches used. For this reason, numerous
cross-sectional clustering studies often obtain different
subgroups of patients. In addition, studies are mostly
exploratory and they are not intended for a direct
clinical practice application. On the other hand, many
clinical and omics-based markers for different clinical
outcomes have been identified using machine learning
(ML) techniques. However, clinical markers are often
subject to enormous variability across patients, and
omics experiments are often not validated in external
cohorts due to the enormous biases caused by the use
of different technical platforms [18]. Therefore, it is
necessary to analyze in detail the connections between
the molecular portraits and their implications in the
medical environment, but also to use a standardized
approach to incorporate this knowledge in practice
reproducibly.

In this multi-cohort study, we sought to define the
relevant connections between personalized molecular
portraits and consequent medical implications in order
to predict drug response, disease course, remissions
and flares and clinical manifestations. For this goal, a

new scoring system capable of measuring the personal-
ized Molecular dYsregulated PROfiles of SLE patients
(MyPROSLE) was developed, which allows relatively
simple identification and standardized quantification
of the molecular fingerprints that drive the SLE activity
in individual patients. Interestingly, two clearly differ-
entiated SLE subtypes at the clinical and molecular level
were identified and their stability over time was assessed,
which supports different pathological mechanisms.
Finally, a web tool to easily assess SLE molecular portraits
from transcriptome information through MyPROSLE in
individual patients has been developed. Figure 1 shows a
general scheme of the different steps of the workflow.

Materials and Methods
SLE datasets and data pre-processing
Genome-wide gene expression levels and clinical and
demographic information (when available) for nine
datasets (six and three cross-sectional and longitudinal
datasets, respectively) were downloaded from the
National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) database [19]. We also
included the dataset from the PRECISESADS project [12].
Datasets were used for different purposes depending
on the information they contain, as detailed in Table 1.
The clinical data of the patients from the GSE121239
cohort were provided by Johns Hopkins University
School of Medicine. Clinical drug response indices to
Tabalumab for patients from the GSE88887 [20] dataset
were collected by Eli Lilly and Company (ClinicalTrials.
gov Identifiers NCT01205438 and NCT01196091).

Raw data from each dataset were processed following
a platform-specific workflow, as described in Martorell-
Marugán et al. [21]. Expression data were transformed to
logarithmic scale and transcripts were annotated from
probes to gene symbol for each dataset. Duplicated genes
were merged assigning their mean expression value and
genes with zero or near to zero variance were filtered
using caret R package (version 6.0–91, 22].

In summary, 10 different cohorts comprising a total of
6134 whole blood SLE samples and 757 healthy controls
were collected.

MyPROSLE score
Most genes form regulatory networks, acting as gene-
modules in specific biological functions and are likely co-
expressed. Based on this principle, we summarized indi-
vidual gene expression into 606 co-expressed gene mod-
ules that regulate biological and immunological mecha-
nisms previously described by Li et al. [23] and Chauss-
abel et al. [24]. Genes and gene-module connections were
obtained from tmod R package (version 0.46.2) [25]. This
process reduced the dimensionality by projecting thou-
sands of genes into 606 functional gene-modules.

Next, a score for each gene-module was calculated to
quantify the dysregulation of each function for individ-
ual patients compared with the healthy state. For this, we

ClinicalTrials.gov
ClinicalTrials.gov
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Figure 1. Summary of the main steps of the workflow. First, the M-scores for immune related gene-modules are calculated for nine different cohorts,
those relevant to the disease were selected and clustered into nine main SLE-signatures that reflect nine well-differentiated biological functions.
Secondly, different approaches were carried out relating the molecular profiles with different clinical outcomes, and predictive models were built for
each of them. Finally, a web tool was developed to calculate the M-scores and apply the prediction models on new patient samples.

Table 1. Description of datasets used in the study

Dataset ID SLE samples Healthy samples Data description Used for

GSE45291 [45] 292 20 One gene expression sample per patient A
GSE61635 79 30 RNP autoantibody+ SLE samples A
GSE72509 [46] 99 18 One gene expression sample per patient A
GSE108497 325 187 Samples taken during pregnancy A
GSE110169 [47] 82 77 One gene expression sample per patient A
GSE110174 [47] 144 10 One gene expression sample per patient A
GSE65391 [14] 924 72 158 pediatric longitudinal SLE patients and 48 age-matched

controls
A, B, C

GSE121239 [15] 727 20 301 adults longitudinal SLE patients and 20 healthy controls A, B, C
GSE88887 [20] 3086 60 3 follow-up points of patients treated with Tabalumab or

placebo
D

PRECISESADS [12] 376 263 Genotyped and fully clinically characterized patients. A, C

