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Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and

for all eukaryotes the shared component of sexual reproduction. The benefits

and functions of meiosis, however, are still under discussion, especially con-

sidering the costs of meiotic sex. To get a novel view on this old problem,

we filter out the most conserved elements of meiosis itself by reviewing the

various modifications and alterations of modes of reproduction. Our rationale

is that the indispensable steps of meiosis for viability of offspring would be

maintained by strong selection, while dispensable steps would be variable.

We review evolutionary origin and processes in normal meiosis, restitutional

meiosis, polyploidization and the alterations of meiosis in forms of uniparental

reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a

focus on plants and animals. This overview suggests that homologue pairing,

double-strand break formation and homologous recombinational repair

at prophase I are the least dispensable elements, and they are more likely

optimized for repair of oxidative DNA damage rather than for recombination.

Segregation, ploidy reduction and also a biparental genome contribution can

be skipped for many generations. The evidence supports the theory that the

primary function of meiosis is DNA restoration rather than recombination.
1. Introduction
Meiosis is a key step in sexual reproduction and an ancestral, ubiquitous attribute

of eukaryotic life cycles [1]. In the last decades, much progress has been made in

understanding the mechanics of the different steps of meiosis [2], but still there is

much discussion about the actual evolutionary advantage of meiotic recombina-

tion [3]. Meiosis is the major component of the evolutionary paradox that sex is

maintained in eukaryotes despite the high costs of sexual reproduction [4–6].

The costs of meiosis include that recombination can break up favourable gene

combinations, and that it is a time-consuming, risky process which is prone to

errors [5]. The costs of biparental sexual reproduction include the need of two par-

ental individuals for producing offspring, with all the efforts of mate searching,

mate finding, risk exposure during mating, among others [5,6]. Strikingly,

almost all forms of uniparental reproduction do maintain meiosis, but abandon

just outcrossing. Hence, the paradox of sex in eukaryotes must focus on the

purpose of meiosis.

Traditionally, genetic recombination as a consequence of meiosis was seen as a

major evolutionary benefit of sex. However, empirical and theoretical research

over the last century, strongly questioned this idea, and point at the high variabil-

ity of possible cases under various selection scenarios [3]. Sex need not increase

genetic variation in a population; genetic variation can be selected against and

evolution need not favour increased levels of genetic exchange even if variability

would be advantageous [3].

Other theories explain the primary function of meiosis for having a role in

DNA restoration, either indirectly by elimination of deleterious mutations via
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are resolved without recombination (exchange of flanking regions, see red versus blue arrows). (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20161221

2

natural selection [7], for directly repairing DNA double-strand

breaks (DSBs) [8], or for removal of oxidative DNA damage

in germline cells [9,10]. Prophase I would be needed for

repair of DNA damage, while reductional division allows

for elimination of mutations in the haploid phase [9,11].

In this review, we will present a novel view on this ques-

tion by examining the steps of meiosis (figure 1) and how

these are kept in naturally occurring modifications. Our

rationale is that essential components and functions of meio-

tic sex should be conserved across eukaryotes and would

occur in various variants of modes of reproduction, while

the expression of less essential functions could be just faculta-

tive and context-dependent. We will review: (i) evolutionary

origin and functions of the steps of meiosis; (ii) forms and

genetic consequences of restitutional meiosis; (iii) current

knowledge on apomixis and apomictic parthenogenesis;

(iv) automixis and selfing; and finally (v) we will provide a

synthesis of all aspects, presenting the novel view that the

various modes of reproduction keep the functions as a

DNA restoration tool, while mixis, as the main process creat-

ing recombination, can be more or less reduced or abandoned

(table 1).
2. Origin of meiosis and DNA repair functions
at prophase I

This section shows that processes at prophase I are most con-

served in the evolution of eukaryotes, and that they probably

evolved for DNA repair, but not for increasing recombination.

Meiotic sex already occurred in the last common ancestor

of eukaryotes [18], and probably evolved out of bacterial trans-

formation [19]. The primary evolutionary function of

transformation may be the use of a homologous DNA molecule

for recombinational repair of DNA DSBs and other physical
damage caused by reactive oxygen species (ROS) [19,20].

