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Single nucleotide polymorphism (SNP) and copy number variation (CNV) are both
widespread characteristic of the human genome, but are often called separately on
common genotyping platforms. To capture integrated SNP and CNV information, methods
have been developed for calling allelic specific copy numbers or so called copy number
polymorphism (CNP), using limited inter-marker correlation. In this paper, we proposed
a haplotype-based maximum likelihood method to call CNP, which takes advantage of
the valuable multi-locus linkage disequilibrium (LD) information in the population. We
also developed a computationally efficient algorithm to estimate haplotype frequencies
and optimize individual CNP calls iteratively, even at presence of missing data. Through
simulations, we demonstrated our model is more sensitive and accurate in detecting
various CNV regions, compared with commonly-used CNV calling methods including
PennCNV, another hidden Markov model (HMM) using CNP, a scan statistic, segCNV, and
cnvHap. Our method often performs better in the regions with higher LD, in longer CNV
regions, and in common CNV than the opposite. We implemented our method on the
genotypes of 90 HapMap CEU samples and 23 patients with acute lung injury (ALI). For
each ALI patient the genotyping was performed twice. The CNPs from our method show
good consistency and accuracy comparable to others.
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1. INTRODUCTION
DNA copy number variation (CNV) refers to differences in
genomic DNA with varying numbers of gene copies includ-
ing segmental amplification, deletion, and loss of heterozygosity.
CNVs are found widespread in the human genome, covering
approximately 18% of the genome (Freeman et al., 2006; Redon
et al., 2006; McCarroll and Altshuler, 2007; Database of Genomic
Variates). Increasing evidence shows that CNVs accounts for a sig-
nificant portion of phenotypic variation (Iafrate et al., 2004; Sebat
et al., 2004; Tuzun et al., 2005; Conrad et al., 2006; McCarroll
et al., 2006; Redon et al., 2006) yet are far underestimated for
human diseases and conditions (Sebat et al., 2007). A com-
prehensive study suggested that the total amount of sequence
variation involving CNVs between two healthy subjects was actu-
ally higher than that for Single nucleotide polymorphisms (SNPs)
(Redon et al., 2006), which was supported by the increasing num-
ber and resolution of CNV discoveries (Korbel et al., 2007). A
systematic evaluation of five widely used array-based CNV detec-
tion programs suggested that existing methods have conservative
sensitivity in CNV detection.

Recently, high-density SNP genotyping arrays have gained
substantial attention for CNV detection and analysis. Although
originally designed for genome-wide SNP association studies,
they contain signal intensities that can be borrowed to iden-
tify regions with deletions or duplications (Komura et al., 2006;
Peiffer et al., 2006). Multiple softwares and programs have
been developed for these arrays, and their performance is being

evaluated (Winchester et al., 2009; Zhang et al., 2011). With a
few exceptions, the existing approaches can be roughly classified
to two types: single-locus pooled-sample approach and single-
individual cross-genome approach. The single-locus pooled-
sample approaches use the distributions of signal intensities of
multiple samples at a fixed locus to derive reference values and
clusters for each CNV value and then determine individual CNV
by their belonged cluster, such as TriTyper (Franke et al., 2008)
and CNVtools (Barnes et al., 2008). These methods proceed
locus by locus and generally ignore inter-marker correlations.
The single-individual cross-genome approaches either use par-
titioning approach [such as, DNAcopy (Olshen et al., 2004),
CnvPartition by Illumina, segCNV (Shi and Li, 2012)] or the
hidden Markov Models (HMM) [such as, Birdseye (Korn et al.,
2008), QuantiSNP (Colella et al., 2007) and PennCNV (Wang
et al., 2007)] to call CNV individual by individual. The HMM
considers the dependency between copy number states at two
adjacent markers by assuming the CNV underlying observed sig-
nal intensities is a first-order Markov process (Gelfond et al.,
2009). The inter-marker correlation is implied in the homo-
geneous transition probability that only depends on the inter-
marker distance. A noticeable exception to the two lines of
methods is a novel Bayesian approach that combines the sig-
nal intensity distribution and heterozygosity information to infer
individual CNV (Zőllner et al., 2009).

Because both SNPs and CNVs affect the signal intensities and
may affect phenotypes separately or jointly, their coexistence will
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affect the identification of each other and the results of association
studies. Ignoring SNPs in CNV analysis fails to incorporate allele-
specific gains and losses and diminish the potential to exploit
linkage disequilibrium (LD) between CNVs and nearby SNPs.
How to combine SNPs and CNVs has been a challenge for geneti-
cists. The common annotations of the copy numbers and SNP
genotypes have been independent and the available methods for
SNP and CNV calling had been separate until (Korn et al., 2008)
presented a sequential approach to generate copy number poly-
morphisms (CNPs) using results from both genotype calls and
CNV calls.

Methods were extended to accommodate the CNP along the
same class of CNV calling approaches. In single-locus pooled-
sample approach, the CnvPartition reassumed that intensity and
proportion of B alleles follow distinct bivariate Gaussian distri-
butions given different CNP. In single-individual cross-genome
approach, (Wang et al., 2009) allowed multiple CNP states in
their HMM and incorporated the two-locus LD parameter in
addition to the inter-marker distance in the transition proba-
bility, which increased the accuracy of the CNP calls. cnvHap
(Coin et al., 2010) used a new transition probability in their
HMM, which only relies on the two-locus haplotype frequencies.
The HMM of polyHap (Su et al., 2010) treated a CNV region
as a region of variable ploidy and considered only two-locus
haplotype.

At presence of CNV, all existing algorithms using haplotypes
augmented the conventional haplotype definition by treating
duplications and deletion as additional “alleles”, distinct from
two existing SNP alleles at each locus. Such defined “haplotypes”
are not continuous physical pieces as traditionally perceived,
which can cause conceptual confusions. In addition, the num-
ber of possible combinations over a region increases exponentially
with the base of 4–6 instead of 2, largely increasing compu-
tational complexity and leading to infeasibility. There were a
few methods to estimate the frequencies of such “haplotypes”.
MOCSphaser (Kato et al., 2008b) infers CNV-SNP haplotypes
using an expectation-maximization (EM) algorithm but only
accommodates integer copy numbers in CNV regions and SNP
genotypes in non-CNV regions. CNVphaser employed a hierar-
chical partition-ligation strategy to break down a longer region
into smaller blocks and used the EM algorithm to estimate the
“haplotypes” frequencies just as for the regular haplotypes (Kato
et al., 2008a).

It often occurs that some intensity values are apparent outliers
that can be easily detected by routine quality control proce-
dures. Other methods either exclude the whole samples with some
poor quality values (Wang et al., 2007) or re-estimate the SNP
at each locus with poor quality by imputation for subsequent
calls.

In this paper, we developed a haplotype-based maximum like-
lihood method to call CNP, which takes account of valuable
multi-locus LD information in the population. By posing prac-
tical assumptions for short CNV regions, we keep the same
conventional haplotypes as originally defined for SNP genotype
data and make corresponding inferences. We developed a com-
putationally efficient algorithm that determines optimal CNPs
for each individual and estimates haplotype frequencies in the

population simultaneously. We consider our method as a nat-
ural merge of single-locus pooled-sample and single-individual
cross-genome approaches for CNP calling. Our method can also
recover CNPs even with missing data. We evaluated our meth-
ods through extensive simulations in terms of sensitivity, true
positive rate, length of detectable CNV regions for different hap-
lotype structure, frequencies and length of CNV regions. And we
compared our method with a few available methods to assess the
possible gain of using haplotypes. In addition, we checked how
well our method can recover CNPs when there are missing or
extreme values in raw data. Last, we applied these methods to the
duplicated genotype samples of 23 individuals with acute lung
injury (ALI) to check the consistency of our method in calling
both CNV and SNP. Accuracy was assessed by comparing calls
from all methods to the CNV regions identified through array
CGH data.