(A) Datasets used for MyPROSLE system construction, selection of SLE-related gene-modules and clustering of gene-modules and patients. (B) Datasets used for
longitudinal and time-dependent analysis and for the construction of predictive models for future disease flares. (C) Datasets used for measure the association
between molecular portraits and clinical manifestations and for the construction of predictive models for clinical variables. (D) Dataset used for drug response
analysis and for drug response prediction models construction.

adapted the methodology developed by Meche et al. [26].
Briefly, for each patient, the z-score of the expression of
each gene was calculated with respect to the expression
of the gene in a pool of healthy controls (from the same
dataset). Then, the score for a gene-module i (M-score i)
was computed as the mean of the z-scores of all its genes,
as shown in Equation 1:

Mscorei =
∑ni

j=1

(
xj−μjH

σjH

)

ni
(1)

where xj is the expression of gene j in an individual
patient, μjH and σjHare the mean of the expression and

the standard deviation of gene j in healthy samples and ni

is the number of genes from the module i. The M-scores
follow a centered normal distribution given that it is a
mean of z-scores. The interval of 1.65 and −1.65 in such
distribution contain 90% of the data, which correspond
to a P-value of 0.05 for each tail [27]. Therefore, we can
consider statistically significant those M-scores that take
values greater than 1.65 or less than −1.65.

Next, only those gene-modules that could be related to
the disease were selected. For this aim, the gene-modules
that did not achieve significantly high M-scores in at
least 10% of the samples and at least three of the nine
datasets were removed. This selection step allowed to
retain gene-modules that, on the one hand, may appear
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in small subsets of patients, but on the other hand, do
so recurrently between studies, dealing with potential
biases caused by individual studies. Finally, 206 gene-
modules were selected. In order to test the consistency of
M-scores, multiple random sampling of healthy controls
was applied to each dataset to generate various subsets
(100 subsets for each dataset and sample size, ranging
from 90 to 10% of the total healthy samples) and M-
scores of patients were recalculated among subsampling.

In summary, MyPROSLE system summarizes the
molecular portrait of a patient by measuring dysregula-
tion scores (or M-scores) for 206 functional gene-modules
with respect to healthy distribution.

Measuring M-scores without healthy samples
One of the strengths of MyPROSLE is that it may calculate
the M-scores without providing healthy controls data
using our standardized reference of SLE samples. Such
SLE reference was built using the SLE samples from our
datasets and the genes within the 206 gene-modules.
Each patient is individually normalized by centering the
mean of the selected genes and dividing it by its stan-
dard deviation. The M-scores of these patients have been
previously calculated with respect to their controls. To
analyze a new patient, first, their expression is centered
and scaled. Then, patient–patient similarity between the
provided sample and the reference SLE samples is mea-
sured using the Euclidean distance. The M-scores for
the new patient are calculated as the mean of the M-
scores of the k most similar SLE samples of the reference
(Supplementary Figure 1). In this way, we can estimate
the dysregulation score of each gene-module in a patient,
without the need of new healthy individuals profiling
and avoiding potential variations in the M-scores calcu-
lation due to the use of different healthy references. This
system was tested using the patients from one of the
datasets (GSE61635), not included in the reference, and
measuring the correlation between the M-scores calcu-
lated with respect to their controls and those imputed
with the described method.

Clustering of gene-modules
We aimed to identify groups of gene-modules that are
jointly dysregulated, and to subsequently analyze their
co-regulation in different patients. First M-scores for the
206 gene-modules across nine different datasets (Table 1)
were calculated. In order to obtain the number of sta-
ble groups of gene-modules (k), or SLE-signatures, the
matrices of M-scores from different datasets were inte-
grated by similarity network fusion (SNF) using SNFtool
R package (version 2.3.1) [28]. This process was repeated
500 times selecting different numbers of datasets (from
2 to 9) and different parameters for the SNF algorithm
(number of neighbors from 10 to 30 and alpha hyper-
parameter from 0.3 to 0.8). Then, NbClust R package (ver-
sion 3.0) was applied to obtain the best number of groups
for each iteration across 30 different stability metrics
[29]. Most frequently optimal number of groups obtained

among all combinations and permutations was selected
as the optimal k. The process was repeated switching
randomly the M-scores within each dataset to obtain the
frequencies of optimal number of clusters in randomized
data to discard all those results below those obtained
by chance. Finally, gene-modules were grouped into k
selected SLE-signatures using ConsensusClusterPlus R
package (version 1.54.0) [30].