Hence, an enzymatic DNA repair machinery already existed

in prokaryotes which was taken over by eukaryotes [21].

DNA repair was badly needed in the first eukaryotes because

of endogenous production of ROS with the onset of cellular

oxygen respiration via (proto-) mitochondria [1]. Strong argu-

ments for this hypothesis are that the core genes involved in

meiosis have homologues in prokaryotes [22,23]. Several pro-

teins belong to a ‘core’ meiosis-specific subset typically found

in all eukaryotes [24] (figure 1).

Meiosis I could have originated for repair of DNA DSBs as a

consequence of strong oxidative damage [8]. In many extant

organisms, DSBs, introduced by the meiosis-specific spo11

protein, appear to be done regularly [25]. DSB formation is

under control of numerous enzymes acting in complex feed-

back loops, and appears clustered in certain hotspots [12,26].

However, only a minimum of DSBs is required for correct

chromosomal segregation at anaphase I [27]. Strikingly,

recent meiosis research across all eukaryotes observed that

DSB formation outnumbers by far crossover formation, with

the remaining events repaired as non-crossovers or via inter-

sister repair (e.g. [16]). Non-crossovers do not result in

recombination (exchange of flanking regions), but often give

rise to gene conversion (figure 1). Recombination tends to

occur in regions of the chromosomes where the DNA is only

loosely packaged, not heavily methylated, and also near

the start of genes [28]. Hence, programmed DSB formation

might have not evolved ‘for a purpose’ of recombination, but

for scavenging previously existing DNA radicals by the

tyrosine-end of spo11 [10]. In support of this hypothesis, facul-

tative asexual eukaryotes increase frequencies of sex under

ROS-generating stress conditions (electronic supplementary

material, S1). Abiotic stress triggers sex in plants [10,29–31],

and DNA damaging agents increased meiotic recombination

in yeast, nematodes and fruit flies [19].
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Meiotic repair of oxidative lesions is restricted to germline

cells, probably because of the risks of failure of DSB formation

[26], the costs of producing proteins (figure 1) and also abundant

ATP [19]. These risks and costs are especially high for protists,

but can be lowered for multicellular organisms which can

differentiate in germline and somatic cells ([5,11]; electronic sup-

plementary material, S2). The immediate selective advantage for

multicellular eukaryotes is that only immortal germline cells

undergo an intense removal of DNA radical damage without

involving other, less expensive, but potentially mutagenic

non-homologous repair mechanisms which suffice for mortal

somatic cells (e.g. [32]). Hence, meiotic repair directly increases

DNA quality of offspring. Mutants in key meiosis proteins

remain sterile [19,32] and would be in nature eliminated by trun-

cating selection. Because of the reciprocal nature of meiosis, the

benefit of DNA repair will apply to all offspring of both parental

individuals [33]. Under these auspices, selection will strongly

favour homologous recombinational repair irrespective of

amounts of recombination arising from the process. In various

modes of reproduction, homologue pairing, DSB formation and

subsequent DNA break repair (figure 1) is the least dispensable

step in eukaryotic modes of reproduction (table 1).
3. Elimination of deleterious mutations via
ploidy reduction

During meiosis a single round of DNA replication occurs fol-

lowed by two successive rounds of chromosome segregation,

resulting in haploid meiotic products (figure 2a). Ploidy
reduction provides an efficient mechanism to expose deleter-

ious mutations to purifying selection [9,11]. In a diploid

stage, deleterious recessive mutations can be ‘masked’,

i.e. they would not be expressed because a functional gene

copy is available at the homologous chromosome [34,35].

Consequently, such mutations would not be exposed to natural

selection and thus would accumulate in the long term. Ploidy

reduction will lead to expression of the mutated genes and

expose the gametes carrying them to purifying selection,

and selection is most efficient in haploids [36]. Gametes carry-

ing deleterious mutations, even if viable, are unsuccessful

in the fertilization process because of the competition with

non-mutated gametes [11,37].

