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Ischemic stroke (IS) is one of themajor causes of death and disability worldwide,

and effective diagnosis and treatment methods are lacking. RNA methylation, a

common epigenetic modification, plays an important role in disease

progression. However, little is known about the role of RNA methylation

modification in the regulation of IS. The aim of this study was to investigate

RNA methylation modification patterns and immune infiltration characteristics

in IS through bioinformatics analysis. We downloaded gene expression profiles

of control and IS model rat brain tissues from the Gene Expression Omnibus

database. IS profiles were divided into two subtypes based on RNA methylation

regulators, and functional enrichment analyses were conducted to determine

the differentially expressed genes (DEGs) between the subtypes. Weighted gene

co-expression network analysis was used to explore co-expression modules

and genes based on DEGs. The IS clinical diagnosis model was successfully

constructed and four IS characteristic genes (GFAP, GPNMB, FKBP9, and

CHMP5) were identified, which were significantly upregulated in IS samples.

Characteristic genes were verified by receiver operating characteristic curve

and real-time quantitative PCR analyses. The correlation between characteristic

genes and infiltrating immune cells was determined by correlation analysis.

Furthermore, GPNMB was screened using the protein-protein interaction

network, and its regulatory network and the potential therapeutic drug

chloroquine were predicted. Our finding describes the expression pattern

and clinical value of key RNA methylation modification regulators in IS and

novel diagnostic and therapeutic targets of IS from a new perspective.
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Introduction

Ischemic stroke (IS) is a serious cerebrovascular disease

characterized by a high disability rate and mortality, imposing

a massive burden on society (Zhou et al., 2019). Current evidence

shows that the focus of IS treatment is emergency intervention

and long-term secondary prevention (Herpich and Rincon,

2020). However, owing to the narrow therapeutic window and

hemorrhage-related complications, the clinical treatment options

for IS are very limited and only a minority of patients benefit

(Henderson et al., 2018). Therefore, effective diagnostic

biomarkers and treatments are urgently needed to improve

early diagnosis, reduce mortality, and improve prognosis of IS.

Several studies have been performed to improve the

understanding of the molecular mechanisms of IS based on

microarray and bioinformatics analysis. A previous study

isolated 10 hub genes and five key miRNAs between IS and

normal control groups by analyzing two datasets (GSE58294 and

GSE16561) (Yang et al., 2022). Li et al. (2020) studied IS from the

perspective of immune regulation and identified immune-related

gene expression modules and hub genes in the peripheral blood

of patients with IS, which might become important targets for

immunotherapy of IS. However, these studies merely identified

differentially expressed genes (DEGs), without exploring the

detailed molecular mechanisms and potential drug molecules.

As a research hotspot in recent years, the post-transcriptional

chemical modification of RNA is rapidly emerging as a pivotal

player in regulating gene expression. To date, more than

170 types of RNA modifications have been identified that

modify coding and noncoding RNAs, which account for more

than 50% of methylations (Boccaletto et al., 2022). RNA

methylation, an abundant and widely studied epigenetic

modification, plays an important role in modulating multiple

biological functions (Zhou et al., 2020). The occurrence of RNA

methylation is reversible and dynamically regulated by groups of

proteins called RNA-modifying proteins, including “writers”

(methyltransferases), “erasers” (demethylases), and “readers”

(methyl binding proteins) (Zaccara et al., 2019). N1-

methyladenosine (m1A), N6-methyladenosine (m6A), and 5-

methylcytosine (m5C) are common types of eukaryotic RNA

methylation modifications (Xu et al., 2021), among which m6A

RNA methylation has been reported to be highly enriched in the

mammalian brain and closely associated with the pathological

mechanism of IS (Yu et al., 2021). For instance, Xu S. et al. (2020)

found that lnc-D63785 m6A methylation leads to the

accumulation of miR-422a and neuronal death in an oxygen-

glucose deprivation/reperfusion model. Moreover, as one of the

m6A “readers,” YTHDC1 has been found to alleviate brain injury

through the PTEN/Akt pathway and provide a potential

therapeutic target for treating IS (Zhang Z. et al., 2020).

However, as new types of RNA methylation, the relationship

between m1A- and m5C-related regulators and IS has not been

reported, and their mechanisms need to be further explored.

A growing body of research has confirmed that the immune

microenvironment plays a vital role in IS (Zera and Buckwalter,

2020; Liu et al., 2021). Following IS, peripheral immune cells

migrate through the broken blood-brain barrier to the damaged

area and activate host immune cells, such as microglia (Chavda

et al., 2021). Infiltrated inflammatory cells and the activated

immune response lead to the dysfunction of the immune

microenvironment, which dramatically hinders neurological

functional recovery (Shi et al., 2022). Further evidence

indicates that RNA methylation modifications are involved in

immune regulation, especially in the tumor immune

microenvironment. For example, m5C regulators have been

shown to promote the expression and infiltration of CD8+

T cells and are associated with poor prognosis in patients

with lung squamous cell carcinoma (Pan et al., 2021). The

m6A-binding protein YTHDF1 facilitates tumor immune

escape by impairing the cross-presentation of tumor

neoantigens and cross-priming of CD8+ T cells (Han et al.,

2019). However, the role of RNA methylation regulators in

immune infiltration in IS have yet to be explored.