We defined the SLE-signature M-scores (M-sig) as the
average of M-scores of all gene-modules grouped in the
same signature (Equation 2) as a value summarizing
dysregulation at signature level.

Msigi =
∑ni

j=1

(
Mj

)
ni

(2)

where ni is the number of gene-modules in the cluster (or
signature) i and Mj is the M-score of the gene-module j.

The optimal number of subgroups of patients was also
calculated on the matrix of M-scores of all patients using
NbClust.

Gene-modules switching in patients during
disease lifetime
We measured whether there were different and exclusive
pathological mechanisms for subgroups of patients, or
if highly dysregulated gene-modules switch within the
same patient. For that, M-scores of patients having more
than three visits from two available longitudinal datasets
(Table 1) were merged. Then, the number of times each
pair of gene-modules appeared strongly dysregulated in
the same patient regardless the time point was counted.
Pearson’s chi-squared test was used to evaluate the sta-
tistical association.

Classification models for clinical variables
In order to predict drug response, clinical manifestations
and other disease-related events based on gene-modules,
caret R package (version 6.0–91) was used to build ML-
based prediction models [22]. For each variable, 80%
and 20% of patients were class-balanced and randomly
selected as training and test sets (using specific datasets
for the different variables to predict, see Table 1), respec-
tively. First, to select optimal parameter, parameter
tuning was performed on training set for each model
by 10-fold-cross validation iterated 30 times. For binary
variables, such as response or not response to a drug,
different classification algorithms were tested, including
Gaussian linear model, linear discriminant analysis,
extreme gradient boosting, random forest, k-nearest
neighbors, linear and radial super vector machine,
neural networks, CART or naive bayes. For continuous
variables, the previous algorithms that can be adapted
for regression and some additional ones were used, such
as linear model or least angle regression, covering the
main ML approaches [22]. Performance results of each
algorithm were measured on the test sets using different
metrics, including the area under the curve (AUC),

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
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precision, recall, F1 and the balanced accuracy [31]. The
entire process was repeated 10 times from train/test
selection (outer folds) and we selected as adequate
variables to predict those that obtained a mean AUC
(or correlation for continuous variables) greater than
0.6 across iterations with any of the algorithms. With
this step, overfitting and selection bias were avoided. For
each variable, the algorithm that achieved the highest
mean AUC across the 10 outer folds and the model based
on that algorithm with best performance were selected,
as long as their AUC or correlation was greater than
0.7. Supplementary Figure 2 shows a summary of the
workflow for the construction of the prediction models.

Association among gene-modules and clinical
variables
Association among M-scores of each gene-module and
different clinical variables were measured, including
clinical manifestations, comorbidities, presence/absence
of auto-antibodies, levels of cytokines and blood cell type
proportions, comprising 111 different clinical outcomes
(Supplementary Table 1). Levels of cytokines were
measured in picograms per milliliter (pg/ml) and the
presence/absence of each autoantibody was measured
in units/ml (with specific cutoffs for each one as it is
described in Barturen et al. [12]). Analysis of variance test
was used to measure differences in gene-modules M-
scores for categorical variables and Pearson’s correlation
coefficients were computed for continuous variables.
ML-based prediction models for each clinical variable
were built.

Molecular background of disease remissions and
flares
To investigate how gene-modules change at different
stages of clinical disease activity, samples from the lon-
gitudinal datasets were selected having a low SLEDAI
index value (SLEDAI<=2) and without future flares in
the next 3 months. Significant changes in the proportion
of patients showing a highly dysregulated gene-module
or not dysregulated to the time elapsed since clinical
remission were determined for each gene-module using
Cox proportional-hazard models. A similar analysis was
performed to measure significant changes in the propor-
tion of patients having each gene-module highly dysreg-
ulated or not to the time until a new flare appeared, when
the SLEDAI score rises above 3 and so, the disease turns
clinically active. Third, we compared samples taken at
the first time point of a long SLEDAI remission (samples
taken after no more than 3 months of an active state of
the disease and without flares during the following year)
against a short drop in SLEDAI occurring between two
close time points with high SLEDAI (samples taken after
no more than 3 months of an active state of the disease
and with a resumption of activity within 3 months).
Significance was calculated using the Wilcoxon’s test.
Finally, ML-based predictors were built using M-scores
from samples in current remission with and without

future flares (at 3 and 6 months) to predict near wors-
ening in patients.