Mutation accumulation is a long-term process, and

effects of mutations depend also on epistatic interactions

(e.g. [38]). In an asexual lineage, deleterious mutations

would accumulate in a ratchet-like manner because without

recombination, the least loaded class of offspring cannot be

restored (Muller’s ratchet; [7]). Hence, the ploidy reduction

would be expected to be under a more relaxed selective

pressure in the short term, and should not be essential for

each and every generation.
4. Meiotic restitution, unreduced gametes
and polyploidy

In fact, ploidy reduction in gametes is a disposable, non-

conservative step. Unreduced gamete formation largely
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represents a broad array of quite flexible, environment-

dependent modifications of meiosis, with different under-

lying mechanisms (figure 2b). Homologue pairing, DSB

formation and DNA repair are kept in most cases, but just

the ploidy reduction and the elimination of mutations are

abandoned. Unreduced gametes can transfer such ‘masked’

mutations to the polyploid offspring, where mutation is

even better buffered. Hence, restitution has no short-term

negative effects, but rather facilitates accumulation of

mutations over many generations [3]. Although regular hom-

ologue pairing is difficult for newly formed polyploids, the

process of diploidization in plants demonstrates that selec-

tion favours re-ordering of homologue pairing rather than

skipping the prophase of meiosis I.

Restitutional meiosis is a mechanism which results in

unreduced (2n) gametes, either by the first division restitu-

tion (FDR, skipping meiosis I), or by second division

restitution (SDR, skipping meiosis II). In FDR-type mechan-

isms, the meiotic cell division is completely converted into

a mitotic division generating 2n gametes with full parental

heterozygosity (figure 2b). However, in some types of FDR,

meiosis I is not completely omitted and the resulting

2n gametes transmit 70–80% of the parental heterozygosity

[39]. In SDR mechanisms, however, meiosis I with its repair

functions proceeds normally; consequently, the resulting

2n gametes retain around 30–40% of parental heterozygosity

[39] at the telomeric side of crossing over (figure 2b). In inter-

specific hybrids, a reductional division of bivalents together

with an equational segregation of univalents can give

rise to unreduced gametes (indeterminate type of meiotic

restitution [40]).

Possible cytological mechanisms resulting in FDR or SDR

pathways include defects in meiotic cell plate formation and

cytokinesis, complete omission of the first or the second

meiotic division, or defects in spindle formation or function

[41–43]. Moreover, mutations in the regulators of the key

transitions during meiosis (prophase to meiosis I, and meio-

sis I to meiosis II) can result in unreduced gamete formation

[44]. Unreduced gamete formation in natural populations

usually is a consequence of temperature shocks [45–47].

Extreme temperatures can disturb gene expression and the

enzymatic machinery during meiosis at many different

steps, whereby cold and heat have different underlying

mechanisms (electronic supplementary material, S1). Un-

reduced gametes can also be produced by pre-meiotic or

post-meiotic genome doubling ([48] electronic supplementary

material, S1), whereby the DNA repair aspect of meiosis is

retained.

The consequence of unreduced gametes formation is

polyploidy [47,49,50] (electronic supplementary material,

S3). While polyploidy is very common among plants, it is

in vertebrates only observed among fishes and frogs [51].

Strikingly, meiosis in polyploid plants maintains homologue

pairing, DSB formation and repair via different mechanisms,

despite the difficulties of a regular pairing and segregation of

a higher number of chromosomes [52]. Since selection for fer-

tility usually increases frequencies of bivalent formation over

generations, polyploid lineages gradually convert to diploids

with regular cytological behaviour accompanied by genetic

differentiation of duplicated loci (‘diploidization’, [52,53];

electronic supplementary material, S3). Backcrossing or selec-

tion for transgressive segregants might increase fertility [54].

In the long term, polyploidization is not at all a pathway
doomed to extinction. All angiosperm species have had at

least one historical polyploidy event [55,56]. Whole-genome

duplication has been recognized as an important factor for

diversification of eukaryotes [57].

5. Apomixis: a little bit of sex
Most forms of asexual reproduction do keep meiosis either in

a facultative sexual pathway or in an altered form, maintain-

ing both repair functions and mutation elimination to some

degree. Protists usually alter between mitotic (asexual) and

meiotic (sexual) reproduction (electronic supplementary

material, S2), while multicellular eukaryotes show a variety

of asexual developmental pathways.

In angiosperms, apomixis (reproduction via asexually

formed seeds [58]) is found naturally in ca 2.2% of genera

[59] and represents various modifications of female sexual

development [60] (electronic supplementary material, S4).