In this study, we first comprehensively analyzed the

GSE97537 dataset to identify differentially expressed RNA

methylation-related regulators (m1A, m6A, and m5C) and

evaluate immunocyte infiltration in IS and control samples,

and we identified IS-related subtypes. Gene ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses were performed to identify

DEGs between subtypes. Weighted gene co-expression

network analysis (WGCNA) was used to identify the co-

expressed genes and modules. Then, we constructed a clinical

diagnostic model of IS and identified characteristic genes.

Protein-protein interaction (PPI) networks, transcription

factor (TF) correlation, competing endogenous RNA (ceRNA)

networks, and potential drug molecules for IS therapy were

identified based on characteristic genes. Our study may

provide insight into the role of RNA methylation in

pathogenesis and immune infiltration in IS.

Materials and methods

Data acquisition and preprocessing

Gene expression profile data, focusing on ischemic

reperfusion, were obtained from the Gene Expression

Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). In

total, 22 samples from GSE97537 (7 IS and five control rat

samples) (Wang et al., 2015) and GSE61616 (5 IS and five

control rat samples) were selected. The same platform,

GPL1355, was used for the two datasets. Detailed information

from GSE97537 and GSE61616 is listed in Supplementary Table

S1. RNA methylation-related regulators from previous studies,

including 11 m1A methylation regulators (Gao et al., 2021),
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21 m5C methylation regulators (Chen et al., 2020), and 23 m6A

methylation regulators (Zhao et al., 2017; He et al., 2019) were

collected. The “Affy” package (Ritchie et al., 2015) was utilized to

normalize gene expression values from the two datasets. Nextly

Log2 transformation was also carried out. Principal component

analysis (PCA) was performed to detect the distribution of

samples in the two groups. GSE97537 was considered the

primary analysis dataset and training set. GSE61616 was

chosen as the testing set to check the diagnostic ability of this

diagnosis model.

Screen of RNA methylation regulators

The differential expression analysis and visualization of m1A,

m5C, and m6A methylation regulators between IS samples and

control samples were performed using the “limma” and “pheatmap”

packages. The “RCircos” package (Zhang et al., 2013) in R, which

can display the chromosomal location of DEGs, was used. Next, the

correlation and interaction between DEGs of m1A, m5C, and m6A

methylation regulators were calculated based on the Pearson

algorithm. Gene interaction networks showing these factors were

drawn using the “Corrplot” package.

Infiltration characteristics of the immune
microenvironment in IS

CIBERSORTx (https://cibersort.stanford.edu/), an R tool for

the deconvolution of expression matrices of immune cell

subtypes, was designed by combining linear support vector

regression and immune infiltration theory (Chen et al., 2018).

We used the CIBERSORTx algorithm to profile the landscape of

22 types of immune cells in the immune microenvironments of

the IS and normal groups according to gene expression levels in

datasets. The correlation among immune cells was considered

very influential to understand immune pathway and function.

Therefore, the correlation coefficients between immune cells

were calculated by Spearman analysis and visualized through

heatmaps. Statistical differences in the proportion of infiltrating

immunocytes between IS and control groups were calculated by

Wilcoxon test using R software (v. 3.5.1).

Identification of IS-related molecular
subtype

Consensus clustering was performed using the

“ConsensusClusterPlus” package (Wilkerson and Hayes, 2010)

to identify IS subgroups based on differentially expressed RNA

methylation regulators. By combining consensus cumulative

distribution function (CDF) plots, delta area plots, tracking

plots, and clustering heatmaps, the optimal number of clusters

was identified. These clusters were defined as IS-related

molecular subtypes.

GO and KEGG enrichment analyses

The “limma” package was used to screen DEGs between the

subtypes. The cut-off criteria for statistical significance were

adjusted p value (Padj) < 0.05 and logFC >1. GO analysis

(Ashburner et al., 2000) is a major bioinformatics tool

designed for complex functional enrichment analyses,

composed of annotations of biological process (BP), molecular

function (MF), and cellular component (CC). KEGG (Kanehisa

and Goto, 2000), an integrated database resource, is used to

understand high-level functions and utilities of biological

systems from genomic and molecular-level information. GO

annotation and KEGG pathway enrichment analyses of DEGs

were performed using the “clusterProfiler” package (Yu et al.,

2012). Results with a false discovery rate <0.05 were considered

statistically significant. The pathway with the highest enrichment

of DEGs in KEGG analysis was visualized using the “Pathview”

package (Luo and Brouwer, 2013).

Gene set enrichment analysis (GSEA) and
gene set variation analysis (GSVA)

GSEA, an analytical method based on the entire gene expression

matrix, was conducted to derive the significant differences in

biological processes between the IS subtypes. Reference gene sets,

“c2. all.v7.5.2. entrez.gmt,” were downloaded from the Molecular

Signature Database (Liberzon et al., 2015). Padj < 0.05 and |

normalized enrichment score| > 1 were considered to indicate

statistical significance. GSVA, a nonparametric unsupervised

analysis method, was used to evaluate different pathways

enriched in the different samples. In our study, GSVA was

performed using the “GSVA” package (Hänzelmann et al., 2013).