Drug response prediction based on M-scores
Clinical response information to Tabalumab for the
patients from the GSE88887 dataset [20] was provided by
Eli Lilly and Company. Clinical response was measured at
Week 52 after initiation of treatment using the Systemic
lupus erythematosus Responder Index–5 (SRI5). SRI5
defines as good responders those patients in whom
a reduction of ≥5 points from baseline in SELENA-
SLEDAI score is achieved, no new BILAG A or no more
than one new BILAG B disease activity scores and no
worsening (defined as an increase of ≥0.3 points from
baseline) in PGA [32]. Main selection criteria for patients
were the presence of antinuclear antibodies, age 18 or
older with active SLE (SELENA-SLEDAI ≥6) and without
active lupus nephritis or active central nervous system
involvement. A total of 60 healthy controls, 300 placebo-
treated patients and 699 Tabalumab-treated patients
were collected. Patients were sampled at baseline before
treatment, and at 16 and 52 weeks after treatment.
First, predictive models for SRI5 response were built
using the M-scores at baseline of Tabalumab-treated
patients. Changes in M-scores between responder and
non-responder patients at baseline, at Week 52 and
over time were measured by linear models using limma
package [33] (version 3.22.7).

Results
Gene-modules are clustered into nine main
SLE-signatures
M-scores were computed for all SLE patients from nine
different datasets (Table 1) with respect to their healthy
controls. The consistency of the M-scores was demon-
strated by selecting random subsets of healthy controls
(used as reference) of different sizes in each dataset,
obtaining low standard deviations of patient’s M-scores
even when reducing the size of controls to 10% (Sup-
plementary Figure 3A). For clustering, we obtained high
levels of stability (higher than obtained by chance) for
four, six and nine gene-module clusters, renamed as
SLE-signatures (Supplementary Figure 3B). Although the
stability is greater for four and six clusters, nine clus-
ters achieve a more precise grouping of related biologi-
cal functions being subdivisions of clusters defined for
k = 4 and k = 6 (Supplementary Figure 3C). The nine SLE-
signatures were functionally tagged as Plasma cell/Cell
cycle, Neutrophil/Inf lammation, T cell, NK cell, Interferon, Mito-
chondrion, Platelet, B cell/Plasma cell and Inositol metabolism
(Supplementary Table 2). Figure 2A shows the propor-
tion of patients that present significant high M-scores
for each gene-module. Non-gene-modules were always
strongly dysregulated, but some modules were more fre-
quently dysregulated than others, such as Interferon, Neu-
trophil/Inf lammation and Plasma cell/Cell cycle signatures
(around 70%, 20% and 20% of patients, respectively).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
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Figure 2. Clustering of gene-modules. (A) M-scores of patients from nine datasets (Table 1). Rows represent gene-modules, clustered into nine SLE-
signatures, and patients are in columns. Frequency of significant dysregulated gene-modules across patients are shown to the right. (B) Correlation
between M-scores from a test dataset calculated with respect to their controls and imputed by patient–patient similarity. Gene-modules are colored
based on the SLE-signature in which they have been previously clustered. (C) Heatmap showing the frequency at which each pair of modules (represented
in rows and columns) appears strongly and jointly dysregulated in the same patients. (D) P-values obtained comparing the proportion in which each
one of the signatures (from left) is significantly dysregulated (using M-scores signification threshold) jointly with others signatures and the proportion
in which it is dysregulated in isolation. The test of proportions assumes that all events occur in equal proportions (null hypothesis).

The M-scores obtained using healthy controls were
compared with those obtained using patient–patient
similarity (see Methods), resulting in a correlation of
0.78 between both (Figure 2B) and a P-value <2.2e-16,
demonstrating MyPROSLE can be computed, in new SLE
patients, without including data from healthy controls.

SLE-signatures define two different SLE
molecular subtypes
The different combinations and magnitudes of dysreg-
ulated SLE-signatures formed 11 clusters of patients
(Figure 2A). Bias by dataset across clusters was not
observed. Although subsequent analyzes were done at
the patient level, patient stratification revealed different
subtypes of patients within the disease. We found
healthy-like clusters, without significant dysregulation
in any SLE-signature, clusters with high M-scores in
Interferon signature and divided mainly by gradients in
Neutrophil/Inf lammation or Plasma cell/Cell cycle M-scores.
When a certain cluster of patients presents a high
significant dysregulation in neutrophil-related modules,
the plasma cell modules are not affected, and vice versa
(when the clusters of patients present a high dysregu-
lation in plasma cell modules, the neutrophil modules