Male meiotic development is usually not altered [61], and

functional pollen is needed for ca 90% of species for fertiliz-

ation of polar nuclei and proper endosperm formation [62].

Strikingly, natural apomictic plants hardly ever lack meiotic

sex completely. In adventitious embryony, both sexual and

apomictic seedlings are formed within the same seed (poly-

embryony [63]). In facultative gametophytic apomicts,

varying proportions of sexual seed are formed in parallel to

apomictic ones [29,61,64–66] (figure 3; electronic supple-

mentary material, S3). In the former, repair functions and

purifying selection against deleterious mutations can act

efficiently in the meiotically reduced gametophytes [37].

This mechanism probably counteracts mutation accumu-

lation in facultative apomicts [67], whereas obligate asexual

systems like permanent translocation heterozygosity do

show the expected mutation accumulation [68].

Apomixis represents a genetic and epigenetic deregula-

tion of the sexual pathway [60,69–71] and arises from the

action of a few, usually dominant alleles or epialleles [72].

Apomixis has been induced by mutation in genes with differ-

ent functions, including epigenetic regulation through small

non-coding RNA pathways [73], DNA methylation [74] or

encoding RNA-helicase [75]. Such a deregulation of sexual

pathways has been hypothesized to be a consequence of

hybridization and/or polyploidization [60,76,77].

In contrast to angiosperms, the vast majority of apomictic

ferns (ca 10% of species) are reported to be obligate asexual

[78] owing to non-functional archegonia [62,79]. The major

reproductive pathway is via pre-meiotic doubling, followed

by a normal meiosis producing diploid spores; the resulting

gametophytes produce a new fern from a somatic cell without

fertilization [62]. Hence, both recombinational repair and

ploidy reduction takes place, only fertilization is abandoned

which is problematic for ferns because of the dependence on

water. Some fern species have an apomictic-like development

as shown in the electronic supplementary material, S4 [62].

Despite obligate apomixis, there is no evident selective dis-

advantage as speciation/extinction rates of sexual and asexual

ferns do not differ [79].

Apomictic parthenogenesis in animals involves suppres-

sion of meiosis, and mitosis-like cell divisions resulting in

genetically maternal offspring. This form of reproduction is

also mostly facultative (tychoparthenogenesis) and mainly

found in invertebrates (rotifers, many arthropods; [80]). As in

plants, clonal turnover may counteract the loss of clonal
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(Online version in colour.)
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fitness over time [81]. Obligate apomixis is rare and occurs, e.g.

in bdelloid rotifers, in which neither meiosis nor males have

occurred for millions of years [82]. Here, meiosis is replaced

by gene conversion among four collinear chromosome sets

[83]. Gene conversion either replaces a segment carrying a

mutated allele with an unmutated copy, or makes the mutated

allele homozygous and hence exposes it to purifying selection.

Gene conversion limited significantly accumulation of deleter-

ious mutations and allelic sequence divergence (Meselson

effect, see [84]). Further, enrichment of genes involved in resist-

ance to oxidation, carbohydrate metabolism and regulation of

transposable elements was observed, probably to cope with

environmentally induced oxidative stress [83]. Hence, meiosis

is only dispensable if alternative DNA restoration mechanisms

are available.
6. Meiosis, but no mates: automixis, selfing
and intragametophytic selfing

Many forms of uniparental reproduction do keep meiosis,

but just abandon outcrossing. The genetic variation arising

from fusion of genetically different gametes appears to be

dispensible for offspring production. Importantly, Mendelian

assorting and gametic recombination (by segregation and

later on fusion of genetically different gametes) contribute

quantitatively much more to genetic variation than meiotic

recombination produced by crossovers [34]. Strikingly, this
variation-creating process is much more often skipped than

meiosis itself. An important question regards the selective

value of complementation or the heterosis contribution from

two parents.