WGCNA

WGCNA is a systems biology method that can be used to

identify modules of highly correlated genes among different

samples and identify candidate biomarkers or potential

therapeutic targets based on the association of modules to one

another and to phenotype (Yue et al., 2016). The top 1,000 genes

in gene expression data of IS samples, which were ranked by

median absolute deviation (MAD), were analyzed using the

“WGCNA” package (Langfelder and Horvath, 2008). Then, we

removed outliers and set an optimal soft threshold. The settings

of minModuleSize = 25 and set height = 0.15 were used to obtain

the final co-expression modules. Finally, genes in the most

important modules were screened.
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Construction of a diagnostic model

To identify characteristic genes associated with IS and

analyze their diagnostic ability, least absolute shrinkage and

selection operator (LASSO) regression was performed. A

diagnostic model was constructed based on the training

dataset, GSE97537. Further validation of this model was

performed on the GSE61616 dataset. Receiver operating

characteristic (ROC) curves drawn using the “ROCR” package

(Sing et al., 2005) were used to illustrate the diagnostic ability of

this model on the test set.

Correlation analysis between
characteristic genes and immune cell
infiltration

The expression levels of characteristic genes associated with

IS and immune cell infiltration score were integrated. Spearman

correlation analysis was used to determine the correlation

between characteristic genes and immunocyte fractions.

Detailed results were displayed as a lollipop plot.

Establishment of an animal model and RT-
qPCR

All experimental procedures were approved by the Animal

Experimental Ethics Committee of Tianjin Medical University

General Hospital. Male C57BL/6J mice (aged 6–8 weeks,

20–25 g) were used to establish the middle cerebral artery

occlusion (MCAO) animal model. Specific operations and

evaluation methods are detailed in a previous study (Espinosa

et al., 2020). Sham-operated mice underwent the same surgical

procedures except for the occlusion of the middle cerebral artery.

Twenty-4 hours after reperfusion, mice were sacrificed by

euthanasia and the cerebral cortex of the lesioned side was

removed from the mice. Total RNA was extracted from the

cortex using TRIzol reagent (Invitrogen, Carlsbad, CA,

United States ) and used as a template for reverse

transcription into cDNA using a cDNA synthesis kit (Thermo

Scientific, Waltham, MA, United States ). Then, RT-qPCR

amplification was carried out. GAPDH was used for

normalization. Primer sequences are shown in Supplementary

Table S2.

Construction of protein-protein
interaction networks and hub gene
regulatory networks

PPI networks were constructed in the Search Tool for the

Retrieval of Interacting Genes (STRING) online database (http://

string-db.org; v. 10.5). Visualization was performed in Cytoscape

(v. 3.9.0) (Shannon et al., 2003). Maximal clique centrality

(MCC) was calculated using CytoHubba (Chin et al., 2014), a

Cytoscape plugin. Genes with the highest MCC value were

selected as hub genes.

Prediction of ceRNA network

The ENCODE database (https://www.encodeproject.org/)

(Davis et al., 2018) was used to screen possible TFs of the hub

gene. To explore the potential relationship between the hub gene

and various noncoding RNAs, we constructed a ceRNA network

using Cytoscape. The interaction information between mRNA

and miRNA and between miRNA and lncRNA were predicted

using miRTarBase (Huang et al., 2022) and StarBase database (Li

et al., 2014), respectively.

Construction of drug-gene network and
molecular docking

We used the Comparative Toxicogenomics Database

(Davis et al., 2021) (http://ctdbase.org/) to predict drug

molecules that might be useful in the treatment of IS by

targeting hub genes. Cytoscape was used to visualize the

interaction network between hub genes and drug molecules.

According to the targeting relationship and reference scores of

these potential components, a potential therapeutic drug was

identified. PubChem (https://pubchem.ncbi.nlm.nih.gov/)

and PDB (http://www.rcsb.org/) databases (Burley et al.,

2017), which contain three-dimensional structures of small

molecules and large-sized proteins, were searched and

detailed structures for drug and hub mRNA and proteins

were obtained. Autodock (v. 4.2.6) and Pymol (v. 2.3.0) were

used to calculate and visualize the results of docking for drugs

and mRNA/proteins. To verify docking results, YASARA was

utilized through another algorithm (Krieger and Vriend,

2014). I Mutant3.0 was also utilized to identify function of

important binding location.

Statistical analysis

All data processing and analyses were completed in R

software (v. 4.1.1). Statistical significance between non-

normally distributed variables was analyzed using the Mann-

Whitney U test (Wilcoxon rank sum test). Correlation

coefficients among different genes were calculated using

Pearson correlation analysis. Spearman correlation analysis

was used to calculate the correlation coefficients between

different immune cells and with genes. p < 0.05 was

considered to indicate statistically significant results.
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Results

Analysis flow chart and data preprocessing

The analysis flow chart of this study is shown in Figure 1.

Gene expression data of the two datasets were normalized to

eliminate the batch effect (Supplementary Figures S1A, B).

According to the results of PCA, IS samples and control

samples were well-classified (Supplementary Figures S1C, D).

Expression profile and chromosomal
localization of m1A, m5C, and m6A
regulators in IS.