2. METHODS
2.1. NOTATIONS
We use c = (cA, cB) to denote the copy numbers of A allele and B
allele, or CNP at a bi-allelic marker locus. CNPs at normal states
with two copies of alleles include (1,1), (2,0), and (0,2), which
code regular SNP genotypes; (0,0) is the CNP at the double dele-
tion state, (0,1) and (1,0) are the CNPs at single deletion states,
and (1,2), (2,1), (2,2), (1,3), and (3,1) or more are for the dupli-
cation states. The copy numbers in most available methods are
referred to as CN = cA + cB, which does not contain the allele spe-
cific information and cannot infer disease risks associated with
the copy number change of a specific allele. Because the duplica-
tions with four or more copies are virtually indistinguishable on
genotype platforms (Wang et al., 2009), we set the maximum copy
number to 4.

We denote XA and XB as the normalized signal intensity values
for allele A and allele B, respectively. XA and XB can be extracted
from raw CEL files using the standardized normalization pro-
cedure, such as the BeadStudio software for Illumina platforms
and the Affymetrix Power Tools for Affymetrix platforms. We use
two measures log R ratio and B allele frequency, denoted as r
and b, as the observed values in our models. r is the logarithm
ratio of observed total intensity R = XA + XB to expected inten-
sity (Peiffer et al., 2006), and b is the standardized proportion
of samples carrying the B allele, i.e., a linear transformation of
θ = arctan(XB/XA)/(π/2).

We assume our study includes N individuals and we start
with a haplotype block of interest containing M markers. Within
the haplotype block, there are a total of s possible haplo-
types h1, . . . , hs with population frequencies ρ = (ρ1, . . . , ρs).

Throughout the paper, we use subscripts for marker locations and
superscripts for individuals.

2.2. HAPLOTYPE IDENTIFICATION GIVEN CNP
In this section, we illustrate how individual CNPs can
help infer haplotypes under some practical assumptions. We
assume either duplication or deletion occurs as a con-
tinuous piece on one chromosome and deletion/insertion
regions are not immediately next to each other for each
individual.
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If a CNV region of an individual covers the whole region of
interest, we can identify his haplotype(s) as follows:

(1) Within a duplication region (CN = CN1 = · · · =
CNM = 3 or 4), the duplicated haplotype h1 can be
written as {S1 . . . SM : S1 = A if ck,A � CN − 1, or Sk =
B otherwise, for k = 1, . . . , M}, and the other haplotype
h2 become {S′

1 . . . S′
M : S′

k = A if ck,A = CN or 1, or S′
k =

B otherwise}.
(2) Within a single deletion region (CN = CN1 = · · · = CNM =

1), the unique haplotype h1 is {S1 . . . SM : Sk = A if ck,A >

0, or Sk = B if ck,B > 0 for k = 1, . . . , M}.

For example, if we know an individual’s CNPs
(3, 0)(1, 2)(2, 1)(0, 3) at four adjacent loci in a block, it is
easy to see that there are three copies of allele A and 0 copy of
allele B at the first locus and thus A must be on the duplicated
haplotype. Similarly at loci 2, 3, and 4, B, A, and B are on the
duplicated haplotype. Therefore the haplotype ABAB must
be the duplicated piece and the other AABB is the normal
non-duplicated haplotype. Similarly, given an individual’s
CNPs (1, 0)(0, 1)(0, 1)(1, 0), we will know that one haplo-
type of his was deleted and the other haplotype is ABBA. For
those determined haplotypes given c = (c1, . . . , cM), we call
them “compatible” with c and denote as (h1, h2) ∼ c. We say
(ABAB, AABB) are compatible with (3, 0)(1, 2)(2, 1)(0, 3), i.e.,
(ABAB, AABB) ∼ (3, 0)(1, 2)(2, 1)(0, 3).

If a CNV piece doesn’t cover the whole region of interest,
the haplotypes compatible with the CNP genotypes are deter-
mined by the CNPs within the CNV region and the regular SNP
genotypes outside of the CNV region. As shown in Figure 1 for
a region including five loci, the haplotype sections within the
3-locus CNV regions are uniquely identified and the sections
in the normal region (loci 1 and 5) can be partially inferred
given population haplotype distributions. In the left figure with
a deleted piece, the middle section of one haplotype is ABA and
that of the other is deleted following our rule listed previously.
Combined with genotypes (1,1) at loci 1 and 5, the possible hap-
lotype couples covering the whole region can be AABAA/B...B,
AABAB/B...A, BABAA/A...B, and BABAB/A...A. Similarly in the
right figure with a duplication piece, the possible haplotype cou-
ples are AABAA/BBBAB, AABAB/BBBAA, BABAA/ABBAB, and
BABAB/ABBAA. Now we see that a CNV region of an individ-
ual can help infer his/her haplotypes and thus help estimate the
population haplotype frequencies. On the contrary, the haplotype
information in the population can be used to better infer indi-
vidual CNPs. In this example, if in the population there is no
AABAA, BABAA, or BABAB (i.e., π(AABAA) = π(BABAA) =
π(BABAB) = 0), the haplotypes in the left figure can be uniquely
determined as AABAB/B...A and in the right figure, the duplicated
haplotype would be AABAB and the other BBBAA. In most cases,
we know non-zero probabilities of AABAA, AABAB, BABAA, or
BABAB in the population and can still make some inference about
the haplotypes given CNP. This can be done by incorporating
the haplotype distributions in the likelihood as we show next.
In our method, we allow CNV regions vary from individual to
individual, i.e., the CNV regions of different individuals can have

FIGURE 1 | CNP and haplotype configurations within a 5-locus block.

2-digit CNP at each locus was shown on top. Specific alleles A or B are
shown in each circle at the corresponding loci aligned on a pair of
chromosomes. The long lines between two loci denote deletion regions (no
corresponding alleles). Both deletion (left) and duplication (right) occur from
loci 2 to 4.

completely different boundaries. Such flexibility would lead to
extremely large numbers of haplotypes and likely small probabil-
ities for them in the population in other “haplotype”-based CNV
methods.

Please note that, as SNPs, CNPs were aligned according to
the reference coordinate, but not to the actual physical loca-
tions. For duplications, LRR and BAF can only tell which piece
of chromosome is duplicated but not where it is connected to.

2.3. MAXIMUM LIKELIHOOD METHOD USING HAPLOTYPE
INFORMATION

Given observed log R ratio (r) and B allele frequency (b) at loci
1, . . . , M, the likelihood can be written as a function of CNP and
population haplotype frequencies, i.e.,

L(π,P; r, b, C) =
N∏

i = 1

{
P
(

ri, bi | ci,π,P
)

P
(

ci |π
)}

=
N∏

i = 1

∑
(h′,h′′)∼ci

[
P
(

ri, bi | ci,P
)

P
(
h′, h′′|π)]

=
N∏

i = 1

{[
M∏

k = 1

P
(

ri
k | ci

k,P
)

P
(

bi
k | ci

k,P
)]

∑
(h′, h′′)∼ci

P
(
h′, h′′| π)

⎫⎬⎭ (1)

where i is the individual index i = 1, . . . , N, ri, bi, ci are LRR,
BAF, and CNP at all loci for individual i and C represents
the CNP for all individuals, i.e., C = (c1, . . . , cN), k is the
marker index k = 1, . . . , M, P(bi

k | ci
k,P) and P(ri

k | ci
k,P) are

the conditional probability of the BAF and LRR given the
CNP at locus k, P(h′, h′′) is the probability of observing two
haplotypes h′ and h′′, and P denotes the set of parameters in
both conditional probabilities P(bi

k | ci
k,P) and P(ri

k | ci
k,P).

