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Abstract: Cyanobacteria and microalgae are oxygen-producing photosynthetic unicellular organisms
encompassing a great diversity of species, which are able to grow under all types of extreme
environments and exposed to a wide variety of predators and microbial pathogens. The antibacterial
compounds described for these organisms include alkaloids, fatty acids, indoles, macrolides, peptides,
phenols, pigments and terpenes, among others. This review presents an overview of antibacterial
peptides isolated from cyanobacteria and microalgae, as well as their synergism and mechanisms
of action described so far. Antibacterial cyanopeptides belong to different orders, but mainly from
Oscillatoriales and Nostocales. Cyanopeptides have different structures but are mainly cyclic peptides.
This vast peptide repertoire includes ribosomal and abundant non-ribosomal peptides, evaluated by
standard conventional methodologies against pathogenic Gram-negative and Gram-positive bacteria.
The antibacterial activity described for microalgal peptides is considerably scarcer, and limited to
protein hydrolysates from two Chlorella species, and few peptides from Tetraselmis suecica. Despite the
promising applications of antibacterial peptides and the importance of searching for new natural
sources of antibiotics, limitations still persist for their pharmaceutical applications.
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1. Introduction

The advent of the antimicrobial era are, together with sanitation and increasing access to safe
drinking water, among the greatest milestones in public health [1]. Antibiotic therapy affords the
control of many infectious diseases, otherwise highly lethal. In addition, it pushes forward the
boundaries of many other medical treatments, such as immunosuppressive treatments or successful
surgical procedures.

The notion of total elimination of infectious diseases by antibiotic therapies soon turned out to
be utopic. Today, the world is facing a deep global antimicrobial resistance (AMR) crisis, with an
alarming decrease of effectiveness in antibiotic treatments due to the rising resistance acquired by
pathogens [2,3]. The overuse, and often misuse, of antimicrobials in clinics [3], is one of the main
reasons of AMR, but not the only one. The induction of antibiotic resistance outside nosocomial
settings, strongly associated to the antibiotic use in livestock farming [4], aquaculture [5], and the
uncontrolled dumping of antibiotics into the environment [6,7], account for the horizontal transmission
of antibiotic-resistance traits out of the nosocomial setting. Furthermore, zoonosis may act as a reservoir
for resistant organisms. Altogether, the term “One Health” was coined as a common umbrella to
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encompass all the resistomes, regardless of their biological source, as responsible for induction of
resistance [8,9].

This serious situation is worsened by the deficient pipeline for the development of new antibiotic
leads, due to the poor return of investments obtained [10,11]. The magnitude of AMR was recognized
by the United Nations General Assembly in 2016, that fostered promising initiatives, as the AMR action
fund, a multipartner consortium led by the World Health Organization (WHO) expected to put on the
market 2–4 new antibiotics by 2020 (https://www.amractionfund.com/). Yet, the end of this crisis will not
be achieved in a short time range [12], so immediate solutions must resort to drug repurposing [13,14],
or combination therapies, with a simultaneous multitarget attack to the pathogen [15,16]. Thus,
the development of new approaches for anti-infectious diseases, such as bacteriophages, enzybiotics,
the focus on virulence factors as targets, or the potentiality of CRiSPR-Cas13, is mandatory and
urgent [17–21], not only because of the current and alarming situation, but also because of the feasibility
to fight emerging ongoing threats, as the COVID-19 pandemics, concerning bacterial co-infections [22].

Among these forefront candidates on trial, are the antimicrobial peptides (AMPs) (for recent
reviews, see [23–29]), which are ancient chemical weapons in the biological welfare. In unicellular
organisms, AMPs help the producer cells to strive against competitors sharing the same ecological
niche. In pluricellular organisms, they play a defensive role against invading pathogens. The success
of AMPs is endorsed by their ubiquitous presence throughout evolution, crossing taxonomical
kingdoms [25], even in those organism endowed with a robust and sophisticated antigen-specific
immunity. In pluricellular organisms, AMPs may play additional roles out of their primeval function
as deterrent for infection, such as messengers for communication among immune cells, angiogenesis,
wound healing, autoimmunity [30,31], their dual role in inflammation [32,33], or even in sleep,
among others [34–38].

Until few years ago, the pharmaceutical industry was scarcely receptive to peptide-mediated
therapies, mostly due to the high cost for production and their poor ADME (absorption, distribution,
metabolism, and excretion) profile, despite their huge potential to cover an extremely broad chemical
space, and their structural and functional tuning. This concern was driven by the peptide liability
to degradation by proteinases and peptidases present in biological fluids, their sequestration by the
cellular matrix and serum components, problematic transport across the membranes, as well as the
difficulty of the exogenously administered AMPs to reach an effective concentration at deep tissue
or organ locations. Most of these shortcomings were addressed and properly solved in recent years,
leading to an increasing number of peptide drugs approved by the Food and Drug Administration
(FDA) [39–42].

This turn of the tide underlies new strategies to overcome the limitations described above,
converting peptides into valuable drug candidates: firstly, the decrease in cost by implementation of
more efficient and cheaper strategies of synthesis [43–47] or, alternatively, the development of improved
production of recombinant peptides [48–51]; secondly, the improvement of peptide bioavailability
by engineering strategies aimed to prevent proteolytic degradation, either by manipulation of
their primary sequence by incorporation of unnatural amino acids [52,53], β and γ amino acid
peptides [54,55], enantiomeric peptides [56,57] and peptidomimetics [58–61], or by acquisition of
a more stable conformation that secludes or shields the recognition of the cleavage sequence by
peptidases (cyclation [46,62,63] and stapled peptides [64]).

In addition, the implementation of nanotechnological vehiculation of the peptides improve their
bioavailability by targeting the peptide at the right anatomical or cellular location, preventing peptide
waste and off-target effects, as well as avoiding the proteolytic degradation of the peptide. In addition,
vehicle degradation may sustain or control a gradual delivery of the peptide at the right site [65–68].
A greater decrease in the number of peptides entering the pipeline for peptide development is achieved
by in silico selection of new and improved prediction tools for candidate selection based on an expected
higher effectiveness or decreased toxicity [69–73].

https://www.amractionfund.com/
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Yet, despite the increase of eukaryotic AMPs that entered into the pipeline and reached different
phases in clinical trials [26,27,74], none of them are currently implemented as an over-the-counter drug
in the market. In fact, all the AMPs in clinical use are from bacterial origin [75–77]: colistin, gramicidin,
bacitracin, tyrocidine, the two glycopeptides vancomycin and teicoplanin, the lipopeptide daptomycin
A), and the lantibiotic nisin extensively applied as a food preservative.

The cost of an AMPs-based anti-infectious therapy is still significantly higher than for classical
antibiotics. However, this drawback is blurred in the case of multiresistant bacteria, being AMPs the
last resort drug. Although resistance against eukaryotic AMPs can be induced, their frequency is much
lower than for classical antibiotics, due to the high loss of fitness associated [78–80]. Nevertheless,
a serious clinical concern is the resistance against polymyxin, a lipopeptide used as a last clinical
alternative for Gram-negative infections with increase not only in its frequency, but also in its spreading
into other bacteria [81,82]. On the other side of the balance, the awareness of the importance of host
immune reprogramming by AMPs is a more permanent asset of its overall antimicrobial activity,
and presumably, less prone to manipulation by bacterial resistance [27,34].