DEGs of m1A, m5C, and m6A regulators (readers, writers,

and erasers), with significant differences, were clearly separated

in the heatmap according to groups (Supplementary Figure S2A).

Detailed chromosomal locations of DEGs (6 m1A regulators,

15 m5C regulators, and 13 m6A regulators) were displayed using

a chromosomal circle diagram (Supplementary Figure S2B–D).

m1A-related genes were mainly located on chromosomes 1, 3, 8,

11, and 14; m5C-related genes were mainly located on

chromosomes 2, 3, 19, and 18; and m6A-related genes were

mainly located on chromosomes X, 17, and 7. The correlation

and interaction among DEGs are exhibited in Figures 2A–C.

DEGs belonging to m1A, m5A, and m6A could be linked in each

network.

Immunocyte infiltration and correlation in
IS and control samples

The CIBERSORTx algorithm was used to calculate the

abundance ratios of 22 types of immune cells, and cells with

abundance ratios of 0 were removed in the subsequent analysis

(Figure 3A). The correlation coefficients between immune cells

were analyzed. Positive relationships were observed between

M0 macrophages and follicular helper T cells and between

gamma delta T cells and resting mast cells. Negative

relationships were observed between regulatory T cells and

follicular helper T cells, M1 macrophages and resting NK

cells, and M2 macrophages and M0 macrophages (Figure 3B).

Significant differences in the proportion of immune cells between

IS and control samples were calculated. Differences in naïve

B cells, memory B cells, follicular helper T cells, activated NK

FIGURE 1
Protocol flowchart.
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cells, M0 macrophages, activated mast cells, neutrophils (p <
0.05), and T cells regulatory (Tregs) (p < 0.01) between IS and

control samples were significant (Figure 3C).

Identification of IS subtypes based on the
RNA methylation-related regulators

Gene expression profiles of 34 differentially expressed

RNA methylation-related regulators were constructed to

investigate the IS molecular subtypes. The CDF plots,

delta area plots, and tracking plot Supplementary Figure

S3A–C) were used to assess the appearance of different k

values. Three kinds of selection on k (k = 2, 3, 4) and the

probable separating subtypes in ConsensusClusterPlus are

separately shown in Supplementary Figure S3D–F. The

optimal division was reached when k = 2, thus, two IS

subtypes were identified.

GO functional enrichment analysis and
KEGG pathway analysis

GO functional enrichment analysis and KEGG pathway

analysis were performed on 28 DEGs between the IS subtypes

to obtain more detailed information on their potential

functions and correlated pathways. According to the results

of GO functional enrichment analysis, the DEGs were mainly

FIGURE 2
Correlation between differentially expressed genes. Correlation network diagram of differentially expressedm1A regulators (A), m5C regulators
(B), and m6A regulators (C) in ischemic stroke samples.
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enriched in BP: regulation of neurotrophin TRK receptor

signaling pathway, neurotrophin signaling pathway,

transmission of nerve impulse, and regulation of ion

transmembrane transport; in CC: postsynaptic membrane;

and in MF: protein tyrosine kinase activity (Figure 4A).

Hypertrophic cardiomyopathy, selected as the pathway with

the highest score in KEGG analysis, is shown in

Supplementary Figure S4. The overall results of GO and

KEGG analysis are shown in Table 1, 2.

GSEA and GSVA

The top three pathways with the highest and lowest normalized

enrichment score are shown in Figure 4B (highest:

LEIN_NEURON_MARKERS, MIKKELSEN_MEF_HCP_WITH_

H3K27ME3, and KIM_ALL_DISORDERS_CALB1_CORR_UP;

lowest: MCLACHLAN_DENTAL_CARIES_UP, REACTOME_

RRNA_PROCESSING, and VERHAAK_GLIOBLASTOMA_

MESENCHYMAL). The overall results of GSEA are shown in

Table 3. The top 10 enrichment results in GSVA with the

highest MAD are shown in Figure 4C.

WGCNA

The “WGCNA” package in RStudio was used to identify

co-expressed genes and modules. The clustering results based

on characters showed good clustering, with no outlier samples

were detected (Supplementary Figure S5A). In total, five

modules were identified in WGCNA (Supplementary Figure

S5B). By comparing the correlation between module genes

and the two IS subtypes, blue modules with the largest

correlation difference were identified as the most important

modules (Figure 5A). DEGs in blue modules were

subsequently analyzed.

FIGURE 3
Analysis of immune infiltration in ischemic stroke (IS). (A) Overall expression of 20 infiltrating immune cell types in IS and control groups. (B)
Correlation heat map of immune infiltrating cells. (C) Differential expression of infiltrating immune cells between the groups.
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FIGURE 4
Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA) and gene set variation analysis
(GSVA) of DEGs between two IS subtypes. (A) Items with minimum Padj of GO enrichment analysis (biological processes, cellular components, and
molecular functions) and KEGG pathway enrichment. (B) Clustering of the top three pathways with the highest and lowest normalized enrichment
scores in GSEA. (C)Heatmap of the top 10 enrichment results with the highest median absolute deviation of GSVA; red represents upregulation
and blue represents downregulation.
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Construction of clinical diagnostic model