Most parthenogenetic animals reproduce via automixis

[80]. Diploid gamete formation is achieved either by fusion

of products of the same meiosis, or by post-meiotic doubling

of chromosome sets (figure 3). The unreduced oocyte devel-

ops parthenogenetically, which means that a single female

can produce offspring (for details, see [85]). Parthenogenesis

may also remain facultative, emerging just occasionally in

isolated females, as it was observed in reptiles [86,87], in

insects [88] and in fishes [89]. Meiosis I is kept in all three

major forms of automixis (figure 3), but often results in

increased homozygosity. Complete homozygosity arises

in the offspring of automictic animals at centromeric regions,

independently of mode of automixis, while in centromere-

distant regions recombination can take place [90]. The rapid

loss of heterozygosity leads to inbreeding depression because

of expression of previously masked, deleterious recessive

alleles. This loss of complementation has greater disadvantages

than costs of meiosis [91].

Automixis is further constrained by certain sex determi-

nation systems, when automictic females can produce just

male offspring [92]. In water-fleas (Daphnia), parthenogenesis

is automictic with predominant terminal fusion [90]. Obligate

parthenogenesis starts with meiotic homologue pairing, but

without homologous recombination, and is continued with
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a mitotic-like division [93]. In cyclical parthenogenesis,

parthenogenetic egg formation is followed by a stress-

induced sexual cycle, where meiotically produced resting

eggs are being fertilized by haploid males. A genomic inven-

tory of Daphnia revealed that all meiosis genes are present in

parthenogenetic species, but often in multiple copies.

Expression patterns of most genes were similar in meiosis

and parthenogenesis, but differed just in expression levels

[93]. Numerous paralogues showed divergent expression

patterns under different environmental conditions [94].

Strikingly, meiosis is kept in automictic animals, despite

the fact that automixis can result in loss of heterozygosity

and inbreeding depression, or in male offspring only. Selec-

tion for keeping repair functions at meiosis I is obviously

stronger than selection for heterozygosity. Just the mechan-

ism of mutation elimination during the short haploid phase

might be weakened. Automixis can be even lost again, as

reversals from automictic asexuality to obligate sexuality

occurred in Oribatid mites [95].

Selfing in angiosperms involves independent male

and female meioses, and formation and fusion of both

male- and female-reduced gametes on the same individual.

Cytologically, selfing is more similar to automixis in animals

as in both cases the same parental chromosome set is

reshuffled; continued selfing results in loss of heterozygosity

by 50% per generation. Selfing is in angiosperms repeatedly

gained [96] and performed facultatively by ca 40% of species.

Successful selfing requires only that flower morphology and

timing of development allows self-pollination, and break-

down of self-incompatibility (SI) systems which would

inhibit pollen tube growth. SI systems have genetic control

mechanisms acting independently from meiosis [97]. Homo-

sporous ferns can self-fertilize on bisexual gametophytes [98],

which produces completely homozygous sporophytes in a

single generation. However, polyploid gametophytes can

reduce inbreeding depression [99], which explains the preference

of polyploid homosporous ferns for gametophytic selfing

[100]. Intragametophytic selfing occurs also in bryophytes,

but little is known about frequencies and evolutionary

implications [62].

Uniparental reproduction is favoured in the short term

owing to gene transmission advantages, improved coloniz-

ation ability [101] and reproductive assurance under rare

mate conditions [102,103]. The main factor disfavouring a

transition to permanent selfing is loss of heterozygosity and

inbreeding depression [104], causing reduced diversification

and long-term risk of extinction [105].
7. Synthesis and outlook
Meiosis is an ancient and indispensable feature of eukaryotic

life. Almost all forms of asexual and uniparental reproduc-

tion in eukaryotes represent just modifications of meiosis

(table 1). Complete and long-term silencing of meiosis, as in

ancient asexual bdelloids, is extremely rare and requires

alternative mechanisms to cope with environmentally

induced oxidative stress, and with elimination of deleterious

mutations. Ploidy reduction can be avoided in the short term,

resulting in polyploidization. Interestingly, selection favours

in sexual polyploids a process of returning to a regular
pairing of chromosomes at meiosis I rather than skipping

the process. Many forms of uniparental reproduction do

exist with meiosis, but without biparental sex. Loss of genetic

variation by loss of outcrossing appears to be much less criti-

cal for further development and evolution than a complete

absence of meiosis. There is obviously no immediate selective

pressure to maintain outcrossing, although in the long term

the loss of heterozygosity and its negative effects must be

somehow compensated.