The search for new natural sources of AMPs has also increased; in this context, microalgae and
cyanobacteria have enormous potential as a source of molecules with antimicrobial applications with a
high probability of finding new potentially more effective molecules. As a background, these organisms
are a source of various chemical substances already characterized, such as peptides, proteins, lipids,
vitamins, pigments, carbohydrates, terpenoids, polyunsaturated fatty acids, flavonoids, phenolic
compounds, and other organic substances with potential uses as biopharmaceuticals [83].

2. Cyanobacteria and Microalgae as Producers of Antibacterial Compounds

These microorganisms are known to be able to survive under all kinds of environmental conditions,
terrestrial, saline water and freshwater, and even under extremely competitive environments; moreover,
they are exposed to a wide variety of predators and to microbial pathogens, such as bacteria, viruses,
and fungi. Their flexible metabolism underlies both their adaptation to a diversity of growth conditions
and habitats and their capacity to respond to different environmental stresses and nutrients sources.
This versatility can explain the diversity and the number of chemical compounds that have been
isolated from them [84,85].

The phylum Cyanobacteria is constituted by photosynthetic bacteria encompassing 1528 species
and 1984 taxa grouped under 389 genera [86]. The cyanobacteria are the major oxygen producers
and nitrogen fixers, playing an essential role in oceanic phytoplankton, but also, they colonize a wide
variety of habitats. They appear as single cells, pluricellular forms, or as symbiotic partners of other
animal and plants [87].

There are numerous review articles about marine, freshwater, and terrestrial cyanobacteria,
belonging to different families, as a source of antibacterial molecules. This antibacterial activity
has been attributed to compounds that belong to quite diverse chemical classes. Those types that
present the highest number of antibacterial molecules correspond to alkaloids, fatty acids, pigments,
phenolic compounds, and terpenoids; however, the wide range of compounds also includes molecules of
another type, such as aromatic compounds, cyclophanes, indole, macrolides, peptides, paracyclophanes,
and polyphenyl ethers, among others. Table 1 summarizes the chemical diversity of cyanobacterial
molecules with antibacterial activity, and their respective producer cyanobacteria species. Most of the
antibacterial assays have been performed in vitro by standard conventional methodologies as minimal
inhibitory concentration (MIC) and/or zone of inhibition, against Gram-positive and Gram-negative
bacteria pathogenic to humans or to other organisms [83,88–95].

Microalgae are photosynthetic eukaryotic microorganisms and the main producers of oxygen,
that constitute the basic components of the ecosystem’s trophic chains, accounting for approximately
40% of photosynthesis on the planet; moreover, they can efficiently assimilate nutrients in a eutrophic
water body. Microalgae are not only interesting for their bioproducts, but also for their application
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in bioremediation of waste waters containing inorganic elements and high metal loads, in biological
sequestration of CO2, and in the production of renewable energy as biodiesel [96].

Microalgae include a great diversity and complexity of strains, as the result of adaptation carried out
through billions of years. These microorganisms colonize every known habitat, but are predominantly
found in fresh and marine water. The number of microalgal species is not clearly established,
AlgaeBase [97] encompasses 159,173 species that include terrestrial, marine and freshwater organisms,
but also marine macroalgae (seaweeds) [96,98–101]. The major Phyla/class accounting for commercial
microalgae are Chlorophyta, Rhodophyta, Haptophyta, Stramenopiles, and Dinophyta [102].

Metabolites from microalgae are extremely diverse, and some of them have been associated
with growth inhibition of pathogenic microorganisms. Pratt et al. [103] were the first to isolate a
microalgal antibacterial compound from the genus Chlorella; this compound, named chlorellin, is a
mixture of fatty acids with inhibitory activity on Gram-negative and Gram-positive bacteria. Then,
other microalgal antibacterial substances emerged between 1950s and 1980s, such as two chlorophyll a
derivatives [89]. Table 2 summarizes the main molecules isolated from microalgae with antibacterial
activity. These active chemical compounds include short chain fatty acids, monounsaturated and
unsaturated long chain fatty acids, as well as a diversity of other chemical compounds, such as phenols,
terpenes, pigments and indoles, acerogenins, alkaloids, macrolides, peptides, and volatile halogenated
hydrocarbons [84,89,90,104–108]. Other works reported antibacterial activities in cyanobacterial
extracts, mostly with organic solvents, such as those from the diatoms Skeletonema costatum and
Chaetoceros pseudocurvisetus with anti-mycobacterial activity, absent from aqueous extracts, but the
responsible metabolites were not identified [109].

Despite the potential of microalgae to produce antibacterial products as novel antibiotics,
their development as a natural antibiotic is jeopardized by the small amount of compounds extracted
from the producer organisms, the often cumbersome chemical synthesis, the associated toxicity,
and in vivo inactivation [110].

Table 1. Antibacterial compounds from cyanobacteria.

Cyanobacterial Species Class of Compound Reference

Alkaloids

[88,89,92,93,111,112]

Fischrella sp. Eucapsitrione
Fischrella ambigua Nostocarboline

Nostoc sp. Tjipanazole A and D
12-epi-hapalindole E isonitrile

Nostoc spongiaeforme Nostocine A
Indole Alkaloids

Fischrella sp. Ambiguine A, B, D–I, K and M
Fischrella ambigua Fischambiguine B

Nodularia harveyana Northarmane

Nostoc insulare Norharmane-HCl (9H-pyrido(3,4-b) indole-HCl)
4,4-dihydroxybiphenyl

Aromatic Compounds [88,92,95,111]
Fischrella ambigua Ambigol A and B

Carbohydrates

[104]
Anabaena sphaerica

Chroococcus turgidus
Oscillatoria limnetica

Spirulina platensis

Polysaccharides

Cyclophanes
[88,89,93,111]Nostoc sp. Carbamidocyclophane A–E

Nostocyclyne
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Table 1. Cont.

Cyanobacterial Species Class of Compound Reference

Moorea producens Dicarboximides [113]
(L. majuscula) Malyngamide C, I and J

Fatty Acids and Lipids

[89,90,92,94,108,111]

Fischerella sp.
Spirulina platensis

Phaeodactylum tricornutum
Oscillatoria redekei

Scytonema sp.
Scytoscalarol

Colioric acid
α-dimorphecolic acid

γ-linolenic acid

Indanes [88]
Nostoc commune 4-hydroxy-7-methyl indan-1-one

Lactones [111]
Lyngbya majuscula δ-lactone malyngolide

Macrolides
[88]Scytonema sp. Scytophycin A and C

Tolytoxin

Nostoc sp. Paracyclophanes [92]

Pigments

[90–92,111,114,115]

Anabaena cylindrica
Nostoc sp.

Spirulina platensis
Salpa fusiformis
Synechocystis sp.