Datasets GSE97537 and GSE61616 were regarded as the

training and testing sets, respectively. With the increase of

parameter λ, the selected characteristic parameters decreased

and absolute value of coefficients increased (Supplementary

Figure S5C). After the simulation and selection of

characteristic parameters, two models were obtained

(optimal model and minimalist model) (Supplementary

Figure S5D). We selected the minimalist model to

construct the diagnostic model and identified four genes as

characteristic genes of IS, namely, GFAP, GPNMB, FKBP9,

and CHMP5. Then, model scores of IS and control groups in

the two datasets were analyzed, and the results showed

significant differences between two groups (Wilcoxon test,

p < 0.05) (Figures 5B,C). The ROC curves of the training and

testing sets were plotted to determine the area under the curve

(AUC) value to verify the accuracy of the diagnostic model.

The AUC values were 1 and 0.748, respectively

(Figures 5D,E).

TABLE 1 GO enrichment analysis.

GO Enrichment Results

Category ID Description BgRatio pvalue p.adjust qvalue geneID Count

BP GO:
0038179

neurotrophin signaling pathway 43/17859 0.000022 0.02064 0.015211 Wasf1/Ntrk3/Agt 3

BP GO:
0051386

regulation of neurotrophin TRK receptor signaling
pathway

16/17859 0.000188 0.076186 0.056146 Wasf1/Agt 2

BP GO:
0019226

transmission of nerve impulse 96/17859 0.000247 0.076186 0.056146 Cacng3/Ntrk3/Agt 3

BP GO:
0048011

neurotrophin TRK receptor signaling pathway 31/17859 0.000721 0.157632 0.116168 Wasf1/Agt 2

CC GO:
0045211

postsynaptic membrane 322/18211 0.006574 0.158162 0.12973 Cacng3/Ntrk3/
Lzts1

3

CC GO:
0043235

receptor complex 395/18211 0.011483 0.158162 0.12973 Cacng3/Ntrk3/
Tyro3

3

CC GO:
0014069

postsynaptic density 425/18211 0.013980 0.158162 0.12973 Cacng3/Rnf112/
Lzts1

3

CC GO:
0031209

SCAR complex 12/18211 0.014405 0.158162 0.12973 Wasf1 1

MF GO:
0004714

transmembrane receptor protein tyrosine kinase
activity

106/16532 0.000361 0.020574 0.017646 Ntrk3/Tyro3/Matk 3

MF GO:
0019199

transmembrane receptor protein kinase activity 123/16532 0.000558 0.020574 0.017646 Ntrk3/Tyro3/Matk 3

MF GO:
0004713

protein tyrosine kinase activity 124/16532 0.000571 0.020574 0.017646 Ntrk3/Tyro3/Matk 3

MF GO:
0016247

channel regulator activity 145/16532 0.000901 0.021156 0.018146 Cacng3/Fxyd7/Agt 3

TABLE 2 KEGG enrichment analysis.

KEGG Enrichment Results

ID Description BgRatio pvalue p.adjust qvalue geneID Count

rno05410 Hypertrophic cardiomyopathy 91/8947 0.0014946 0.023111 0.01509998 Cacng3/Agt 2

rno05414 Dilated cardiomyopathy 94/8947 0.0015939 0.023111 0.01509998 Cacng3/Agt 2

rno04722 Neurotrophin signaling pathway 120/8947 0.0025834 0.024973 0.01631621 Ntrk3/Matk 2

rno04261 Adrenergic signaling in cardiomyocytes 148/8947 0.003903 0.028296 0.01848773 Cacng3/Agt 2
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Correlation analysis between
characteristic genes and immune cell
infiltration

The correlation of characteristic genes and immunocyte

fractions was determined by Spearman correlation analysis

and the results are displayed as a lollipop plot

(Figures 6A–D).

Characteristic genes were verified by RT-
qPCR

AnMCAOmouse model was established to simulate IS, and RT-

qPCR was performed to verify the expression of the four characteristic

genes in the cerebral cortex of MCAO and Sham-operated mice. The

expression of GFAP, GPNMB, FKBP9, and CHMP5 was significantly

higher inMCAO than in Sham-operated samples (p< 0.05) (Figure 7).

TABLE 3 GSEA analysis results.