do not present dysregulation) (90.37%) (Figure 2A). To
delve into this point, we measured if patients always
showed high dysregulation in the same gene-modules
and signatures throughout the course of the disease or
if, on the contrary, any module can be dysregulated at
any time. Figure 2C shows the proportion of individuals
from the longitudinal datasets (Table 1) for which each
pair of modules appeared strongly dysregulated along
available time points. Test of proportions was applied
to measure the probability of finding other signatures
highly dysregulated if a certain signature is highly
dysregulated (Figure 2D). Interferon signature appeared
highly co-dysregulated when Neutrophil/Inf lammation,
Plasma cell/Cell cycle and Platelet signatures were signifi-
cantly dysregulated, but not vice versa. That is, Interferon
signature can be dysregulated alone, but the rest of the
signatures do so jointly with it. Again, modules related
to Neutrophil/Inf lammation signature, and the signature
itself, appeared strongly dysregulated in the same patient
more than 50% of the time, while the probability to
find modules related to Plasma cell/Cell cycle signature
highly dysregulated was much less in such patients
during disease lifetime, and vice versa (Figure 2C). There
were significant differences in the proportion of times
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that Plasma cell/Cell cycle and Neutrophil/Inf lammation
signatures were dysregulated separately with respect
to being dysregulated in the same patients (Figure 2D).
Platelet signature was also dysregulated in the opposite
direction to Plasma cell/Cell cycle, although it is linked to
the Neutrophil/Inf lammation signature. Platelet signature
does not seem to be independent because very few
patients had this signature highly dysregulated. As
summary, these observations suggest that there are
two main pathological mechanisms that differentiate
patients over time, since the rest of the signatures appear
combined with them. These mechanisms are associated
with alterations in Neutrophil/Inf lammation (iSLE) or in
Plasma cell/Cell cycle (pSLE) signatures.

Association between molecular dysregulated
profiles and clinical manifestations
Association between gene-modules and different types
of clinical variables were measured (Supplementary
Table 1). Strong significant associations between mod-
ules related to Neutrophil/Inf lammation signature and
immunological and renal manifestations, such as
hematuria or proteinuria, were obtained (Figure 3A),
consistent with the previous literature [15]. On the other
hand, the Plasma cell/Cell cycle signature was associated
with a very different clinical picture, mainly represented
by a dermal and musculoskeletal component, such as
a higher frequency of arthritis. That is, the signatures
associated with iSLE (inflammatory) and pSLE (plasma
cell) subtypes enriched in different manifestations.
Interferon signature was associated with both clini-
cal groups, with different autoantibodies (including
ENA, SSA subtypes, RNP, SM, C4 and DNA antibodies
(Figure 3B)), and also with IL1RA, IP10 and MCP2
cytokines (Figure 3C). Interestingly, a distinction between
iSLE and pSLE subtypes when considering cytokines and
autoantibodies was observed (Figure 3B–C). The Plasma
cell/Cell cycle signature was associated with different
autoantibodies, but only with one cytokine, the FAS-
ligand. The Neutrophil/Inf lammation signature was not
strongly associated with any autoantibodies but with
several cytokines, including BCL, IL1RA, MMP8, IL6, TGF-
beta or BAFF. Thus, the Plasma cell/Cell cycle signature
directed a disease more mediated by autoantibodies,
while the Neutrophil/Inf lammation signature did so
through cytokines. It should also be noted that most
cytokines associated with Neutrophil/Inf lammation are
also strongly associated with Platelet signature, including
BAFF, TGF-Beta, IL6 and TNF-alpha.

As expected, the different SLE-signatures were strongly
associated with the blood cell type they represent,
such as the Neutrophil/Inf lammation signature with a
higher proportion of neutrophils (Figure 3D). On the
contrary, association between plasmacytoid dendritic
cells, the main interferon-producing cells and the
Interferon signature was not observed [34]. This may be
due to the fact that Interferon signature is composed by

the genes regulated by interferon, which are expressed
almost equally in the rest of the blood cells [12, 35].

Models to predict each clinical feature were tested and
a total of 57 different clinical outcomes were successfully
predicted with AUC or correlation values greater than
0.7 (Figure 3E and Supplementary Table 3). It should be
noted that we obtained a model with an AUC value of
0.98 to predict severe or proliferative nephritis (Supple-
mentary Figure 4A and Supplementary Table 3), one of
the most serious affections of the pathology, which is
mainly diagnosed invasively by kidney biopsy. To train
and test the model, we selected 30 patients from the
longitudinal cohorts that did not have severe nephritis
and 89 patients with biopsy-confirmed nephritis less
than 1 year after/before sampling. Interestingly, B cell/
Plasma cell and Neutrophil/ Inf lammation signatures were
the most relevant signatures for the model (Supplemen-
tary Figure 4B). Significant differences in the M-scores
of the signatures comparing samples with and without
nephritis were obtained, being more strongly dysregu-
lated the Neutrophil/Inf lammation, Interferon and Platelet
signatures during nephritis (Supplementary Figure 4C).