The last equation holds when b and r are assumed conditionally
independent given c and either bk or rk are conditionally inde-
pendent of other bl or rl given c. If we assume Hardy–Weinberg
Equilibrium (HWE), P(h′, h′′) = 2πiπj if h′ = hi �= h′′ = hj

and P(h′, h′′) = π2
i if h′ = h′′ = hi. As in HMM models, we can

assume that P(rk | ck = (ck,A, ck,B)) ∼ N(μCN(ck), σ
2
CN(ck)

),

P(bk | ck) ∼ truncated N(μb,CN(ck), σ
2
b), and thus P =
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{μ0, . . . , μ4, σ0, . . . , σ4,μb, 0, . . . ,μb, 4, σb,η, γ0, 0, . . . , γ4, 4,

G1, 1, . . . , G15, 15} (details in Appendices B and C).
Maximization of the likelihood Equation (1) with respect to

C and π will yield optimal CNP estimates of each individual and
haplotype frequency estimates. But the number of combinations
of CNPs of all individual and haplotype is huge and searching
over the whole parameter space can be computationally intensive.
To reduce the computation burden, we derived an optimization
algorithm to update individuals’ CNP and haplotype frequencies
iteratively.

2.4. THE CNP OPTIMIZATION ALGORITHM
We used the following iterative algorithm to maximize the likeli-
hood Equation (1):

(1) At step 0, assign initial values to CNPs of all individuals
C(0) and population haplotype frequencies π(0) within a
haplotype block.

(2) At step �, given C(�) and π(�), maximize the log-likelihood
over possible ci for each individual i to obtain optimal
ci,(�+ 1), i.e.,

ci,(�+ 1) = argmax
ci

[∑
k = 1

log P
(

ri
k, bi

k | ci
k,P

)

+ log
∑

(h′, h′′)∼ci

P(h′, h′′| π(�))

⎤⎦ . (2)

(3) Update π through collecting the conditional probability
of haplotypes given all individuals’ CNP. This is a revised
expectation-maximization (EM) algorithm (Dempster et al.,
1977) of updating haplotype frequencies given individuals’
genotypes in the absence of CNV (Excoffier and Slatkin,
1995). Given current estimate of π(�) and updated C(�+ 1),
the haplotype frequency is updated according to

π̂
(� + 1)
t = 1

2N

N∑
i = 1

∑
(h′, h′′)∼ci,(�+ 1)

{
I(h′ = ht) (3)

+ I(h′′ = ht)
}

P
(

h′, h′′ | (h′, h′′) ∼ ci,(� + 1), π(�)
)

= 1

2N

N∑
i = 1

∑
(h′, h′′)∼ci,(� + 1){I(h′ = ht)

+ I(h′′ = ht)}P
(
h′, h′′|π(�)

)∑
(h′, h′′)∼ci,(�+ 1) P

(
h′, h′′|π(�)

)
(4) Repeat (2) and (3) until the inferred CNP doesn’t change and

the estimated parameter π̂ converges.

When the region is long, the path for convergence can be painfully
long and thus makes the computation infeasible. To save the com-
putation burden, we will call the initial CNP using a HMM and
then apply our haplotype-based method. The HMM we used are
similar to others’ (Colella et al., 2007; Wang et al., 2007, 2009) and
we refer readers to Appendix A for details.

2.5. MISSING DATA
When some bk’s and rk’s are missing, the genotype or haplotype at
the missing loci can be inferred using the LD information around
the missing loci.

For a single individual, if bk, rk at loci k ∈ D are missing,
the contributions of that individual to the overall likelihood is
changed to∑

(h′, h′′)∼ci

P(ri, bi | ci,P)P((h′, h′′| π))

=
N∏

i = 1

{[ M∏
k = 1, k /∈ D

P(ri
k | ci

k,P)P(bi
k | ci

k,P)

]
∑

(h′, h′′)∼ci

P(h′, h′′| π)

}
(4)

The key difference between likelihoods Equations (1) and (4)
is that Equation (1) does not have the components corre-
sponding to possible haplotypes at the unobserved loci for
this individual. Computationally, missing data affect initial
parameter estimation slightly and may also increase the com-
putational complexity because the number of possible CNPs
and haplotypes increases for those individuals with missing
data.

If a locus is not genotyped at all, all individuals will not have
the corresponding components, but the extended haplotypes in
other reference populations can be used to infer the CNP within
or outside of the CNV region.

2.6. POTENTIAL USES OF OUR PROPOSED METHOD
Our proposed method can serve as either an independent call-
ing method or a refining procedure upon the results from other
calls. Please note that the initial calls from HMM are not nec-
essary and other initial values can work in our method as
well. The haplotype frequency can be estimated as a byprod-
uct in a decent-size sample or can be borrowed from public
database such as HapMap to improve the inference in small
samples.

3. SIMULATIONS
To evaluate the performance of our methods, we conducted
a series of simulations to access: 1. sensitivity of detecting
CNV intervals, i.e., how often we can correctly detect it when
there is such a region; 2. true positive rate, i.e., how often
our detected CNV region are true; and 3. length of truly
and falsely detected CNV regions. The CNV length, frequency
among population, and the haplotype structure, were varied
to understand their influences on the CNV calls. Our method
was compared with five existing methods. We also checked
CNP recovery rate using our method under a missing data
scenario.

For each data set, we simulated the LRR and BAF for 1000
unrelated individuals following three steps: First, 2000 indepen-
dent chromosomes of 1000 individuals were generated contain-
ing 55,860 SNP loci, the same number of loci on Affymetrix
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Table 1 | Summary of the selected haplotype blocks.

Gene # of loci Position Average R2

ADD1 6 2,841,681–2,893,241 0.1561

CORIN-3 6 47,474,045–47,531,963 0.1477

NR3C2-1 6 149,461,059–149,491,985 0.3305

NR3C2-2 8 149,493,152–149,496,672 0.0852

LOC285501-1 26 179,864,756–179,949,542 0.4225

LOC285501-2 11 180,222,608–180,252,886 0.8002

RP11-404J23.1-1 7 180,322,430–180,354,002 0.7500

RP11-404J23.1-2 24 180,373,119–180,428,267 0.6274

Genome-Wide Human SNP Array 6.0 platform, along chromo-
some 4. We selected eight haplotype blocks with various length
and LD structure, four medium-length and two long blocks with
low to medium R2, two medium-length blocks with high R2, as
shown in Table 1.

All genotypes were simulated using the allele frequencies in
HapMap CEU population. In addition, two-locus LD and multi-
locus LD were reserved outside and within the selected haplotype
blocks, respectively. Specifically, outside of the haplotype blocks,
the alleles at the first locus were generated from Bernoulli(p1)

where p1 is the population frequency of B allele in CEU; alleles
at other loci were generated using the conditional probabili-
ties given the previous alleles as observed in CEU. Within the
selected haplotype blocks, the starting SNPs were simulated as
before conditional on the alleles at previous locus only but the
remaining alleles were simulated as haplotypes based on the con-
ditional haplotype frequencies within the same block in the CEU
population.

Second, within the eight selected haplotype blocks, deletion
and duplication regions with fixed boundary were randomly cho-
sen from populations and the haplotype piece within the CNV
regions was deleted or inserted. At this stage, the true CNPs at all
loci were generated.