GSEA Analysis Results

ID setSize enrichmentScore NES pvalue p.adjust qvalues rank

LEIN_NEURON_MARKERS 59 0.814076967 2.241206 1.30E-10 1.08E-08 7.07E-09 1,584

MIKKELSEN_MEF_HCP_WITH_H3K27ME3 440 0.601882423 2.074171 1.00E-10 8.41E-09 5.53E-09 1,670

KIM_ALL_DISORDERS_CALB1_CORR_UP 468 0.567695316 1.970307 1.00E-10 8.41E-09 5.53E-09 1968

WP_SYNAPTIC_VESICLE_PATHWAY 47 0.744183724 1.96983 1.02E-05 0.000171 0.00011 1869

REACTOME_ION_HOMEOSTASIS 52 0.736104382 1.947812 5.60E-06 0.000108 7.07E-05 1727

POOLA_INVASIVE_BREAST_CANCER_UP 194 -0.739888555 -2.17464 1.00E-10 8.41E-09 5.53E-09 1744

REACTOME_INTERLEUKIN_10_SIGNALING 42 -0.903693749 -2.19738 1.00E-10 8.41E-09 5.53E-09 516

VERHAAK_GLIOBLASTOMA_MESENCHYMAL 169 -0.76491492 -2.20585 1.00E-10 8.41E-09 5.53E-09 1,481

REACTOME_RRNA_PROCESSING 135 -0.785930466 -2.21597 1.00E-10 8.41E-09 5.53E-09 1958

MCLACHLAN_DENTAL_CARIES_UP 169 -0.783539634 -2.25956 1.00E-10 8.41E-09 5.53E-09 1,083

FIGURE 5
Weighted gene co-expression network analysis and the construction of diagnostic model. (A) Heat map of correlations between modules and
samples. (B)Differences in model scores between ischemic stroke (IS) and control groups in training set. (C)Differences in model scores between IS
and control groups in the testing set. (D) Corresponding receiver operating characteristic (ROC) curves and area under the curve (AUC) values in the
training set. (E) Corresponding ROC curves and AUC values in testing set.
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Construction of PPI network and hub gene
regulatory network

The STRING database was used to construct the PPI network

of characteristic genes associated with IS (Figure 8A). The

interactions between genes were imported into Cytoscape, and

the MCC value of each gene was calculated by CytoHubba.

GPNMB, which had the highest MCC value, was identified as

a hub gene (Figure 8B). The interaction network between

GPNMB and TFs was obtained using the ENCODE database

(Figure 8C). An miRNA, has-miR-26b-5p, was predicted to

interact with GPNMB, and lncRNAs related to has-miR-26b-

5p were further predicted. Subsequently, the ceRNA network of

GPNMB was constructed based on these prediction results

(Figure 8D).

Drug-mRNA network and molecular
docking

In total, 241 drug molecules were predicted as potential drugs

targeting GPNMB (Supplementary Figure S6). Putative

GPNMB-drug interaction networks are shown in Figure 8E.

The binding energy between chloroquine and GPNMB in

most possible mode, of the lowest binding energy, was

-5.6 kcal/mol, less than -5 kcal/mol, indicating small molecules

were capable of binding with protein receptor to an extent. A

hydrogen bond existed between alanine in GPNMB and small

drug molecules with a distance of 3.2 Å. This specific bond was

observed as basic interaction in the docking pocket area.

According to results of YASARA software, the most possible

docking mode was shown in (Figure 8F). Binding location

FIGURE 6
Correlation between characteristic ischemic stroke genes GFAP (A), GPNMB (B), FKBP9 (C), and CHMP5 (D) and infiltrating immune cells.

Frontiers in Genetics frontiersin.org11

Zhang et al. 10.3389/fgene.2022.1009145

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1009145


between two algorithms were the same, both of hydrogen bond

with ARG215. I-Mutant 3.0 web server, assessing the influence of

one amino acid dot mutation on GPNMB protein through free

energy stability change (DDG) was utilized for ARG 215 (Fang

et al., 2019). The average DDG was -0.73 kcal/mol. According to

reference criteria, DDG < -0.5, indicating large decrease of

protein structure stability (Lim et al., 2021). In our article,

ARG 215 was hydrogen binding location, results of mutation

revealing the important function of this location.

Discussion

Stroke, as a sudden disorder of cerebral blood circulation, has

emerged as the second leading cause of death and disability

worldwide owing to the lack of early diagnosis and effective

treatment. IS the most prevalent form of stroke, accounting for

approximately 75–80% of cases (Krishnamurthi et al., 2018).

Increasing evidence supports the involvement of epigenetic

alterations in the pathogenesis of IS (Stanzione et al., 2020).

However, as one of the most ubiquitous epigenetic modifications

in mammalian cells, the role of RNA methylation modification in

the regulation of IS remains unclear. To determine the role of RNA

methylation-related regulators (m1A, m6A, and m5C) in the

pathogenesis and immune microenvironment of IS, we

determined the overall expression of RNA methylation regulators

and immune infiltration in rat IS gene sets and divided IS into two

molecular subtypes according to the expression levels of RNA

methylation regulators. An IS clinical diagnosis model was

successfully constructed and four upregulated characteristic genes

were identified, which were significantly negatively correlated with

the degree of Treg infiltration. Furthermore, we identified a hub gene

by PPI network analysis and predicted its regulatory networks and

the potential therapeutic drug, chloroquine.

FIGURE 7
Expression of GFAP (A), GPNMB (B), FKBP9 (C), and CHMP5 (D) in ischemic stroke brain tissue determined by RT-qPCR. *p < 0.05, **p < 0.01,
***p < 0.001.
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Two IS molecular subtypes were constructed based on the

differentially expressed RNA methylation-related regulators

between IS and normal samples, and 28 DEGs were identified

between them. GO analysis revealed that these DEGs were

engaged in BP of regulation of neurotrophin TRK receptor

signaling pathway, neurotrophin signaling pathway,

transmission of nerve impulse, and regulation of ion

transmembrane transport, which have been referred to as the

main mechanisms of IS (Li et al., 2021; Zhu et al., 2022).