Specific dysregulations guide disease remissions
and flares
We hypothesized that two samples with the same SLEDAI
can be molecularly very different. For example, the tran-
scriptome of samples with low SLEDAI would be different
if the sample is taken at the beginning of a remission
period or after a long-standing remission. With our sys-
tem, different scenarios of clinical remission (defined
as SLEDAI<=2) were analyzed to extract relevant and
molecular information about disease flare triggers (Sup-
plementary Figure 5A). When remission lengthens in
time, the probability of finding the Neutrophil/Inf lamma-
tion, B cell/Plasma cell, NK cell, Mitochondrion T cell and Inter-
feron signatures significantly dysregulated is significantly
diminished (Figure 4A and Supplementary Figure 5B).
This means that the M-scores of these signatures will get
closer to the healthy state over time. Importantly, the sig-
nal from the Interferon signature takes the longest time to
disappear, being still strongly dysregulated in over 25% of
patients almost 300 days after clinical remission. For this
reason, it is the least appropriate signature to follow-up
patients ´ remission. This also means that interferon can
be active without the patient presenting clinical mani-
festations (SLEDAI<2 means not active SLEDAI clinical
components), thus being likely other signatures behind
the clinical worsening of the organ damage.

Next, the differences in remission time until a new
flare appeared (when the SLEDAI exceeds the thresh-
old at which the disease is considered inactive) were
analyzed (Figure 4B and Supplementary Figure 5B). The
closer a patient is to have a new flare, the significantly
higher is the probability of finding B cell/Plasma cell, Plasma
cell/Cell cycle and T cell signatures strongly dysregulated.
This means that there are changes at the molecular level
that precede a flare, before the appearance of clinical

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
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Figure 3. Associations between gene-modules and clinical variables. (A) Gene-modules and manifestation and lab measurements used in SLEDAI are
represented in columns and rows, respectively. Modules are colored according to the SLE-signatures they belong to. Color ranges for heatmap entries
show the P-values for each association (enrichment and depletion) in a negative logarithmic scale. Association for autoantibodies, cytokines and cell
percentages is recovered in (B), (C) and (D), respectively. (E) Performance results obtained with the ML-based predictive models selected for each clinical
outcome. The x-axis shows the AUC (for categorical variables) or the correlation (for numerical variables). Colors represent the algorithm selected for
each model.

manifestations. M-scores of samples under remission
were used to build ML models able to predict whether
the patients would suffer or not a flare in the next 3
and 6 months, obtaining AUC values of 0.76 and 0.8 for
naive bayes and neural network algorithms, respectively
(Supplementary Table 3). That is, with our system the
patients without apparent clinical manifestations but
with the worst incipient prognosis can be anticipated
based on molecular data.

To identify molecular patterns behind time-stable
remissions, first time points of patients entering in a
long SLEDAI remission (samples in remission, taken
within 3 months from an active disease state and that

precede to at least 1 year of inactive disease) were
compared against patients with a short drop of SLEDAI
(sample in remission, taken within 3 months from an
active disease state and that had a flare within the next
3 months). Significant differences at both gene-modules
and signature levels were obtained, mainly related to
Neutrophil/Inf lammation, NK cells and Platelet (Figure 4C
and Supplementary Figure 5C). This suggests that if
the SLEDAI drop is not followed by the M-score drop
of these signatures, the patient has a high probability
of suffering a clinical relapse of the disease within
the next 3 months. These changes were accompanied
by significant differences in neutrophils and NK cells

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
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Figure 4. Molecular dysregulation behind clinical remission and flares. (A) Kaplan–Meier plots for the significant SLE-signatures obtained, where time
after clinical remission is compared in patients having each signature significantly highly dysregulated (red line) versus the rest of patients (blue line).
(B) The SLE-signatures are compared as a function of the time remaining until a new flare. (C) Result of comparing the SLE-signatures occurring at the
first time points preceding long SLEDAI remissions against time points that represent short drops in SLEDAI occurring between active disease states.

proportions, remained higher and lower, respectively, in
short drops of the SLEDAI (Supplementary Figure 5D).