Tolypothrix nodosa

Phycobiliproteins
Phycocyanins (PC-B and PC-C)

Porphyrins (Tolyporphin)

Phenolic Compounds

[88,111]
Anabaena sphaerica

Chroococcus turgidus
Oscillatoria limnetica

Spirulina platensis

4,4′-hydroxybiphenyl
Polyphenols

Polyphenyl Ethers [88]
Leptolyngbya crosbyana Crossbyanol A–D

Porphinoids [111]
Tolypothrix nodosa Tolyporphin J

Terpenoids

[88,92,93]

Nostoc commune 20-nor-3a-acetoxyabieta-5,7,9,11,13-pentaene

Eucapsis sp.
8-[(5-carboxy-2,9-epoxy) benzyl]-2,5-dihydroxy-1,1,

4a,7,8-pentamethyl-1,2,3,4,4a,6,7,8,9,10,10
-adodecahydrophenanthrene

Microcoleus lacustris Abietane
Comnostins A–E

Norbietane
Scytonema sp. Sesterterpene

Others

[88]Nostoc sp. EMTAHDCA 9-ethyliminomethyl-12-
(morpholin-4-ylmethoxy)-5,8,13,16–tetraaza–

hexacene-2, 3 dicarboxylic acid
Fischerella ambigua Parsiguine [92,111,116]
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Table 2. Antibacterial compounds from microalgae.

Microalgae Species Class of Compound Reference

Dunaliella salina Indolic Derivatives
[84,89,104]β-ionone

Neophytadiene

Fatty Acids and Lipids
Chlorella vulgaris

Chlorella pyrenoidosa
Chaetoceros muelleri

Chlorococcum sp.
Dunaliella salina

Dunaliella primolecta
Haematococcus pluvialis

Navicula delognei
Phaeodactylum tricornutum

Planktochlorella nurekis
Scenedesmus obliquus
Skeletonema costatum

Chlorellin
Butanoic acid

Docosa-pentaenoic acid (DPA)
Eicosapentaenoic acid (EPA)
Hexadecatrienoic acid (HTA)

α-linolenic acid (ALA)
Methyl lactic acid

Octadecatetraenoic acid
Oleic acid

Palmitoleic acid
Triglycerides

[84,89,90,103–105,107,111]

Macrolides
Amphidinium sp. Amphidinolide Q [117]

Pigments

Isochrysis galbana Carotenoids

[84,89,90,104]Chlorophyll a derivatives
(Pheophytin a and chlorophyllide a)

Phycobiliproteins

Terpenoids

Isochrysis galbana (six classes) Diterpenoids [104,106]

Others
Phaeocystis sp. Acrylic acid [89]

Navicula delognei Ester [89]
Dunaliella salina α- and β-ionone [104]

Neophytadiene [84]
B-cyclocitral

Phytol
Haematococcus pluvialis Methyl lactate [104]

Navicula delognei Transphytol ester [84]
Haslea ostrearia Mareninne [84]

3. Antibacterial Peptides from Cyanobacteria

Cyanobacteria are an almost endless source of new peptide scaffolds. The peptides are synthesized
as secondary metabolites required for a successful strive with other microorganisms, as well as for
their astonishing environmental adaptation [118]. The biotechnological and medical potential of
cyanobacterial peptides has been frequently reviewed and updated in the literature [88,119–125].

Since the first description of a cyanobacterial peptide with antibacterial activity, the cyclic peptide
schizotrim A isolated from a culture of Schizothrix sp. many other peptides have been described.
Table 3 summarizes the main cyanobacterial peptides, the producer species, their structure and their
effect on known pathogenic target bacteria.

The antibacterial peptides from cyanobacteria are of different types, although those with a
cyclic structure are more frequent (Figure 1). The antibacterial peptides identified peptides belong
to different orders of cyanobacteria, being Oscillatoriales and Nostocales the most prolific ones.
Inside Oscillatoriales, members of the genus Lyngbya are important producers of bioactive peptides
with a potential therapeutic use. Four cyclic undecapeptides named lyngbyazothrins A, B, C, and D
were identified from the freshwater strain Lyngbya sp. The mixtures A/B showed antimicrobial activity
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only against the Gram-positive bacteria Micrococcus flavus, while lyngbyazothrins C/D were active
against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Serratia marcescens), and the
Gram-positive Bacillus subtilis, although not on methicillin susceptible Staphylococcus aureus [92,125–127].
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Other antibacterial peptides described for the Lyngbya genus are the lipopeptide pahayokolide A,
and the depsipeptides pitipeptolide A–F. Furthermore, within the Oscillatoriales order, the Oscillatoria
and the Phormidium genus are known producers of antibacterial peptides although with much lower
representation than Lyngbya. All of them are cyclic peptides. Concerning the Nostocales order,
the Nostoc genus stands out, with a variety of cyclic and linear antibacterial peptides; Anabaena and
Scytonema genera produced depsipeptides and lipopeptides, respectively [88,94,125,128–132].

The marine cyanobacterium Prochlorococcus marinus produces the lantipeptide prochlorosin,
with encoding genes distributed throughout its genome. Lantipeptides are a large family of linear
and cyclic peptides, ribosomally synthesized as precursor peptides that underwent post-translational
modifications, including the formation of lanthionine bridges, heterocyclization, oxidation, methylation,
prenylation, and cyclization. The formation of lanthionine bridges in prochlorosin is catalyzed by
LanM, a lanthionine synthetase C enzyme [133].

This vast spectrum of peptides produced by cyanobacteria comprises not only the ribosomal synthesis
of peptides, including their posttranslational modifications, but also abundant non-ribosomal peptides
(NRPs) synthesized by non-ribosomal peptide synthetases (NRPSs) [85,125,134], modular multienzymatic
complexes working as an assembly line for amino acid incorporation into the polypeptide chain and,
frequently, to their in situ modification. In addition NRPSs may appear associated to polyketide
synthases (PKS), forming NRPS-PKS clusters [135,136] broadening even further the variety of chemical
motifs incorporated into the polypeptide chain.
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Table 3. Cyanobacterial peptides with antibacterial activity.

Peptide Name Characteristic Source Target Bacteria Activity ‡ Reference

Aeruginazole A Cyclic Microcystis sp. Bacillus subtilis MIC = 2.2 µg/mL [92]

Aeruginazole DA 1497 Cyclic Microcystis aeruginosa TAU Staphylococcus aureus DIZ 7 mm at 25 µg [92]

Anachelin H Depsipeptide Anabaena cylindrica
CCAP/2A Moxarella catharralis MIC = 32 µg/mL [139]

Antillatoxin B Lipopeptide Hawaii and Caribbean
collection of cyanobacteria

Listeria monocytogenes HPB 2812 and
Staphylococcus aureus ATCC 29213 MICs = 250 µg/mL

[113]
Bacillus cereus LSPQ 2872 MIC: 130 µg/mL

Borophycin Cyclic Nostoc linckia and
N. spongieaforme, ND ND [88,94]

Brunsvicamides A B and C Cyclic Tychonema sp. Mycobacterium tuberculosis IC50 = 7.3–8 µM [88]

Kawaguchipeptin B Cyclic undecapeptide M. aeruginosa (NIES-88), Staphylococcus aureus MIC 1 µg/mL [140]