Additionally, the protein products of these DEGs are mainly

distributed in the postsynaptic membrane and primarily involved

in regulating protein tyrosine kinase activity. A previous study

has revealed that protein tyrosine kinase activity, which is closely

associated with various synaptic and cellular functions in the

brain, is upregulated in IS (Takagi, 2014). Pathway enrichment

assessments determined that the top four enriched pathways

were hypertrophic cardiomyopathy, dilated cardiomyopathy,

neurotrophin signaling pathway, and adrenergic signaling in

cardiomyocytes. We speculated that DEGs may influence the

occurrence and progression of IS through these potential

pathways. Furthermore, GSEA and GSVA results showed that

IS was influenced by the inflammation and immune regulation

pathway, which is consistent with the current theory that

inflammation and immune responses play key roles in the

regulatory network of IS (Endres et al., 2022).

In this study, we constructed a diagnostic model of IS and

identified four characteristic genes (GFAP, GPNMB, FKBP9, and

CHMP5) with good diagnostic value. The results of RT-qPCR

showed that these four characteristic genes were significantly

upregulated in a mouseMCAOmodel, which verified our results.

Glial fibrillary acidic protein (GFAP), an intermediate filament

protein only produced by astrocytes, is a well-established marker

of astrocyte activation in central nervous system (CNS) diseases

(Sayad et al., 2022). Growing evidence suggests the potential

clinical application value of blood GFAP levels in numerous

neuroinflammatory and neurodegenerative diseases, as they can

be used to detect even subtle injury to the CNS (Abdelhak et al.,

2022; Heimfarth et al., 2022). A previous study has shown that IS

can induce the transformation of astrocytes into a neurotoxic

A1 phenotype and increase GFAP expression (Zhang et al.,

2022). Amalia, 2021 reported that GFAP is highly expressed

in cerebrospinal fluid and serum from patients with IS,

demonstrating its potential as a reliable biological marker to

help diagnose IS. Our results revealed a similar expression

tendency of GFAP as these reports.

Glycoprotein nonmetastatic melanoma protein B (GPNMB)

is a type-I transmembrane protein, also known as dendritic cell

heparan sulfate proteoglycan integrin-dependent ligand, that has

been demonstrated to be overexpressed in numerous cancers and

is associated with a metastatic phenotype (Huang et al., 2021). It

FIGURE 8
Protein-protein interaction (PPI) network, transcription factor (TF) correlation network, competing endogenous RNA (ceRNA) network and
drug-molecular docking of the hub gene. (A) PPI network; each node represents a different gene. (B)Maximal clique centrality (MCC) value of each
genewas calculated. The deeper the color the higher, theMCC value of genes. (C) TF correlation network of the hub gene. Red represents genes and
green represents TFs. (D) ceRNA network of the hub gene. Red represents miRNA, blue represents mRNA, and green represents lncRNA. (E)
Docking results between GPNMB and chloroquine in Autodock. Hydrogen bond between two was marked in yellow dotted line. (F) Docking results
of YASARA. Binds marked in yellow represent hydrogen bind.
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has been reported that tumor endothelial cells can induce tumor-

infiltrating CD8 T cell exhaustion and promote the escape of

cancer cells from immune surveillance by upregulating the

expression of GPNMB (Sakano et al., 2022). Furthermore,

GPNMB plays an important role in various diseases in

addition to cancer by regulating inflammation and immune

responses. GPNMB can negatively regulate macrophage

inflammatory capacity via the inhibition of NF-κB signaling

by binding to CD44 (Prabata et al., 2021). In a cellular

amyotrophic lateral sclerosis model, it has been shown that

GPNMB exerts neuroprotective effects by binding to Na/

K-ATPase, an ion pump and receptor that modulates

neuroinflammation (Ono et al., 2016). Consistent with our

results, Nakano et al. (2014) have demonstrated that GPNMB

is upregulated after ischemic reperfusion, and the overexpression

of GPNMB has neuroprotective effects against IS, although the

mechanism has not been fully characterized.

FK506-binding protein 9 (FKBP9), a member of the

immunophilin family FKBPs, binds to the immunosuppressive

drug tacrolimus (FK506) (Ghartey-Kwansah et al., 2018).

FKBP9 is widely expressed in multiple human organs and

tissues and involved in the regulation of various physiological

processes. It has been reported that FKBP9 is associated with

metastasis and poor prognosis in a variety of cancers (Annett

et al., 2020). For example, Xu H. et al. (2020) demonstrated that

FKBP9 is upregulated in human glioblastoma samples and

promotes malignant phenotypes by regulating unfolded

protein response signaling. Additionally, FKBP9 is closely

related to physiological functions such as T cell activation and

plays an important role in immune system regulation (Jiang et al.,

2020).

Charged multivesicular body protein 5 (CHMP5), a

component of the endosomal sorting complex required for

transport-III, is responsible for the final conversion of late

endosomal multivesicular body to lysosomes (Shim et al.,

2006). CHMP5 is a multifunctional protein with potential

roles in cellular signaling. It was previously reported that

CHMP5 has antiapoptotic functions because silencing

CHMP5 induces apoptosis by caspase cascade activation (Mo

et al., 2018). Additionally, CHMP5 prevents Bcl-2, a widely

recognized apoptosis suppressor gene that intrinsically

regulates apoptosis, from deleterious oxidation by reactive

oxygen species (ROS) formation (Adoro et al., 2017).