MyPROSLE predicts Tabalumab response
We analyzed the effect of Tabalumab on gene-modules,
a BAFF blocker that inhibits B cell maturation and
differentiation into autoantibody-secreting plasma cells
[36]. SRI5 response to Tabalumab at baseline based on
M-scores can be predicted with high accuracy, as it
is shown in Figure 5A (AUC value = 0.74 and balanced
accuracy = 0.7 were obtained by a neural networks-based
model, Supplementary Table 3). The response prediction
probabilities were significantly different comparing
patients treated with Tabalumab and placebo (Figure 5B).
High and low probabilities were obtained for responders
and non-responders to Tabalumab, respectively, while
for placebo the probabilities were distributed randomly,
thus, demonstrating that our prediction model is capable
of differentiating the improvements in patients caused
by the drug and the improvements that occur by
chance or by fluctuations in the disease itself. Figure 5C
shows the average importance average for the predictive
model of the genes-modules grouped by the signatures

they belong to, being B cells and plasma cells related
signatures the main contributors.

Only one gene-module related to Platelet signature
was significant comparing gene-modules between
responders and non-responders at baseline, while at
Week 52, significant differences in gene-modules related
to T cell, Plasma cell/ Cell cycle and NK cell signatures
were found (Figure 5D). Comparing M-scores over time
between baseline and week 52, the main differences
were obtained in the signatures related to B cells in both
responders and non-responders. These observations are
coherent with the fact that Tabalumab targets B cells
(Figure 5D). Figure 5E shows SLE-signature changes on
time in responders and non-responders. B cell/Plasma
cell signature was significantly reduced in both groups,
something that also occurred in Plasma cells/Cell cycle
signature, although in less magnitude in non-responders.
Interestingly, M-scores of NK cell, T cell, Mitochondrion
and Inositol metabolism signatures change in the opposite
way over time between responders and non-responders
(Figure 5E), so they could be influencing the inefficacy of
the drug in non-responder patients, directing the disease
through other pathways.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac332#supplementary-data
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Figure 5. Tabalumab response based on M-scores. (A) ROC curve of the best predictive model for SRI5 response to Tabalumab based on M-score of patients
at baseline. (B) Probabilities of SRI5 response retrieved by the predictive model for responder and non-responder patients treated with Tabalumab or with
placebo. (C) Average of importance of the genes-modules for the predictive model grouped by the signatures they belong to. Importance was calculated
using varImp function from caret R package. (D) The heatmaps show the mean values of the M-scores for each group of patients for each comparison.
From left to right, samples from responders were compared at baseline against Week 52, non-responders were compared between the same times and
then, responders and non-responders were compared at baseline and at Week 52, specifically. (E) The figure shows the mean M-scores of each signature
(M-sig) and how they vary over time in responders and non-responders.

MyPROSLE implementation
The R code to calculate M-scores for all functionally
annotated gene-modules is available in GitHub (https://
github.com/GENyO-BioInformatics/MyPROSLE), includ-
ing all the scripts used for each analysis described in this
work. We have also included an additional R function
(named M2ML, available on GitHub) that can be used to
build new predictive models based on M-scores starting
from gene expression data. We have also developed a web
tool in which data from new patients can be loaded to
perform their personalized molecular characterization
and to apply the predictive models generated during this
work for prediction of clinical manifestations, disease
flares, autoantibodies, cytokine levels and response to
Tabalumab. Figure 6 shows a summary of the web output
for each of the main steps: (1) M-scores calculation

and (2) clinical outcomes prediction. MyPROSLE user
interface was designed with RStudio Shiny package
(version 1.7.1) [37] and it is available at https://myprosle.
genyo.es. The tool runs on our own server with Ubuntu
20.0 operating system, 16 processors and 64 Gb of RAM
memory. Some figures have been created using https://
app.biorender.com.

Discussion
This work is structured around two main objectives:
(1) the development of a new system to measure the
molecular portraits of individual SLE patients (called
MyPROSLE) and (2) the in-depth characterization of
such molecular patterns to understand the clinical and
pathological implications behind them. In the first place,

https://github.com/GENyO-BioInformatics/MyPROSLE
https://github.com/GENyO-BioInformatics/MyPROSLE
https://myprosle.genyo.es
https://myprosle.genyo.es
https://app.biorender.com
https://app.biorender.com
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Figure 6. Web tool output example. The figure shows a summary of the web output for each of the two main steps, the personalized molecular profiling
of the patients by calculating the M-scores and the clinical outcomes prediction.

the molecular state of patients can be summarized
according to their dysregulation in 206 gene-modules,
grouped into nine main functional signatures. MyPROSLE
quantifies specific dysregulation in each patient through
M-scores, so it can manage disease heterogeneity,
assuming that not all patients will have the same active
biological pathways throughout the disease course. M-
scores are normalized values and therefore directly
comparable between different studies. Although these
scores initially needed a reference of healthy controls
to be calculated, an additional way of calculating them
has been proposed for new patients through patient–
patient similarity. In this way, the M-scores can be
standardized using always the same reference for their
calculation.