Laxaphycin A Lipopeptide Hawaii and Caribbean
collection of cyanobacteria

Listeria monocytogenes HPB 2812 and
Bacillus cereus LSPQ 2872 MIC 250 µg/mL

[113]
Staphylococcus aureus ATCC 29213 MIC = 125 µg/mL

Laxaphycin B Lipopeptide Hawaii and Caribbean
collection of cyanobacteria

Listeria monocytogenes HPB 2812,
Bacillus cereus LSPQ 2872 and

Staphylococcus aureus ATCC 29213
MIC = 250 µg/mL [113]

Laxaphycin B3 Lipopeptide Hawaii and Caribbean
collection of cyanobacteria Bacillus cereus LSPQ 2872 MIC = 250 µg/mL [113]

Lyngbyazothrins mixture A/B Cyclic undecapeptide Lyngbya sp 3691 SAG Micrococcus flavus SBUG 16 DIZ 8 mm at 100 µg (Ref. ampicillin
10 µg, inhibition zone 28 mm) [92,125,126]

Lyngbyazothrins mixture C/D Cyclic lipopeptide
Cyclic undecapeptide

Lyngbya sp.
Lyngbya sp. 3691 SAG

Bacillus subtilis SBUG 14, DIZ 18 mm at 125 µg (Ref. ampicillin
10 µg, inhibition zone 14 mm)

[92,125,126]

Escherichia coli ATCC 11229 DIZ 18 mm at 100 µg (Ref. ampicillin
50 µg, inhibition zone 26 mm)

E. coli SBUG 13 DIZ 15 mm at 100 µg (Ref. ampicillin
50 µg, inhibition zone 17 mm)

Pseudomonas aeruginosa ATCC 27,853 DIZ 8 mm at 100 µg (Ref. gentamycin
25 µg, inhibition zone 26 mm),

Serratia marcescens SBUG 9 DIZ 8 mm at 200 µg (Ref. ampicillin
10 µg, inhibition zone 28 mm),
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Table 3. Cont.

Peptide Name Characteristic Source Target Bacteria Activity ‡ Reference

Microcystin Cyclic heptapeptide Synechocystis,
Synechococcus and Romeria

Pseudomonas aeruginosa ATCC 27,853
and Staphylococcus aureus ATCC 25923 DIZ 10.5 ± 0.71 to 14.0 ± 1.41 mm (*) [94,138]

Muscoride A Linear Nostoc muscorum Bacillus subtilis DIZ = 3–6 mm (streptomycin,
7–10 mm; penicillin G, 7–10 mm) [88,129]

NRPs, PKs and hybrid
NRPS-PKS Brazilian isolates Bacillus subtilis and

Salmonella typhimurium
34 and 22% of inhibition growth

(20 µL/2 mL organic extract) [137]

Pahayokolide A Cyclic lipopeptide Lyngbya sp.
Bacillus megaterium MIC = 5.5 µg/mL

[125,131]
Bacillus subtilis MIC 10 µg/mL

<3 kDa peptide fraction Hydrolyzed protein Spirulina platensis
Escherichia coli 15.2% at 625 µg/mL

[141]
Staphylococcus aureus 19.6% at 625 µg/mL

Pitipeptolides A–F Cyclic depsipeptide Lyngbya majuscula Mycobacterium tuberculosis DIZ 40 mm at 100 µg/disk [88,125]

Pitiprolamide 2,2-diMe-3-Hy-hexanoic
acid and Dpv-Pro L. majuscula Mycobacterium tuberculosis H37Ra

and Bacillus cereus ND [125,142]

Portoamide Cyclic Phormidium sp.
LEGE 05,292

Cobetia marina CECT 4278 23.3% at 6.5 µM

[132]Halomonas aquamarina CECT 5000 21.0% at 6.5 µM

Pseudoalteromonas atlantica CECT 570 21.5% at 6.5 µM

Schyzotrin A Cyclic lipopeptide Schizothrix sp.
TAU strain IL.89-2 Bacillus subtilis DIZ 15 mm at 6.7 nM [143,144]

Scytonemin A Lipopeptide Scytonema sp. Mycobacterium sp. MIC = 1 mg/mL (Ref. gentamycin
0.5 mg/mL) [128]

Tenuecyclamide A to D Cyclic hexapeptide Nostoc spongieaforme var
tenue

Bacillus subtilis Bs1091-1
Staphylococcus aureus Sau1091-3
Clinical Laboratory, Ministry of
Agriculture, Bet-Dagan, Israel

Disk inhibition zone,
values not reported [88,130]

Tiahuramide C Cyclic depsipeptide L. majuscula Aeromonas salmonicida MIC = 6.7 µM [125]

Trichormamide C Cyclic lipopeptide Oscillatoria sp UIC 10045 Mycobacterium tuberculosis MIC = 23.8 µg/mL [125]
‡ MIC: minimal inhibitory concentration; DIZ: diameter inhibition zone (mm); IC50: half inhibitory concentration; %: percentage of inhibition. (*) Methanolic extract of Romeria gracilis M6C
against Pseudomonas aeruginosa: 10.5 ± 0.71; Synechocystis aquatilis M62C against Staphylococcus aureus: 11.5 ± 0.71. Ethanolic extract of R. gracilis M6C against P. aeruginosa: 11.0 ± 1.41;
Synechococcus sp M94C and M290C against P. aeruginosa: 12.5 ± 0.71 and 14.0 ± 1.41 respectively.
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NRPSs represent a major class of secondary metabolites in cyanobacteria, with a broad range of
biological and pharmacological properties, mostly as antibiotics. It can been speculated that blue-green
algae acquired nrps genes after the first endosymbiotic process that led to the formation of algae,
or algae may subsequent have lost nrps genes [101].

The activity on pathogenic bacteria from algae from the orders Chroococcales, Oscillatoriales,
Nostocales, and Stigonematales was associated to non-ribosomal pathway involving NRPS, PKS and
hybrid NRPS-PKS. Among 50 strains of terrestrial and freshwater cyanobacteria, the species
Cylindrospermopsis raciborskii 339-T3, Synechococcus elongatus PCC7942, Microcystis aeruginosa NPCD-1,
Microcystis panniformis SCP702 and Fischerella sp. CENA19 provided the most active extracts, with high
activity against Bacillus subtilis, and Salmonella typhimurium [137].

Microcystins are non-ribosomal cyclic heptapeptides; these toxins are the most commonly found in
blooms produced by cyanobacterial genera, such as Microcystis, Anabaena, Nodularia, Oscillatoria, Nostoc,
Cylindrospermopsis, Aphanizomenon, Planktothrix, Anabaenopsis, Synechocystis, and Lyngbya. Aside from
them, the strain Synechocystis aqualitis M62C produces a microcystin active against S. aureus, but devoid
of the mcyB gene, one of the genes related to the mycrocystin synthesis, whereas the strain S. aqualitis
M204BG showed microcystin production and mcyB gene in its genome, but was inactive against
S. aureus and P. aeruginosa [138].

4. Antibacterial Peptides from Microalgae

When compared with the number of cyanobacterial peptides, the number of antibacterial peptides
from microalgae is considerably lower. The first report was an antibacterial 30mer peptide purified
from the culture of Stichochrysis immobilis Pringsheim, active against marine bacteria [145].