Third, the LRR and BAF values were generated based
on the conditional probability distributions discussed in sec-
tion A. with parameter μ = (−2,−0.664, 0, 0.4, 1), σ =
(0.5714, 0.28, 0.2, 0.21, 0.3333), μb = (0.1, 0.04,−0.02,−0.08,

− 0.14) and σb = 0.1.
We considered multiple scenarios with varying parameters,

specified as follows:

1. different length of the CNV regions (3–5 in short blocks and
5–20 in long blocks); We fixed the left boundary of each CNV
region so that the LD can remain the same within each block
and we can use the LD across different haplotype blocks to
understand the influences of the LD between the boundary
and other SNPs.

2. more and less frequent CNV; For more frequent CNV regions,
we let the population frequencies of deletion and duplication
to be 20 and 5%; for less frequent CNV regions, the popula-
tion frequencies of deletion and duplication were set to be 5
and 1%.

3. random missing of LRR and BAF; we assumed a relatively high
missing rate 1% for all loci and all individuals.

For each scenarios, 100 datasets were generated. Based on
observed LRR and BAF, we applied our method hap-CNP to call
CNPs and compared them with the true CNP. Several CNV call-
ing procedures were compared, including a HMM in Wang et al.
(2009) (WHMM), PennCNV for unrelated individuals (Wang
et al., 2007), a SCAN method (Jeng et al., 2010), an integrative
segmentation method segCNV using both the joint distribu-
tion of LRR and BAF (Shi and Li, 2012), and cnvHap (Coin
et al., 2010) that is another HMM using two-locus haplotype
distribution in transition probabilities.

PennCNV, SCAN, and segCNV only consider the copy num-
bers and can form good contrasts with ours for CNP. Comparing
with WHMM and cnvHap can help us understand how much
additional information we can gain using correlation within
multi-locus haplotype and flexible boundary assumption.

4. REAL DATA ANALYSIS
4.1. DUPLICATED SAMPLES OF PATIENTS WITH ACUTE LUNG INJURY
In a genome-wide study to investigate the genetic effect on various
trauma-induced clinical outcomes, cases with ALI and controls
from at-risk trauma population at the University of Pennsylvania
were recruited for genotyping. To control the quality of geno-
typing, 23 Caucasian ALI patients were randomly chosen to have
duplicate serum samples, which were separately genotyped using
Illumina HumanQuad610 BeadChip (Illumina, San Diego). Over
600,000 bin-tagging polymorphisms were included and normal-
ized intensity data for each sample were loaded into Illumina
Beadstudio 2.0. See Christie et al. (2012) for genotyping details.

To check the feasibility and reliability of our proposed method,
we applied it to the 23 pairs of samples and compared our CNP
calls with PennCNV, SCAN, and the normal genotypes called
using Illumina’s clustering algorithm without considering CNV.
The summary statistics of raw signal data were checked prior to
analysis. Samples with extreme values generally suggest low qual-
ity and were removed from the analysis. We used a sliding window
of five SNPs through the whole chromosome to determine haplo-
type blocks. In each window, haplotype frequencies are estimated
from the HapMap genotype data. Because the HapMap genotypes
were generated mainly from Affymetrix platform, their strands
sometimes were the complementary stands of our genotypes. We
unified the strandness of two sets of genotypes and estimated
the corresponding haplotype frequencies using the EM algorithm
implemented in the haplo.stats R package.

We checked the concordance of the genotype of CNV calls
from our and others’ methods and the recovery of CNP calls
among regular genotype calls.

4.2. HapMap CEU SAMPLES
We also applied PennCNV, SCAN, WHMM, segCNV, and our
method in 90 HapMap CEU samples genotyped by Affymetrix
Genome-Wide Human SNP Array 6.0. To assess the accuracy of
various calling methods, we checked the overlap between CNV
calls from these methods and the CNV regions validated through
array-CGH (Conrad et al., 2010).
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5. RESULTS
5.1. SIMULATION RESULTS
Table 2 summarizes the results from our method for eight
haplotype blocks. The sensitivity ranged from 71.4 to 99.4% for

more frequent case and from 72.0 to 99.6% for less frequent case,
meaning that we can detect most of CNV regions in all cases. The
true positive rate was larger than 97% in general, meaning that
vast majority of our detected regions are true CNV regions.

Table 2 | Summary of CNP regions and genotypes called from hap-CNP.

CNV Haplotype True CNV Sensitivity True positive Within truly detected regions Within falsely detected regions

type block length (s.d.) rate (s.d.)
Length of CNV regions Length of CNV regions

More CORIN-3 3 0.714(0.026) 0.999(0.002) 3.064(0.662) 1.750(0.886)
frequent 4 0.810(0.022) 0.999(0.002) 3.946(0.683) 2.500(1.509)

5 0.839(0.025) 0.999(0.002) 4.794(0.711) 2.571(1.272)

ADD1 3 0.715(0.028) 1.000(0.001) 3.027(0.636) 1.000(0.000)
4 0.817(0.026) 0.999(0.002) 3.900(0.660) 2.250(1.488)
5 0.865(0.020) 1.000(0.001) 4.782(0.673) 1.000( NA)

NR3C2-1 3 0.725(0.028) 0.973(0.015) 3.187(0.791) 1.368(0.797)
4 0.824(0.025) 0.972(0.011) 3.961(0.663) 1.384(0.772)
5 0.880(0.019) 0.972(0.013) 4.783(0.681) 1.467(0.979)

NR3C2-2 3 0.713(0.027) 0.993(0.006) 3.148(0.675) 1.847(1.201)
4 0.824(0.029) 0.984(0.010) 4.034(0.707) 1.633(1.105)
5 0.878(0.020) 0.941(0.017) 5.014(0.806) 1.385(0.920)

LOC285501-2 3 0.703(0.030) 1.000(0.001) 3.067(0.790) 2.000(0.000)
4 0.767(0.029) 0.999(0.002) 4.230(1.149) 1.833(0.983)
5 0.854(0.023) 0.999(0.002) 5.015(0.905) 2.800(1.398)

RP11-404J23.1-1 3 0.691(0.027) 0.999(0.002) 3.072(0.707) 2.100(1.449)
4 0.792(0.027) 0.999(0.002) 3.978(0.761) 1.750(1.165)
5 0.836(0.029) 0.999(0.001) 4.895(0.770) 2.800(0.837)

LOC285501-1 5 0.866(0.022) 0.998(0.003) 5.041(0.915) 2.647(1.730)
20 0.995(0.005) 0.998(0.002) 19.875(1.794) 2.158(1.344)

RP11-404J23.1-2 15 0.988(0.007) 0.999(0.002) 14.908(1.628) 2.769(1.536)
20 0.994(0.005) 0.999(0.002) 19.863(1.783) 2.125(1.586)

Less CORIN-3 3 0.720(0.059) 0.996(0.009) 3.102(0.698) 1.333(0.500)
frequent 4 0.826(0.044) 0.997(0.007) 3.965(0.724) 2.429(1.397)

5 0.852(0.049) 0.997(0.007) 4.796(0.759) 1.667(0.516)

ADD1 3 0.726(0.053) 0.997(0.008) 3.055(0.698) 1.000(0.000)
4 0.829(0.043) 0.998(0.006) 3.980(0.706) 1.833(1.169)
5 0.892(0.040) 0.998(0.005) 4.806(0.674) 1.800(0.837)

NR3C2-1 3 0.736(0.052) 0.957(0.033) 3.074(0.749) 1.371(0.711)
4 0.840(0.047) 0.952(0.032) 3.954(0.697) 1.370(0.699)
5 0.881(0.047) 0.961(0.022) 4.811(0.699) 1.413(0.925)