Furthermore, it has been shown that CHMP5 has a key role

in T-cell receptor signaling and its deficiency affects T-cell

receptor expression on the cell surface (Wi et al., 2016).

However, the role of CHMP5 in IS has not been studied to date.

In terms of the immune response, the infiltration of Tregs

was significantly lower in IS samples than in control samples.

This result is consistent with the previous findings of Noh et al.

(2018), indicating that Tregs are closely related to the

pathogenesis of IS. Tregs are an important subpopulation of T

lymphocytes that are involved in resisting immune response

overactivity, maintaining immune homeostasis, and regulating

inflammation (Wang et al., 2021). In Figure 3, immune

infiltration levels were evaluated through Cibersort algorithm.

Total eight types of immune cells were found to be of statistical

significance, Treg cells were the most significant among them. In

Figure 6, Several species of immune cells including Eosinophils,

Treg and so on were of significant correlation relationship (|

Correlation coefficient| > 0.5) with four characteristic genes.

Treg, being of the most significant statistical meanings

between IS and control, were closely negatively related with

all characteristic genes. Activation of Treg has been verified to

slow down the process of progress of IR through reducing IFN-

γin the IR microenvironment (Hu et al., 2013). GPNMB protein

could bind to heparan sulphate-like structures, blocking the

activation of T cells (Chung et al., 2013). These are consistent

with our results.

Our study showed that the four IS RNA methylation-related

characteristic genes were significantly negatively correlated with

the degree of Tregs infiltration, indicating that these genes

participate in the immune regulation of IS. M0 macrophage is

another important cell type in immune infiltration, was found to

secret interleukin-1βaccompanying with the progress of early IR

(Mabuchi et al., 2000). Thus, accumulation of interleukin-1βcan
promote the development of follicular helper T cells (Kobayashi

et al., 2017), been seen as a bridge linking M0 macrophages with

follicular helper T cells in our study.

We built a PPI network and identifiedGPNMB as a hub gene.

miRNAs are a class of small, single-stranded noncoding RNAs

that regulate target gene expression on a post-transcriptional

level (Correia de Sousa et al., 2019). In our study, miR-26b-5p

was predicted to act on GPNMB, and the expression of GPNMB

in IS samples was upregulated. Previous studies have shown that

miR-26b-5p is associated with various disease states, such as

tumors, inflammation, autoimmune disease, and IS. For example,

a bioinformatics analysis reported that miR-26b-5p can be

recognized as a potential biomarker for IS (Barrera-Vázquez

et al., 2022). Additionally, Xiao et al. (2021) have observed that

miR-26b-5p is downregulated in the brain of an MCAO rat

model and that the overexpression of miR-26b-5p reduces

apoptosis and the inflammatory response. Another study has

shown that miR-26b-5p alleviates IS injury by negatively

regulating the expression of Smad1, which promotes apoptosis

and inflammation by increasing the level of ROS in cells

(Shangguan et al., 2020). The findings of these reports are

consistent with our results.

Finally, we predicted potential drug molecules that may bind

to GPNMB, and the most prominent was chloroquine.

Chloroquine, an established drug originally used for the

treatment of malaria, has been reported to have anti-

inflammatory and immunomodulatory properties (Silva et al.,

2021). Recently, several studies have shown that chloroquine

pretreatment can alleviate brain injury in IS through a variety of

mechanisms, including the inhibition of the inflammatory
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response by lowering myeloperoxidase activity and inflammatory

cytokine gene expression (Cui et al., 2013; Zhang Y. P. et al.,

2020) and alleviation of neuronal injury by restoring ganglioside

homeostasis (Caughlin et al., 2019). Gabriel et al. (2014) reported

that chloroquine can effectively increase Gpnmb transcription in

mice as a lysosomal stress inducer. All these reports are mostly

consistent with our analysis.

There were some limitations to this study. First, single

microarray analysis may be associated with high false-positive

rates, and it is necessary to integrate multiple individual datasets

in future studies to improve the reliability of the results. Second,

although the clinical diagnostic model constructed in this study

showed high accuracy, the sample sizes of the training and

validation sets were small, resulting in insufficient statistical

efficacy. Performing cross-validation internally and increasing

the sample size for external validation in future studies would be

beneficial. Finally, our research was retrospective, and a large

number of prospective studies are needed to validate the results.

In conclusion, this study is the first to comprehensively

analyze the correlations between RNA methylation-related

regulators and IS and immune infiltration. We identified two

highly heterogenous RNA methylation subtypes in IS, with

significantly different BP and MF. An IS clinical diagnosis

model was constructed and four characteristic genes with

effective diagnostic value were identified using bioinformatics

methodologies (such as WGCNA and LASSO regression).

GPNMB was identified as a hub gene by PPI network

analysis, and its regulatory networks and binding to the

potential therapeutic drug chloroquine may provide guidance

for clinical diagnosis and treatment. Overall, our study may

provide insight into the potential molecular mechanisms

underlying IS and a new basis for optimizing the clinical

diagnosis and treatment of patients with IS.
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