The following reports correspond to protein hydrolysates. Sedighi et al. [146], evaluated the
antibacterial activity of peptide fractions of the microalga Chlorella vulgaris. Protein fraction with
62 kDa were hydrolysates by pepsic digestion and antibacterial activity was determined against E. coli
CECT 434. The effect of hydrolysate was 8.5 and 1.6 times greater than Chlorella biomass and its
proteins, respectively, suggesting that Chlorella peptides provoked the cell wall destruction and cell
growth inhibition. Furthermore, pepsin hydrolysates and peptide fractions from Chlorella sorokiniana
displayed antibacterial activity against E. coli and S. aureus using the agar well diffusion method [147].

Guzmán et al. [148], reported antibacterial peptides from the marine microalgae Tetraselmis suecica.
The AQ-1766 peptide (LWFYTMWH) obtained from acid extract and the 40% acetonitrile eluted fraction
was active against the Gram-negative bacteria E. coli, S. typhimurium, and P. aeruginosa, as well as against
the Gram-positive bacterial strains B. cereus, methicillin-resistant S. aureus (MRSA), L. monocytogenes
and M. luteus. Moreover, the substitutions A4Y (AQ-3000: LWFATMWH), (AQ-3001: LWFYAMWH)
and T6M (AQ-3002: LWFYTAWH) increased the antimicrobial activity. Additionally, the lysine analogs:
K1L (AQ-3369: KWFYTMWH) and tyrosine Y4K (AQ-3370: LWFKTMWH) exhibited the highest
antibacterial activity.

On the other hand, microalgae were also used for transgenic production of alien AMPs, as the
bovine AMP lactoferricin by transgenic Nannochloropsis oculata. This transfected alga was used as
biofunctional food for the medaka fish (Oryzias latipes) with an improved survival when challenged
with Vibrio parahaemolyticus infection [149].

The limited knowledge of antibacterial peptides from microalgae will increase through the use
of biotechnological tools such as transcriptomics that will help to understand its genome and its
pharmacological interactions with bacteria. Transcriptomic sequencing will provide useful data to
identify species with antibiotic potential and pathways for the synthesis of new functional metabolites.
The transcriptome of the microalgae Chrysochromulina tobin revealed the expression of genes involved
in the defense of the algae that encode potential antibiotics, antibiotic extrusion proteins, and novel
antibacterial peptides [107].
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5. Mechanism of Antibacterial Action of Peptides and Compounds of Cyanobacteria and Microalgae

In general, the mechanism of action of cyanobacterial and microalgae peptides against bacterial
cells has not yet been established, and further studies are needed to elucidate the biological activity of
these antimicrobial peptides [90,147]. For those antibacterial peptides with a clear cationic character,
e.g., from microalgae, we may surmise a mechanism of action rather similar to those peptides described
in higher eukaryotes; that is, the disruption of the cell membrane after specific insertion into the
bacterial cell membrane. Specificity is mostly achieved by the different electrical charge of the external
hemilayer of the cell membrane, negative for prokaryotes and lower eukaryotes, zwitterionic in higher
eukaryotes. This mechanism has two important consequences; first, the negative electrical charge
of the membrane is considered as a pathogen associated molecular pattern, as such, common to
many microorganisms, that makes them susceptible to a given peptide. Secondly, as the bactericidal
mechanism is based on the stoichiometric interaction of the peptide with the phospholipids of the lipid
bilayer, physicochemical characteristics of the peptide, such as charge, size, amphipaticity, and even
secondary structure, are more important than the primary sequence of the peptide. For others,
their mechanism of action differs from membrane disruption, with involvement of intracellular targets,
and specificity achieved by subtle recognition between the peptide and its target.

This is the case for some cyanopeptides, as the cyclic peptides brunsvicamides B and C from
Tychonema sp., reported as inhibitors of phosphatase B of Mycobacterium tuberculosis, or the cyclic
depsipeptide scyptolin A, isolated from Scytonema hofmanni, an inhibitor of a serine protease working
as a transpeptidase involved in the bacterial cell wall biosynthesis for certain pathogenic bacteria [88].

Antibiofilm activity is an appealing asset for an antibacterial candidate, as infections in clinical
devices are frequently associated to biofilm formation and higher resistance against antibiotics.
The cyclic peptides portoamides produced by Phormidium sp. display this activity against marine
bacteria such as Cobetia marina, Halomonas aquamarina and Pseudoalteromonas atlantica, by inhibition
of ATPase H+-transport activity [132]. This activity has a straightforward application as antifouling
agents, and their test as antibiofilm compounds for relevant clinical bacteria is pending.

In some cases, structure-activity relationships were obtained with a variable degree of success,
either by sequence comparison among similar cyanopeptides from the same or different cyanobacteria,
by genetic mutation, or by chemical synthesis. The antibacterial activity of the lipopeptide
schizotrin A against B. subtilis has been associated to the presence of a proline linked to the
3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Aound), and their uptake into the bacterial
cell facilitated by the presence of the fatty acid [94,126]. The dipeptide motif formed by a proline
residue bound to the amino group of a 2-hydroxy-3 amino-long chain acid residue is shared for other
cyanobacterial cyclopeptides, such as scytonemin A from Scytonema sp [88,143]. The presence of this
fatty acid was also identified in lyngbyazothrins A–D, and this acyl chain at position C-5 is relevant for
the antibacterial activity of the peptide.

The amino acid analyses of the cyanopeptides lyngbyazothrins A–D reveal three unusual amino
acids identified as 4-methoxyhomophenylalanine in A and C, homophenylalanine in B and D,
and 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Aound) in A–D; moreover, C and D have
an additional N-acetyl-N-methyltyrosine unit and it seems that the acyl residue at C-5 plays an important
role in antimicrobial activity. Schizotrin A and pahayokolides A and B have sequence similarity
to lyngbyazothrins. Schizotrin A presents a 4-methoxyhomophenylalanine (Htm) residue, similar
to lyngbyazothrins A and C, bound to the Pro-Aound-Gln-Gly-Pro sequence, common to all of the
lyngbyazothrins. The same sequential motif is also found in pahayokolides A and B but, in contrast to
schizotrin A, it is linked to an homophenylalanine. Significant differences were found for the remaining
five residues of the cyclic systems among the three classes of peptides: Phe-Val-Ser-DeHThr-Ser
in schizotrin A, Phe-Z-Dhb-Ser-E-DhB-Thr in pahayokolides and Pro-allo-Ile-Ser-DeHThr-Thr in
lyngbyazothrins. The free hydroxyl group at C-5 of the Aound residue in lyngbyazothrins A and B is
substituted by N-acetyl-N-methyltyrosine in C and D instead of the N-butyryl-N- methylalanine residue
in schizotrin A. On the other hand, schizotrin A and pahayokolide A contain the aliphatic amino acids
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alanine and leucine, while lyngbyazothrins C and D include the aromatic amino acid tyrosine; it has
been proposed that the nature of these amino acids may also account for the activity of lyngbyazothrins
against the Gram-negative bacterium E. coli, absent in schizotrin and pahayokolide [126].