NR3C2-2 3 0.736(0.059) 0.987(0.018) 3.179(0.715) 1.893(1.474)
4 0.835(0.054) 0.976(0.018) 4.085(0.763) 1.525(1.058)
5 0.882(0.041) 0.912(0.040) 5.033(0.836) 1.469(1.044)

LOC285501-2 3 0.695(0.064) 0.996(0.010) 3.063(0.841) 2.000(1.225)
4 0.776(0.050) 0.995(0.012) 4.248(1.174) 2.182(1.168)
5 0.877(0.043) 0.998(0.006) 5.090(1.002) 1.600(0.548)

RP11-404J23.1-1 3 0.702(0.065) 0.996(0.009) 3.084(0.764) 1.857(1.464)
4 0.810(0.060) 0.998(0.006) 4.028(0.841) 3.000(0.707)
5 0.864(0.039) 0.997(0.008) 4.933(0.835) 2.333(1.225)

LOC285501-1 5 0.898(0.040) 0.992(0.012) 5.154(1.004) 2.476(1.436)
20 0.997(0.007) 0.992(0.013) 20.002(1.689) 2.385(1.329)

RP11-404J23.1-2 15 0.989(0.012) 0.995(0.008) 15.009(1.731) 2.846(1.405)
20 0.996(0.008) 0.994(0.010) 19.951(1.692) 2.667(1.589)
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As the length of true CNV interval increased with the same
haplotype block, the sensitivity increased and the true positive
rate remained similar. With comparable LD, the longer CNV
regions across different blocks tend to have higher sensitivity and
true positive rates. This is because haplotypes are more likely to
be separated with longer CNV regions and in return the more
accurate haplotype information can lead to better CNV detection.

In addition, we found the majority of the false negatives
resided on the boundary rather than within the true region, which
was also consistently observed in the results from other methods.

The sensitivity remained stable in both common and rare CNV
intervals, while the true positive rate was slightly higher for com-
mon CNV regions than that for rare CNV regions. Though we
expected better performance in common CNV than rare CNV,
the sample size we generated was large enough to give reliable
haplotype inference. So the frequency of CNV doesn’t play much
role in studies with a decent sample size (n ∼ 1000). For smaller
sample size (n < 200), common CNVs could lead to much better
inference in Haplotypes than rare CNVs and the difference can be
larger.

There was no clear trend of sensitivity change as LD gets
stronger from CORIN-3, ADD1, NR3C2-1 to LOC285501-2
(overall average R2 increases from 0.15 to 0.81). Even the LD is
assumed to help the inference of CNP, the excess high LD may
not necessarily lead to much accuracy gain and the little gain may
be covered by the boundary LD and length of the CNV regions.

In truly detected CNV regions, the average length of the
regions was close to the truth; while in falsely detected CNV
regions, the average length was around 1, meaning the most
of the falsely detected CNV were singletons. On the con-
trary, almost all detected singletons were false CNVs and the
longer detected regions were more likely to be the true CNV
regions. The average lengths of detected CNV intervals were
similar for common and rare cases while the variability was
bigger for rare case due to the small sample size of CNV
intervals.

As a comparison, the results from other methods including
PennCNV, SCAN, WHMM, cnvHap, and segCNV are summa-
rized in Table 3. In general, PennCNV underestimated CNV
regions and more often it happened when the true CNV regions
were short. WHMM, SCAN and segCNV methods were more
sensitive than PennCNV, but slightly less than our method.
Interestingly, although PennCNV detected fewer CNV loci and
regions, their detected CNV regions were often longer than the
truth. WHMM yielded much more CNV regions than the truth,
which resulted in high sensitivity with small true positive rate.
SCAN had similar performance as ours for less frequent cases,
while it has smaller sensitivity than ours for more frequent cases.
SCAN showed slightly longer falsely detected CNV regions than
our methods in both cases. segCNV, as a partitioning method,
performs similar to SCAN. cnvHap, as the only method using
haplotypes we are comparing with, has superior true positive rates
than others in general. For short CNV regions, it has better sen-
sitivity than others but this advantage quickly diminishes as CNV
regions become longer. On one hand, cnvHap’s results support
the advantage of using haplotype information but its usage of
two-locus haplotypes may not be ideal for a long block, which
seems improved in our method. It is counter-intuitive to see that

cnvHap perform worse for longer CNVs. This is partially because
the results are sensitive to the choice of blocks, even with true
values, in the customized normalization step of cnvHap.

Tables 2, 3 demonstrate that our method provides the most
sensitive and accurate results among the methods considered.

When we randomly selected 1% loci to have missing b and
r values, the CNP at missing loci were estimated using neigh-
bor markers as described in section 2.5. As described in Table 4,
recovery rate is generally higher for longer CNV regions. Missing
loci in rare case are more likely to be correctly recovered than
those in more frequent cases. For less frequent cases, there are
more normal copy number loci which can be used for accurate
haplotype frequency estimation.

For haplotype inference, we checked the haplotype frequency
estimates from our method and from HaploView using all indi-
viduals with normal copies. Within the NR3C2 block, the sum
of squared errors of estimated frequencies vs. the true frequen-
cies from our method and from HaploView had a mean of 0.0007
and 0.0011, respectively. This shows a better accuracy of infer-
ring haplotypes using CNP, as a byproduct of our method. We
found that our method can give similar results no matter how
long the CNV interval is but the estimates can be more accurate
in common CNV regions than less frequent CNV regions (data
not shown). That’s not surprising because with common CNV
regions, more individuals have CNV and those more informative
haplotypes.

Based on 500,000 simulations, the average computing times
for one chromosome were 10.5 s for PennCNV, 77.7 s for
WHMM, 1.0 s for SCAN, 3.2 s for segCNV, and 81.5 s for our hap-
CNP. cnvHap requires customized input for each haplotype block
and thus we only ran it over our tested blocks, which took 137.7 s
per simulation. As expected, SCAN is extremely fast; PennCNV is
efficient using the forward-backward algorithm for HMM and it
was developed for calling CNV only without allelic specifications.
WHMM and our hap-CNP are comparable though we allow copy
numbers to range from 0 to 4, more states than 1–3 in WHMM.
cnvHap requires more computing time and would become chal-
lenging to run over a whole chromosome, mostly because the
number of “haplotypes” increases considerably with all possible
CNVs.

5.2. CNPs ON CHROMOSOMES 1 OF DUPLICATED SAMPLES
Without loss of generality, we reported the results of CNP
calls on chromosome 1. Among 46 samples, two had either
extremely large variance or median absolute deviation and thus
were removed from further analysis. There are 1317 loci miss-
ing in LRR or BAF among all subjects. Among them 22 loci were
recovered from our algorithm.

Table 5 summarizes the total number of CNV calls on chromo-
some 1 from one set of samples in contrast of the calls from the
other set of samples, using our method, PennCNV, and SCAN.

The copy number concordance rates were 98.6, 97.5, and
99.8% for our method, SCAN and PennCNV, respectively.
PennCNV showed higher concordance rate due to its conservative
detection of CNV while our method and SCAN detected more
CNV loci. The copy number discordant rate was 1.00% in our
method, mainly caused by three individuals whose r is further
away from majority of individuals.
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Table 3 | Summary of CNV region and genotype calls from all methods.