The molecular dysregulations have also allowed to
identify two well-differentiated and time-stable subtypes
of SLE: an inflammatory type, iSLE, and a plasma cell
type, pSLE. These subtypes have differences at the molec-
ular and clinical level.

During the development of this work, we have demon-
strated how dysregulation or its absence in certain gene-
modules and signatures can provide key information
from reflecting different clinical characteristics, predict-
ing close coming flares or a better or worse response to
Tabalumab. Prediction models for a total of 60 clinical
outcomes were obtained (with AUC values greater than
0.7), including SLEDAI components, cytokine and auto-
antibody levels, cell types proportions and comorbidities.
The relationship between molecular profiles and clinical
manifestations, such as the association between Neu-
trophil/Inf lammation signature and kidney-related mani-
festations and severe nephritis [38, 39], which has been
previously described, can be used in the clinic as a sup-
port to emphasize which are the risks more likely to
occur in SLE patients and to be able to anticipate them.
In fact, one of the potential applications is to be able

to predict proliferative nephritis, which is commonly
diagnosed invasively by renal biopsy [40].

To date, some studies correlated satisfactorily clinical
variables with disease activity in order to estimate dis-
ease activity [41], but studies that have tried to predict
the occurrence of upcoming flares and remissions in
SLE have not been successful [42]. We have obtained
AUC values greater than 0.75 using the M-scores of the
gene-modules to predict future flares at 3 and 6 months.
In addition, signatures that precede clinical worsening
have been identified and how long the signatures remain
dysregulated after the patient stops having the clinical
manifestations, highlighting that the Interferon signa-
ture is the one that remains active longest after clinical
remission. Therefore, dysregulation of the Interferon sig-
nature is not a good marker for disease activity, as some
studies previously proposed [43].

Regarding drug response, Tabalumab mainly affects
the plasma cell and B cell related functions [36].
Tabalumab clinical trials failed [44], and we hypothesize
that this is due to having studied all patients as a
single homogeneous group. Tabalumab clinical trials
failed [44], although Tabalumab shares the same target
pathway as another accepted drug, Belimumab, which
did meet clinical endpoints (being SRI5 the main
standard endpoint) in multiple trials. We hypothesize
that the trial failure is due to having studied all patients
as a single homogeneous group. In this article, we have
created a model that predicts the SRI5 response to the
drug for individual patients (with AUC value of 0.74), a
methodology that can be used to prior or select those
patients who are candidates to be responders. With the
appropriate data, this approach could be easily adapted
for other drugs (or any clinical outcome). Indeed, we
have provided R functions with which new predictive
models can be created based on M-scores for new clinical
outcomes starting from expression data. In addition, we
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have identified the main signatures that change both
after response to the drug and differentially over time
between responders and non-responders, which opens
the door to possible more detailed studies aimed at
identifying the cause behind the non-response.

In conclusion, MyPROSLE is a powerful system to deal
with the molecular heterogeneity of SLE and provides the
molecular portrait of the individual patients in a stan-
dardized way, information that may be used in the future
to support the choice of more effective personalized
therapies and patient monitoring. MyPROSLE has been
packaged within a web tool (https://myprosle.genyo.es),
where any user can execute it in a friendly environment
needing only expression data from patients, without
the need of expression data from healthy controls. This
workflow is easily scalable to incorporate new models
for other clinical manifestations and drugs as well as
for other diseases. In addition, prediction of response
to Tabalumab, clinical manifestation, such as severe
nephritis and disease prognosis, is provided by the web
tool. Therefore, we set a precedent and an important
advance in terms of personalized research oriented to a
near future clinical practice within autoimmunity.
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Key Points

• MyPROSLE allows identification and quantification of
the personalized dysregulated molecular mechanisms in
individual Systemic Lupus Erythematosus patients.

• Molecular portrait of a patient can be summarized into
nine different functional signatures.

• We identified two subgroups of patients differentiated
over time guided by Neutrophil/ Inf lammation and Plasma
cell/ Cell cycle signatures.

• Clinical manifestations, disease prognosis and drug
responses to Tabalumab can be predicted based on
molecular portrait of each patient.
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