The ribosomal cyclopeptide aeruginazole A isolated from the cyanobacterium Microcystis sp.
(IL-323), inhibits the growth of B. subtilis and S. aureus; in its cyclic structure it contains three subsequent
glycine residues plus l-val, l-phe, thiazole-l-val, thiazole-d-leu, d-tyr and thiazole-l-asp. Similarly,
aeruginazole DA1497 isolated from M. aeruginosa, is a large cyclopeptide with four thiazole (tzl) moieties,
having a cyclo-structure of (-(tzl-phe)-gly-ala-ile-(tzl-ala)-ser-(tzl-val)-pro-gly-val-(tzl-leu)-pro-gly-).
It seems that the larger size and the greater number of thiazole groups of these compounds may be
associated with their bioactivity. Only DA1497 out of the one of five aeruginazole peptides tested
(DA1304, DA1274, DA1338 and DA1372) was active against S. aureus, even when minor differential
sequential variations occurred among the five peptides [92]. The cyclic lipopeptide Trichormamide C
from Oscillatoria sp. UIC 10,045 is characterized by the presence of three non-proteinogenic α-amino
acid residues (N-methyl-Ile and two 3-hydroxy-Leu) and one β-amino acid, with a key role on its
anti-M. tuberculosis activity [125].

The antibacterial mechanisms of microalgal peptides have been scarcely reported to date. The few
references on the subject refer to extracts or protein hydrolysates, and not to specific peptides.
Microalgal extracts from the species Leptocylindrus danicus (FE322) and L. aporus (FE332) strongly
inhibited the biofilm formation by the bacteria Staphylococcus epidermidis, but did not show cytotoxicity
by standard antibacterial tests [150]. Tejano et al. [151], reported a higher antibacterial activity on
Gram-positive than on Gram-negative bacteria for the pepsin hydrolysate and the peptide fractions from
Chlorella sorokiniana, likely associated to a hindered penetration of the peptide by the outer membrane.

It has been proposed that microalgal compounds with antibacterial activity are released after
the loss of algal integrity, or alternatively induced by the presence of bacteria. For other microalgal
compounds involved in a defense mechanism against predators and pathogenic bacteria, it appears
that the bacterial cell membrane would be the main site of action. There is some evidence of deleterious
effects of fatty acids on the bacterial membrane, causing cell leakage, a reduction in nutrient intake
and a reduction in cellular respiration. The antibacterial action of fatty acids can also be mediated by
the inhibition of the synthesis of bacterial fatty acids; this effect could be bactericidal or bacteriostatic
preventing bacterial multiplication. It has also been reported that antibacterial exometabolites released
by T. suecica inhibited several Vibrio species in vitro causing a rapid decrease in bacterial mobility with
cells elongation and vacuolization [84].

Advances in the knowledge of the mechanisms of action underlying the bactericidal activity of
peptides from cyanobacteria and microalgae will contribute to the development of these peptides as
novel drugs. The role of “omics” techniques in this process, more specially proteomics and peptidomics,
will push forward the boundaries for this field [90,147].

6. Synergy of Cyanobacterial Peptides

Synergy among AMPs in nature is an important asset in evolution, as it ensures a proper
microbicidal function with a spare of components. The issue of microbicidal synergy was extensively
addressed for AMPs from higher eukaryotes [152–154], as well as for bacteriocins [155]. This synergism
may occur under different modalities. A specific molecular recognition between two different AMPs
from Xenopus laevis, magainin and PGLa, led to the formation of a functional heterodimer as the
forming unit of the pore on the bacterial membrane, with an increased lethal permeation over those
formed exclusively by a single AMP species [156]. In this case, the two synergic partners shared a
single target, but synergy may also arise from two different AMPs each one acting on their own and
specific target in a concerted manner. The disruption of bacterial membranes by the human AMP LL-37
allows the histone H2A to gain access into the bacterial cytoplasm to interact with the bacterial genome,
and to halt transcription [157]. Synergism is not limited to AMPs as exclusive partners; other actions or
compounds may synergize with a given AMP to improve the final microbicidal aftermath. Any AMPs,
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regardless of its biological origin, able to disrupt the outer membrane of Gram-negative bacteria,
which is a strong permeability barrier for small size antibiotics, may likely synergize with them,
as described for the bacterial polymyxins B and other AMPS from higher eukaryotes. In addition,
small antibiotics may also synergize with AMPs acting mostly through host immunomodulation, as the
IDR-1018 peptide [158].

Compared to the synergism described for AMPs, there is a dearth of reports on synergy among
cyanobacterial peptides, especially those concerning activity against pathogens of putative clinical
interest. Synergism in cyanobacteria was mainly approached from an environmental perspective,
where peptides were used by cyanobacteria as allelochemicals for a successful striving for survival
among other environmental competitors or plankton grazers.

Portoamides A and B, produced by the mat forming Oscillatoria, act synergistically against
the microalgae C. vulgaris, Ankistrodesmus falcatus, and Chlamydomonas reinhardtii, but also against
the cyanobacteria Cylindrospermopsis raciborskii [159]. Planktothrix sp, other cyanobacteria, produced
the ribosomal microviridins by ribosomal synthesis, and microcystin-LR, a peptide inhibitor for
protein phosphatases 1 and 2A, as well as anabaenopeptins through the non-ribosomal pathway.
When cyanobacterial knock-outs for any of these three peptide families were infected with the
chytrid parasitic fungus pNIVA-CYA126/8, its virulence was higher on knockouts than on the parental
strain [160].

Beyond this environmental frame, synergy among cyanobacterial peptides has also been reported
for antifungal activity on species with clinical or phytological importance. Lobocyclamides A and
B from Lyngbya confervoides act synergistically against Candida spp [161], the cyclic undecapeptides
laxaphycins A and B from Anabaena torulosa against Aspergillus oryzae and Candida albicans [162], and the
same peptides isolated from Anabaena laxa against A. oryzae [163].

Interestingly, the synergism of cyanobacterial peptides for antitumoral activity has been also
reported on human tumoral cell lines for laxaphycins A and B from A. torulosa, and for laxaphycins A
and B4 from Hormothamnion enteromorphoides [162,164]. Protoamides A and B showed synergism on
the human cancer cell line H460 [159].

7. Other Relevant Functions of Peptides from Cyanobacteria and Microalgae

In addition to their antibacterial activity, the peptides produced by cyanobacteria and microalgae
also have other fields of application, being one of the most prominent treatments of cancer.
Some representative examples follow:

7.1. Antitumoral Activity

The NRPS and NRPS-PKS described on the cyanobacteria of the genus Nostoc, were responsible
for the production of bioactive peptides (reviewed by Fidor et al. [120]). Among the extensive peptide
armamentarium of this genus are cryptophycins; cyclic 16mer depsipeptides are almost exclusively
produced by this genus, with activity against different cancer lines. Other peptides of the genus Nostoc
are the nostocyclopeptides, cyclic heptapeptides characterized by an imino linkage between the first
residue (Tyr) and the aldehyde hydrate of the seventh residues. They induce apoptosis in tumoral cell
lines, endorsing their feasible use as anticancer compounds.