Haplotype Method True CNV Sensitivity (s.d.) True positive rate (s.d.) Within truly detected regions Within falsely detected regions

block length
Length of CNV regions Length of CNV regions

NR3C2-1 hap-CNP 3 0.725(0.029) 0.973(0.015) 3.187(0.791) 1.368(0.797)
More frequent 4 0.824(0.025) 0.972(0.011) 3.961(0.663) 1.384(0.772)

5 0.880(0.019) 0.972(0.013) 4.783(0.681) 1.467(0.979)

PennCNV 3 0.167(0.024) 0.868(0.052) 4.252(1.017) 3.642(1.737)
4 0.534(0.035) 0.912(0.023) 4.395(0.611) 3.162(1.749)
5 0.755(0.024) 0.919(0.023) 4.952(0.447) 2.970(1.728)

SCAN 3 0.556(0.033) 0.989(0.008) 3.265(1.036) 2.065(1.576)
4 0.723(0.030) 0.986(0.009) 4.062(0.847) 1.851(1.422)
5 0.821(0.024) 0.984(0.009) 4.785(0.712) 1.910(1.379)

WHMM 3 0.637(0.027) 0.968(0.016) 1.846(0.839) 2.069(1.317)
4 0.747(0.026) 0.956(0.013) 2.497(1.132) 2.059(1.361)
5 0.806(0.025) 0.947(0.015) 3.317(1.375) 2.209(1.419)

cnvHap 3 0.888(0.114) 1.000(0.001) 3.010(0.114) 1.000( NA)
4 0.572(0.065) 1.000(0.002) 4.067(0.250) 5.000( NA)
5 0.217(0.079) 1.000(0.000) 4.992(0.091) NA( NA)

segCNV 3 0.275(0.024) 0.984(0.017) 3.239(0.633) 2.546(1.792)
4 0.603(0.029) 0.989(0.009) 3.360(0.697) 2.152(1.564)
5 0.820(0.022) 0.987(0.006) 4.064(0.724) 2.500(1.789)

NR3C2-1 hap-CNP 3 0.736(0.052) 0.957(0.033) 3.074(0.749) 1.371(0.711)
Less frequent 4 0.840(0.047) 0.952(0.032) 3.954(0.697) 1.370(0.699)

5 0.881(0.047) 0.961(0.022) 4.811(0.699) 1.413(0.925)

PennCNV 3 0.123(0.043) 0.560(0.145) 3.841(0.962) 3.556(1.699)
4 0.499(0.068) 0.806(0.078) 4.231(0.515) 3.525(1.814)
5 0.735(0.058) 0.834(0.053) 4.956(0.406) 3.216(1.760)

SCAN 3 0.576(0.062) 0.982(0.021) 2.972(0.788) 2.121(1.763)
4 0.751(0.047) 0.980(0.020) 3.905(0.765) 1.826(1.465)
5 0.838(0.055) 0.983(0.016) 4.749(0.739) 2.023(1.640)

WHMM 3 0.294(0.064) 0.971(0.038) 1.615(0.727) 1.692(0.970)
4 0.434(0.062) 0.970(0.034) 2.075(0.989) 1.452(0.832)
5 0.535(0.061) 0.970(0.028) 2.506(1.236) 1.694(1.103)

cnvHap 3 0.782(0.064) 1.000(0.000) 3.224(0.432) NA( NA)
4 0.824(0.057) 1.000(0.000) 4.474(0.500) NA( NA)
5 0.811(0.075) 0.998(0.005) 4.826(0.379) 5.000(0.000)

segCNV 3 0.348(0.060) 0.987(0.021) 3.118(0.482) 3.500(1.871)
4 0.672(0.066) 0.990(0.015) 3.283(0.540) 2.750(1.669)
5 0.853(0.047) 0.990(0.015) 4.043(0.695) 4.100(2.183)

Table 6 summarizes the number of normal SNP genotype
calls from one set of samples compared with the other set of
samples. The concordance rate of regular genotypes (CN = 2)
using our method was 99.95% and for BeadStudio was 99.99%.
But our method had a no-call rate of 0.13%, much smaller than
4.35% from BeadStudio. BeadStudio provides high amount of
no-calls to maintain the concordance rate almost perfect. While
our method extracts more information from the BeadStudio’s
no-calls, that is, among 43,018 no-call loci from BeadStudio,
38,962 loci were genotyped concordantly by our method. Hence,
there was a trade-off between no call rate and concordance
rate.

5.3. CNPs ON CHROMOSOMES 1 OF CEU SAMPLES
Table 7 summarizes CNV regions on chromosome 1 of CEU
samples detected by PennCNV, SCAN, segCNV, WHMM, and
our hap-CNP in overlap with the CNV regions validated through
array CGH and with each other. Among a total of 26.5 Mb
CNV regions detected by hap-CNV, more than 80% are in the
validated regions. PennCNV and SCAN detected much less but
most of their detected regions are covered by the validation set.
Overall, we have detected 70, 57, 67, and 78% unique CNVs
which cannot be found in PennCNV, SCAN, segCNV, and
WHMM. Despite that the majority of CNV regions were among
validated regions, the percentage of all validated regions covered
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Table 4 | Missing recovery using haplotypes.

CNV Haplotype True CNV No of No of No of Correctness

type block length missing recovery correct rate

More CORIN-3 3 158 158 79 0.500
frequent 4 196 196 155 0.791

5 235 235 181 0.770
6 261 261 211 0.808

ADD1 3 151 151 99 0.656
4 175 175 114 0.651
5 263 263 195 0.741

NR3C2-1 3 129 129 65 0.504
4 204 204 134 0.657
5 252 252 187 0.742

NR3C2-2 3 140 140 81 0.579
4 198 198 135 0.682
5 248 248 188 0.758

Less CORIN-3 3 34 34 20 0.588
frequent 4 44 44 39 0.886

5 56 56 47 0.839
6 71 71 58 0.817

ADD1 3 29 29 16 0.552
4 41 41 28 0.683
5 65 65 47 0.723

NR3C2-1 3 32 32 21 0.656
4 43 43 27 0.628
5 55 55 44 0.800

NR3C2-2 3 43 43 25 0.581
4 58 58 35 0.603
5 63 63 52 0.825

Table 5 | Concordance of copy numbers between duplicated samples.

hap-CNP SCAN PennCNV

0 1 2 3 NC* 0 1 2 3 NC* 0 1 2 3 NC*

0 95 10 7 0 2 0 0 0 0 0 3 0 0 0 0

1 10 649 1756 6 7 0 868 1718 7 5 0 142 78 0 0

2 23 8096 973,114 1195 1050 0 9734 962,981 4093 1054 0 217 987,122 123 970

3 1 149 2533 379 2 0 106 7922 575 7 0 0 154 265 1

NC* 0 0 133 0 53 0 1 143 1 53 0 0 146 0 47

*No call.

Table 6 | Concordance of normal genotypes between duplicated samples.

hap-CNP BeadStudio

AA AB BB NC* AA AB BB NC*

AA 315,664 89 7 394 300,050 12 7 698

AB 162 301,801 123 297 11 299,085 36 579

BB 1 127 358,748 354 6 24 347,019 565

NC∗ 37 36 51 53 94 167 272 40,643

Total 315,864 302,057 358,748 1098 300,161 299,298 347,334 42,485

*No call.
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Table 7 | Number of CNV calls on chromosome 1 of CEU samples.