Hence, we propose the view that the key step of prophase I,

i.e. homologue chromosome pairing, DSB formation and

DNA strand exchange, even without crossing over formation

and recombination, is the main indispensable, ancestral and

highly conserved process in eukaryotic life cycles. This step

must be maintained by a very strong selective pressure, as fail-

ure at this phase usually results in sterility or reduced fertility.

But, this process cannot be maintained by selection on variable

offspring only, as it results in few actual recombination events

(crossovers), while many more initial DSBs are formed. Many

arguments support the theory that the primary function of

meiosis is DNA restoration rather than recombination [11]:

first, meiosis is not at all optimized to create new allele combi-

nations; second, meiosis is responsive to environmental stress

which causes oxidative stress in tissues in various ways;

third, repair of oxidative damage is an indispensable ‘must’

for cellular survival, while recombination is not; fourth,

reduction of ploidy in gametes is the most efficient way to

purge deleterious mutations; however, this step can be skipped

in the short term; fifth, mixis can be easily abandoned; finally,

many successful forms of ‘a little bit of sex’, i.e. facultative

apomixis, and facultative or cyclical parthenogenesis exist,

with a reduction of recombination and of genetic diversity in

the offspring.

Under these auspices maintenance of sex is no longer a

paradox because meiosis appears to be indispensable for

eukaryotic reproduction. It is no surprise that shifting from

established sex to asexuality is constrained in many different

aspects (multigenic control, group-specific developmental

pathways [11,92,106]). Future research on the topic should

be interdisciplinary and focus on detailed cytological and

developmental studies, accompanied by transcriptomic and

genomic studies. Genomics has opened new avenues for col-

lecting empirical data on mutation accumulation and their

effects. Experimental and biochemical work is needed to

understand the stress-sensitivity of meiosis and the connec-

tion to compensation of oxidative stress and maintenance of

cellular redox homeostasis. Mathematical modelling on

recombination and mutation needs to take into account the

complexity of meiosis and its multigenic control, the different

cytological steps of meiosis, and the many different forms of

asexual reproduction which maintain some but not all

aspects of meiosis–mixis cycles.
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39. Cuenca J, Aleza P, Juárez J, Garcı́a-Lor A, Froelicher
Y, Navarro L, Ollitrault P. 2015 Maximum-likelihood
method identifies meiotic restitution mechanism
from heterozygosity transmission of centromeric
loci: application in citrus. Sci. Rep. 5, 9897.
(doi:10.1038/srep09897)

40. Lim KB, Ramanna MS, de Jong JH, Jacobsen E, van
Tuyl JM. 2001 Indeterminate meiotic restitution
(IMR): a novel type of meiotic nuclear restitution
mechanism detected in interspecific lily hybrids by
GISH. Theor. Appl. Genet. 103, 219 – 230. (doi:10.
1007/s001220100638)

41. De Storme N, Geelen D. 2013 Cytokinesis in plant
male meiosis. Plant Signal. Behav. 8, e23394.
(doi:10.4161/psb.23394)

42. De Storme N, Mason A. 2014 Plant speciation
through chromosome instability and ploidy change:
cellular mechanisms, molecular factors and
evolutionary relevance. Curr. Plant Biol. 1, 10 – 33.
(doi:10.1016/j.cpb.2014.09.002)

43. Zhang L, Chen Q, Yuan Z, Xiang Z, Zheng Y, Liu D.
2008 Production of aneuhaploid and euhaploid
sporocytes by meiotic restitution in fertile hybrids
between durum wheat Langdon chromosome
substitution lines and Aegilops tauschii. J. Genet.
Genom. 35, 617 – 623. (doi:10.1016/s1673-
8527(08)60082-x)

44. d’Erfurth I et al. 2010 The cyclin-A CYCA1; 2/TAM is
required for the meiosis I to meiosis II transition
and cooperates with OSD1 for the prophase to first
meiotic division transition. PLoS Genet. 6, e1000989.
(doi:10.1371/journal.pgen.1000989)