The heptapeptide LLAPPER (MW = 796.4) was obtained by in vitro gastrointestinal digestion
of P. lutheri [165]. After its chemical synthesis, the peptide was tested on HT1080 fibrosarcoma cells,
with a decrease of the transcript encoding the matrix metalloproteinase B/MMP9, an enzyme involved
in the degradation of collagen type IV, through inactivation of the NFκB pathway, as well as blocking
of JNK and p38 phosphorylation. Matrix metalloproteinases are involved in the degradation of the
extracellular matrix, to promote metastasis in cancer.

Interestingly other cyanobacterial peptides promotes differentiation, as the peptide dubbed PPLF
obtained from P. lutheri fermentation by Qian et al. [166]. PPLF induced osteoblastic differentiation in
the human cell line MG-63 at 50 and 100 µg/mL.
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7.2. Antihypertensive Activity

Heo et al. [167] hydrolyzed Spirulina with a mixture of digestive enzymes (pepsin, trypsin and
chymotrypsin). Afterwards, the heptapeptide TMEPGKP (MW = 759) was isolated from a fraction
with inhibitory activity on the angiotensin I converting enzyme (ACE). By molecular modelling and
functional assays, this peptide resulted as a non-competitive inhibitor of ACE, and decreased the
phosphorylation of p38 MAP Kinase (MAPK), of the expression of the inducible nitric oxide synthase
(iNOS) with the concomitant decrease of nitric oxide (NO) production. The levels of reactive oxygen
species (ROS), and endothelin-1 (ET-1), also decreased after peptide treatment. Altogether, these results
make this heptapeptide a good candidate as antihypertensive compound. In addition, the peptide
showed an inhibitory effect on the proliferation of EA.hy926 cells at 125 and 250 µM.

Carrizzo et al. [168] described the fractionation of Spirulina lysates by a treatment that simulates
gastrointestinal digestion (GID). From these extracts, four peptides were obtained and characterized
by mass spectrometry (SP(3–6)). In a further step, these peptides were synthesized by Fmoc chemistry
and tested for vasorelaxation in an ex vivo model consisting of mouse mesenteric arteria. SP6 peptide
(GIVAGDVTPI, MW = 940.52), showed a dose dependent vasorelaxation effect and antihypertensive
activity through the activation of endothelial nitric oxide synthase and NO production.

Suetsuna and Chen [169] searched for peptide fractions from the peptic digest of the microalgae
S. platensis and C. vulgaris and to be tested for their antihypertensive activity through ACE inhibition.
A total of ten peptides (three to five residues) were isolated, two of them shared by both algae and the
other four sequences specific for each species. The two shared tripeptides FAL and AEL showed IC50

on ACE of 26.3 and 57.1 µM, respectively. The peptides specific for S. platensis: IAE, IAPG, VAF have
IC50 of 34.7, 11.4 and 35.8 µM, respectively, and the IC50 for those exclusively found in C. vulgaris:
IVVE, AFL, VVPPA, were 315.3, 63.8 and 79.5 µM, respectively.

Hot water extract of the microalgae Chlorella sorokiniana was hydrolyzed with proteinase N,
and tested for ACE inhibition [170]. Four dipeptides were isolated and sequenced by automated
Edman degradation. In a further step, the four peptides were synthesized by solid phase peptide
synthesis (SPPS) and tested for their ACE inhibitory activity: WV, VW, IW, and LW with IC50 on ACE
of 307.6 µM, 0.58 µM, 0.50 µM, and 1.11 µM. Their low IC50 values plus their small size make them
extremely appealing candidates as hypertensive agents. Furthermore, they were impervious to in vitro
gastric digestion.

The peptide YMGLDLK (MW = 839) from the microalgae Isochrysis galbana hydrolyzed with
alcalase, flavourzyme, pepsin, and trypsin, showed an IC50 on ACE of 36.1 µM. Additionally the
peptide was stable after incubation with gastric enzymes (pepsin, chymotrypsin and trypsin) [171].

The hydrolysate of the marine microalga, N. oculata obtained by digestion with several
enzymes, such as pepsin, trypsin, α-chymotrypsin, papain, alcalase, and neutralase were used
by Samarakoon et al. [172] in the search for ACE inhibitory peptides. The pepsin hydrolysate exhibited
the highest ACE inhibitory activity. From this lysate, two ACE inhibitory peptides were purified:
GMNNLTP (MW = 728; IC50 = 123 µM) and LEQ (MW = 369; IC50 = 173 µM). These peptides were
proposed as novel inhibitory agents in the functional food industry.

7.3. Anti-Inflammatory Activity

The group of Qian and Jung sought to find active compounds from the marine microalga
Pavlova lutheri after fermentation with the yeast Hansenula polymorpha. They reported the in vitro
antioxidant activity of the fermented microalga [173]. In subsequent works [174], reduction of oxidative
stress was achieved by the tetrapeptide MGRY (MW = 526), that works as a scavenger for free
radicals, with an IC50 of 0.285 mM for the DPPH antioxidant test, 0.068 mM for hydroxyl radicals and
0.988 mM for hydrogen peroxide. The peptide also showed inhibitory properties in melanogenesis
process when tested in B16F10 melanoma cells. As such, its use was proposed in cosmeceutical and
pharmaceutical applications.
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7.4. Antiviral Activity

Cyanovirin-V, a lectin of 101 residues and two disulfide bridges, showed potent activity against
human immunodeficiency viruses (HIV-1 and 2), simian immunodeficiency virus (SIV), and other
enveloped viruses [120].

To note, the inhibition of ACE activity described for some cyanopeptides, make them putative
candidates for competitive inhibition of the SARS-CoV-2 virus into ACE, the main receptor used for
this pandemic virus to infect human cells.

7.5. Antifouling Activity

Portoamides are cyclic dodecapeptides from the cyanobacterium Phormidium sp. They were
used for their antifouling activity with an EC50 of 3.16 µM against the settlement of the larvae of the
mussel Mytilus galloprovincialis [132]. Portoamides were nontoxic against the mussel larvae, therefore a
deterrent effect towards surface colonization was instead proposed. The results of previous reports of
portoamides’ activity against the microalgae C. vulgaris (IC50 12.8 µg/mL), Ankistrodesmus falcatus (IC50

24.7 µg/mL) and C. reinhardtii (IC50 12.6 µg/mL), and the cyanobacterium Cylindrospermopsis raciborskii
(IC50 28.4 µg/mL) are also described.

8. Synthetic Approach

Synthetic approach has become an almost mandatory companion to the discovery of new peptides.
The synthesis of peptides in particular is an area of wide development in the current pharmacology.
The main goal of this technique for cyanobacterial and microalgal peptides is to overcome the frequent
extremely low amount of isolated natural peptides, that limits further studies on their mechanism of
action, on the definition of SAR studies, and of a feasible pharmacological development. Peptides have
become valuable drug candidates, largely driven by improvements in their synthetic methodology.

Peptide chemistry has developed on two main areas: biosynthesis and chemical synthesis.
A special number of Chemical Reviews dealt with the first strategy, with excellent reviews on the
subject and some resulting applications [175–178].