Total CNV (Mb) Overlap with

aCGH (%) hap-CNP (%) PennCNV (%) SCAN (%) segCNV (%) WHMM (%)

hap-CNP 26.53 82.6 – 30.0 43.3 32.7 21.7

PennCNV 8.39 90.2 87.1 – 82.9 71.2 27.8

SCAN 18.37 87.5 61.8 38.8 – 48.5 20.0

segCNV 17.37 82.7 49.4 37.0 51.5 – 16.8

WHMM 1097.15 72.7 0.4 0.2 0.3 0.3 –
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FIGURE 2 | Detected CNV intervals. Three regions from three different HapMap samples were taken to show the detected regions. (A,B) Show deleted and
duplicated regions detected by all five methods. (C) Shows a deleted region only detected by our method. All regions are located in chromosome 1.

by each approach was tiny (0.13, 0.06, 0.10, 0.09, and 5.16%,
respectively), suggesting genotyping platform may have limited
sensitivity for CNV detecting compared with aCGH. When we
checked individual calls, most of long CNV regions were called
by all five algorithms but there is no persistent optimal choice of
an algorithm. As example regions from three samples are shown
in Figure 2, long deletion and duplication regions were detected
by all five methods in (A) and (B) but a small deletion CNV
region was detected only by our method.

Computation time was in similar scales as in simulations. For
90 CEU individuals, the average computing time on chromo-
some 1 were 1.0, 16.9, 3.2, 48.2, and 28.8 s for SCAN, PennCNV,
segCNV, WHMM, and our method, respectively.

6. DISCUSSION
SNPs and CNVs may affect phenotypes separately or jointly and
the accuracy of their call can affect the results of association stud-
ies. Ignoring CNVs during SNP genotyping may lead to failure
to capture the true underlying sequence at many sites and can
create the appearance of violations of Mendelian inheritance or
Hardy–Weinberg equilibrium where in fact none exists. Using
only CNV while ignoring the allelic information in the asso-
ciation studies may fail to incorporate allele-specific gains and
losses and diminish the potential to exploit LD between CNVs
and nearby SNPs (ongoing study). Association analysis using copy
number only without differentiating alleles can dilute the effect
size and the power, as shown in both simulations and real studies
of insulin and schizophrenia (Hu et al., under review; Irvin et al.,
2011).

We didn’t separate LOH from the CNV calls, but it can be
checked as a special class from our call, i.e., regions with cA · cB =
0 and cA + cB = 2. Due to the limitation of genotyping platforms,
our method can not detect interchromosome duplication and
dispersed segmental duplication, which can be discovered using
genomic sequence data.

Our assumption for haplotype-based CNV inference means
that within a region, the deletion/duplication piece cannot end
at locus T on one chromosome and then occur immediately again
from T + 1 on the other. If in reality this occurs, one more param-
eter of the event probability can be incorporated in the likelihood,
which will result in much longer computation time as a trade-off.

In duplication regions, our method also relies on the assump-
tion of a nearby haplotype being duplicated. In reality, exceptions
could occur, which may affect the performance or our method
in uncertain ways. So users should be cautious about the infer-
ence on the duplication regions when the assumption is in doubt.
Further investigations on how likely this would happen and what
bias it leads to are warranted.

The genotypes at the loci with missing LRR/BAF values
can be inferred using the neighborhood haplotype information.
Depending on whether the loci are at the boundary of or within
CNV regions, the copy numbers may not be accurately recov-
ered. This can also be used for imputing CNP genotypes of some
individuals that were genotyped using a platform different from
others.

We used the estimates from an HMM as the initial values for
our proposed haplotype-based method to expedite the computa-
tion. We also checked the robustness of our method using other
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initial estimate such as clusters based on arbitrary cut-off val-
ues for LRR and BAF. We found the performance of our
method was consistent. For the long regions, the initial calls
from HMM were generally reliable and had little space for
improvement. But for short regions where our model assump-
tions are more likely to meet, our method yielded more reliable
and accurate calls. These finding were consistent as reported in
Wang et al. (2009).

Whether real chromosomes can be partitioned as unrelated
haplotype blocks is still a question, early studies (Daly et al,
2001; Patil et al, 2001; Dawson et al, 2002; Gabriel et al, 2002;
Zhang et al, 2003) has shown the rational and feasibilities of sep-
arated blocks’ representation. So we adopted known haplotype
blocks in our simulation. As a limitation of the algorithm, the
data generated can only have similar local LD patterns as in the
HapMap CEU population.

In analysis of HapMap data, we used sliding-window approach
to avoid the selection of haplotype blocks. We have tested a few
similar window sizes, which resulted little differences. But longer
blocks can cause problem in haplotype estimates and slow down
the algorithms even though they worked fine in our simulations.
In addition, since there is more chances to detect longer CNV and
less space for improvement, using long sliding windows may be
not efficient in whole-genome scan.

The mutual benefits of haplotype and CNP inference can be
applied to other data such as next generation sequence data, as in
our ongoing work.
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APPENDIX
A. CONDITIONAL PROBABILITY FOR R AND B

Given each CNP, we will assume the conditional probability
P(rk | ck = (ck,A, ck,B)) to be Gaussian with mean μCNk and
variance σ2

CNk
where CNk is the copy number at the locus k given

by cnk = CN(ck) = ck,A + ck,B, i.e.,

P
(
rk | ck = (

ck, A, ck, B
)) ∼ N

(
μCNk , σ

2
CNk

)
.

Due to the truncation and linear transformation of θ used
for the b calculation, we will model the conditional prob-
ability of b as a mixture distribution with two point mass
at 0 and 1 (denoted as δ0 and δ1, respectively) and trun-
cated normal distribution. The truncation only affects for the
copy numbers having one component is 0. Also mostly b
follows normal distribution, e.g., bk | ck ∼ N(μb,CNk , σ

2
b) when

ck, B = 0 in the sense that P(bk = 0 | ck) = P(N(μb,CNk , σ
2
b) ≤

0), P(bk = 1 | ck) = P(N(μb,CNk , σ
2
b) ≥ 1), and P(bk ≤ b | ck) =

P(N(μb,CNk , σ
2
b) ≤ b) for b ∈ (0, 1). When ck,A = 0 and ck,B = c,

the distribution of bk | ck is the same as 1 − bk | ck = (c, 0) if c > 0
and bk, | ck ∼ N(1/2, σ2

b) if c = 0. If ck, A, ck, B > 0, then bk | ck ∼
N(ck,B/CNk, σ

2
b).

These conditional probabilities can be assumed the same as the
emission probabilities in an HMM model and thus the parame-
ters can be estimated nicely from the HMM model.

B. HIDDEN MARKOV MODEL
A first order HMM on the loci specific CNP is used to infer the
initial ci for each individual. In this model, the hidden CNP at
each locus depends only on the CNP at the most preceding locus.
Given the observed data ri, bi, the most likely hidden CNP at each
marker locus becomes the initial value, i.e., the CNP that maxi-
mizes the likelihood given in Equation (5). In this computation,
the Viterbi’s algorithm is used, see Viterbi (1967).

Also by assuming that the values of r and b are indepen-
dent given the hidden copy number state, the likelihood of the
observed data becomes

P(r, b) =
∑

c

P(r, b | c) P(c)

=
∑

c

{
M∏

k = 1

P(rk | ck)P(bk | ck)

}{
P(c1)

M∏
k = 2

P(ck | ck−1)

}
.(5)

Note that the HMM (Equation 5) is different from the hap-
lotype model (Equation 1). As we can see from Equation (5),
there are two main components in the HMM calculation.
The emission probabilities P(rk | ck) and P(bk | ck) remain the
same in Appendix A. , and transition probability is given by
P(ck | ck − 1) = t(CNk − 1, CNk, dk)G(ck − 1, ck) where t(i, j, d) is a
distance based transition matrix among copy numbers given by
1 − (1 − γij)(1 − e−ηd) if i = j and γij(1 − e−ηd) otherwise. and
G(·, ·) is a transition matrix within the states having the same
copy number. The fact that the coefficient matrix � = (γij) is
a transition probability matrix, that is, each elements are non-
negative and row sums are 1, is used in the parameter estimation.