45. De Storme N, Geelen D. 2014 The impact of
environmental stress on male reproductive

http://dx.doi.org/10.1073/pnas.1501725112
http://dx.doi.org/10.1073/pnas.1501725112
http://dx.doi.org/10.1086/599084
http://dx.doi.org/10.1016/0027-5107(64)90047-8
http://dx.doi.org/10.1016/0027-5107(64)90047-8
http://dx.doi.org/10.1007/s00497-013-0234-7
http://dx.doi.org/10.1038/hdy.2009.85
http://dx.doi.org/10.1101/cshperspect.a016634
http://dx.doi.org/10.1101/cshperspect.a016634
http://dx.doi.org/10.1016/j.cell.2004.10.031
http://dx.doi.org/10.1016/j.cell.2004.10.031
http://dx.doi.org/10.1016/j.dnarep.2015.11.024
http://dx.doi.org/10.1016/j.dnarep.2015.11.024
http://dx.doi.org/10.1038/nrg1614
http://dx.doi.org/10.1146/annurev-arplant-050213-035923
http://dx.doi.org/10.1146/annurev-arplant-050213-035923
http://dx.doi.org/10.1038/nrg3573
http://dx.doi.org/10.1038/nrg3573
http://dx.doi.org/10.1186/1745-6150-5-7
http://dx.doi.org/10.1016/j.meegid.2008.01.002
http://dx.doi.org/10.1016/j.meegid.2008.01.002
http://dx.doi.org/10.1371/journal.pone.0002879
http://dx.doi.org/10.1016/j.cub.2005.01.003
http://dx.doi.org/10.1016/j.cub.2005.01.003
http://dx.doi.org/10.1002/bies.20764
http://dx.doi.org/10.1038/nature08467
http://dx.doi.org/10.1038/nature13120
http://dx.doi.org/10.1371/journal.pgen.1003165
http://dx.doi.org/10.1371/journal.pgen.1003165
http://dx.doi.org/10.7554/eLife.01426
http://dx.doi.org/10.7554/eLife.01426
http://dx.doi.org/10.3389/fpls.2016.00278
http://dx.doi.org/10.1098/rspb.2004.2747
http://dx.doi.org/10.1098/rspb.2004.2747
http://dx.doi.org/10.1098/rsbl.2003.0062
http://dx.doi.org/10.1098/rsbl.2003.0062
http://dx.doi.org/10.1016/j.dnarep.2005.08.017
http://dx.doi.org/10.1266/ggs.86.1
http://dx.doi.org/10.1038/351314a0
http://dx.doi.org/10.1038/351314a0
http://dx.doi.org/10.1016/j.cub.2008.09.039
http://dx.doi.org/10.1016/j.cub.2008.09.039
http://dx.doi.org/10.3389/fpls.2015.00082
http://dx.doi.org/10.1038/nature05049
http://dx.doi.org/10.1038/srep09897
http://dx.doi.org/10.1007/s001220100638
http://dx.doi.org/10.1007/s001220100638
http://dx.doi.org/10.4161/psb.23394
http://dx.doi.org/10.1016/j.cpb.2014.09.002
http://dx.doi.org/10.1016/s1673-8527(08)60082-x
http://dx.doi.org/10.1016/s1673-8527(08)60082-x
http://dx.doi.org/10.1371/journal.pgen.1000989


rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20161221

9
development in plants: biological processes and
molecular mechanisms. Plant Cell Environ. 37,
1 – 18. (doi:10.1111/pce.12142)

46. Mable BK. 2004 Polyploidy and self-compatibility: is
there an association? New Phytol. 162, 803 – 811.
(doi:10.1111/j.1469-8137.2004.01055.x)

47. Ramsey J, Schemske DW. 1998 Pathways,
mechanisms, and rates of polyploid formation
in flowering plants. Annu. Rev. Ecol. Syst. 29,
467 – 501. (doi:10.1146/annurev.ecolsys.29.1.467)

48. Mason AS, Pires JC. 2015 Unreduced gametes:
meiotic mishap or evolutionary mechanism? Trends
Genet. 31, 5 – 10. (doi:10.1016/j.tig.2014.09.011)

49. De Storme N, Geelen D. 2013 Sexual
polyploidization in plants: cytological mechanisms
and molecular regulation. New Phytol. 198,
670 – 684. (doi:10.1111/nph.12184)
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