However, the chemical synthesis is the first-choice approach as it allows to obtain pure products
with good yield, needed to establish its activity in an unambiguous way, and pursue the establishment
of its mechanism of action.

Solid phase peptide synthesis is a well-established methodology developed more than 50 years
ago [179,180]. Nowadays, the Fmoc/tBu strategy is the most used [181,182]. Several approaches have
been carried out to optimize the process, to improve its efficiency, and more recently to develop an
ecofriendly approach, more compliant with the green chemistry principles [41,42,183,184].

Peptide synthesis can be carried out manually, with the possibility of simultaneously synthesizing
many sequences by using the “tea bag” protocol [185,186], or also in an automated way where
developments such as microwave [187,188], and ultrasonication [189] procedures shortened the time
of synthesis and reduced solvent consumption as well as waste generation, additionally allowing the
synthesis of longer peptides.

These methodologies were straightforwardly applied to peptides derived from microalgae, with a
lower complexity, and in general devoid of posttranslational modifications, due to their ribosomal
origin. In contrast, non-ribosomal peptides from cyanobacteria have a much higher structural and
compositional complexity, broadening their chemical space, due to the versatility and diversity
provided by non-ribosomal synthesis. Although the synthesis of cyanobacterial peptides requires
morecomplex strategies, it has been successfully approached for some peptides.

Inguimbert’s group performed the chemical synthesis of cyclic lipopeptides of the laxaphycin
family, isolated from several cyanobacterial species. In a first step, the dodecapeptide laxaphycin B
was synthesized [190], and assayed for cytotoxicity against a wide range of cancer cell lines (IC50

ranging from 0.2 to 6.0 µM). An automated SPPS with an on-resin “head-to-tail” cyclization of the
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linear precursor of laxaphycin B (laxaB) was used. Synthesis optimization was achieved by the use
of 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyl uronium hexafluororophosphate (HATU) as a
coupling reagent. Finally, the head to tail cyclization was carried out with DIC/Oxyma to prevent
epimerization. This strategy was also applied for the synthesis of lyngbyacyclamide A. NMR analysis
confirmed that the structures of natural and synthetic peptides were identical. In a later work, the same
group synthesized other laxaB analogues [191], by replacement of the non-natural amino acids with
commercially available counterparts (2-aminodecanoic acid (Ade): β-alanine, the 3-hydroxyleucines
(Hle): threonine, and the 3-hydroxyasparagine (HAsn): asparagine. They also implemented an
automated microwave SPPS protocol using the same reagents and conditions determined in the
previous work. The cyclization residues were selected according to retrosynthetic analysis, and the
final product was purified and characterized as before. Although the peptide obtained did not exactly
match the expected results, a synthesis and characterization protocol was established.

The synthesis of the peptide mozamide A, produced by a marine sponge of the genus Theonella
was approached by Junk and Kazamaier [192]. This peptide is a hydroxylated brunsvicamide, a family
of peptides isolated from the cyanobacteria Tychonema, but differing in the configuration of Val, Lys and
Ile amino acids. Interestingly, the right configuration of these residues was confirmed in the synthetic
peptide, and established a synthetic scheme for these types of compounds.

Synthesis of lipocyclopeptides, such as the cyclic undecapeptide trichromamide A (TcA) from
the cyanobacteria Trichormus sp., was performed by Gaillard et al. [193]. SPPS was carried out on a
clorotrytil resin to which the uncommon residue aminodecanoic acid (Ada) was anchored and the
cyclization step was made in solution with PyOxym/Oxyma. They reported the synthesis of TcA and a
second compound, possibly a diastereomer, with a good yield.

Additionally, multiple approaches can be applied to improve the biological performance of
peptides, with a special focus to improve their biological stability. This is achieved, by replacement
of amino acids that are not susceptible to enzymatic hydrolysis [194], by structural restriction,
by cyclization, or by stapling [46,195].

An interesting research area is related with the use of metallic elements in association with
peptides to enhance their activity for applications in biomedicine [196–198].

In addition to the development in synthesis, there are also advances in peptide purification and
analysis methodologies that include techniques, such as HPLC, MS, circular dichroism (CD), and nuclear
magnetic resonance (NMR), which can be helpful in studies of structure-activity relationship or in the
determination of mechanisms of action [184,199–201].

9. Conclusions

The deep global crisis produced by antimicrobial resistance (AMR) has led to the search for new
compounds to provide alternative ways for the development of antibacterial agents that exploits
mechanisms of action different from traditional antibiotics.

This report has reviewed the wide variety of peptide compounds produced by cyanobacteria
and microalgae, both extremely versatile microorganisms, with activity against human and aquatic
pathogens, their structural diversity, and their mechanisms of action.

Cyanobacteria produce a wide variety of peptides, due to their extraordinary synthetic plasticity,
endowed by their capacity to synthesize not only ribosomal peptides, but also non-ribosomal and
polyketide-associated peptides. Additionally, their adaptability makes them easily cultured in the
laboratory, requiring a low amount of inorganic nutrients, producing different compounds under
different experimental conditions.

In contrast, there is a scarce knowledge on how microalgae face bacterial infection and their
antibacterial peptides involved. Despite the wide diversity of microalgal species, only few of them
have been cultivated and explored for their biotechnological potential. The insight on their exploitation
as an appealing source for novel antimicrobial peptides has just started.
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A major advantage for many antimicrobial peptides is their low propensity to generate resistance,
due to their multiple mechanisms of action, and the synergy among them. The implementation of
cyanobacterial peptides as candidates for antibacterial drugs, required a careful and rational planning
where several factors are involved; among these, the selection of the target bacteria, and MIC or MBC
expected or required are essential. Concerning the first one, an especial effort is addressed for those
species responsible for a higher a health risk against human health, mostly due to the rise of resistance
and depletion of alternative antibiotics, according to WHO criteria [202] as those included in the group
called ESKAPE [203]. Particular attention should be given for those peptides with a broad spectrum of
activity. Concerning activity, an ideal compound should have an IC50 25 µM or 10 µg/mL, whereas
for extracts at the initial steps of purification, a standard cut-off should be below 100 µg/mL, similar
to the criteria established for natural compounds [204–207]. In this review, we explored the peptides
produced by cyanobacteria and microalgae, mainly as antibacterial, with a special focus on compounds
with MIC values below those aforementioned (Table 3), as the most appealing candidates for their
further pharmacological development and clinical implementation.

The impressive advances both in isolation and characterization of peptides runs parallel to the
development of technologies devoted to these tasks. Among them, new and improved chemical
synthesis of peptides, mass spectrometry, “omics” techniques, and bioinformatics tools for in silico
selection and identification of feasible starting candidates are crucial. Furthermore, concerning
antibacterial assays, the implementation of microfluidics and robotized assays, allow high-throughput
screenings with a spare of the peptide required. Likewise, new strategies to improve the stability
and bioavailability of peptides were reported, to curb these major shortcuts that jeopardizes the
effectiveness of peptides as new drugs. Nowadays, very few peptides derived from cyanobacteria or
microalgae overcome the initial steps of the pharmacological development, but it is likely that this
is only tip of iceberg for a massive exploitation of these organisms as a new source of antibacterial
compounds and a promising alternative for current antibiotics in the future.
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