C. PARAMETER ESTIMATION
The initial model parameters for the HMM were determined from
our preliminary results based on the HapMap data. In theory, the
maximum likelihood estimators (MLE) of the parameters, P =
(μ, σ,μb, σb, η, γ), can be obtained by maximizing the following
likelihood function

P(b, r |P) =
∑
c ∈C

{
M∏

k = 1

P(rk | ck,μ,σ)P(bk | ck,μb, σb)

}
{

P(c1 | η, γ)

M∏
k = 2

P (ck | ck − 1,η, γ)

}
. (6)

In practice, maximizing Equation (6) in terms of multiple param-
eters is computationally intensive for a huge number of summa-
tions will be involved for a large M. As in a typical HMM, we
used a Baum–Welch algorithm (Baum et al., 1970) to make the
computation feasible. The details are in the following sections.

C.1. The Baum–Welch algorithm
At each iteration � with current parameter estimate P�, calculate
the conditional expectation of the log likelihood, given by

Q(P |P�) = E

[
log P(b, r, c |P) | b, r,P�

]
=
∑
s ∈S

P
(

c1 = s | b, r,P�
)

log P(c1 = s) (7)

+
M∑

k = 2

∑
s, t ∈S

P
(

ck − 1 = s, ck = t | b, r,P�
)

log P(ck = t | ck − 1 = s,η, γ)

+
M∑

k = 1

∑
s ∈S

P
(

ck = s | b, r,P�
)

[logP(bk | ck = s, μb,σb)

+ log P(rk | ck = s,μ, σ)].

where S is the set of all possible CNP states.
Two required conditional probabilities ρk(s) = P(ck =

s | b, r,P�) and ξk(s, t) = P(ck − 1 = s, ck = t | b, r,P�) are
computed using the forward and backward algorithms in the
general HMM theory.

In the M-step, parameters are updated by maximizing the con-
ditional expectation (Equation 7), which included three separate
terms that can be maximized separately: the first term only con-
cerns the parameters in the transition matrix, the second and the
third terms concern the parameters in the emission probability
of the B allele frequency and the log R ratio, respectively. Here,
we give the formulas for updating the parameter with derivation
details in following sections.

C.2. Parameters in the emission probability of LRR
Without any constraint on μ and σ, the maximizers μ̃j and σ̃j are
given by
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μ̃j =
∑

rkρ̃k(j)
/∑

ρ̃k(j) and

σ̃2
j =

∑(
rk − μ�+ 1

j

)2
ρ̃k(j)

/∑
ρ̃k(j)

for j = 0, 1, 2, 3, and 4, where ρ̃k(j) = ∑
s∈S:CN(s) = j ρk(s).

We assumed a constraint μ1 ≤ μ2 = 0 ≤ μ3, then

μ�+ 1
1 = min(0, μ̃1), μ�+ 1

2 = 0, μ�+ 1
3 = max(0, μ̃3) and

(σ�+ 1
j )2 = σ̃2

j + (μ�+ 1
j − μ̃j)

2.

If a signal-to-noise constraint is assumed, that is, μ1 + vσ1 ≤
μ2 − vσ2 and μ2 + vσ2 ≤ μ3 − vσ3, then no closed form is avail-
able. If μ̃ and σ̃ satisfies the condition μ̃1 + vσ̃1 < μ̃2 − vσ̃2,
then new estimators are μ1 = μ̃1 and σ1 = σ̃1. Otherwise, new
μ1,μ2, σ1, σ2 are on the boundary μ1 + vσ1 = μ2 − vσ2. The
maximizer under this condition can be found an iterative con-
ditional maximization. For example, if σ1 and σ2 are fixed, the
argument function for maximization becomes

w1
(μ1 − μ̃1)

2

σ2
1

+ w2
(μ2 − μ̃2)

2

σ2
2

= const + μ2
1

(
w1

σ2
1

+ w2

σ2
2

)

− 2μ1

(
w1μ̃1

σ2
1

+ w2(μ̃2 − v(σ1 + σ2))

σ2
2

)

where wj = ∑M
k = 1 ρ̃k(j). Hence, μ1 and μ2 are updated by min-

imizing the argument function which is a quadratic equation,
so it has a closed form solution. One possible conditional max-
imization sequence would be a sequential updates of (μ1, μ2),
(μ2, σ2), (μ1,μ2), and (μ1, σ1) under the other parameters are
held fixed. Then the unconditional maximizers are obtained by
repeating this procedure until convergence is achieved.

Furthermore, we assume μ0, μ4, σ0, σ4 are fixed in practice
due to the sparsity of the deletion and duplication states. In order
to obtain a stable estimation for the standard deviation param-
eters, we assume that σj for j = 1, 2, 3 are bounded below and
above by σlower and σupper which are the half and double of the
standard deviation of r.

C.3. Parameters in the emission probability of BAF
Since BAF has bounded values on [0, 1], estimations of related
parameters are a bit complicated. For instance, the argument
function for estimation of μb, j is given by

M∑
k = 1

[
{ρk(j, 0)I(bk = 0) + ρk(0, j)I(bk = 1)} log �(−μb,j

σb
)

− I(0 < bk < 1)

2σ2
b

{
ρk(j, 0)(bk − μb,j)

2

+ ρk(0, j)(bk − 1 + μb,j)
2
}]

(8)

where � is the cumulative distribution function of the standard
normal distribution. Since there is no analytic solution of the

maximizer of Equation (8), a first order Taylor expansion around
the current value is used to obtain a local maximizer.

C.4. Parameters in the transition matrix
The maximizer of G is obtained by

G�+ 1(s, t) =
M∑

k = 2

ξk(s, t)
/ M∑

k = 2

∑
t′ ∈S:CN(t′) = CN(t)

ξk(s, t′). (9)

However, the convergence of this maximizer is very slow. A
column-wise or block-wise estimation which assume all elements
in the same column or block are the same is more reliable than
element-wise estimation given Equation (9).

For the parameters η and γij in the transition matrix, we
use an iterative minorization-maximization (MM) algorithm
[see Hunter and Lange (2004) and references therein]. Using
a Young’s inequality, a minorized argument function for γ is
obtained by

M∑
k = 2

⎡⎣∑
i, j

κk(i, j) log γij −
4∑

i = 0

ζ̃k, iκk(i, i) log γii

⎤⎦ (10)

which has a closed for maximizer where ζ̃k, i = [1 + γ̃ii(eη̃dk −
1)]−1 for the current values γ̃ij and η̃ of γij and η. Also the
argument function for η becomes

v(η) =
M∑

k = 2

⎡⎣∑
i, j

log
(

1 − e−ηdk

)
κk(i, j)

−
∑

i

κk(i, i)
{(

1 − ζ̃k, i
)

log
(
1 − e−ηdk

)− ζ̃k, idkη
}]

. (11)

Then, the maximizer γm and ηm in MM algorithm can be
obtained as follows.

Step 0: Set initial parameters γ̃ij = γ�
ij, and η̃ = η�.

Step 1: Update γ̃ij by maximizing Equation (10), that is,

γm
ij =

M∑
k = 2

κk(i, j)
/ M∑

k = 2

⎡⎣∑
j′

κk(i, j′) − ζ̃k, iκk(i, i)

⎤⎦ for i �= j

γm
ii = 1 −

∑
j � = i

γm
ij . for i = 0, 1, 2, 3, and 4.

Step 2: Find new η̃ by maximizing the argument function
(Equation 11) using the Newton–Raphson algorithm.

Step 3: Repeat Steps 1 and 2 until γ̃ij and η̃ are converged.

The convergent parameters are the maximizer of the second part
in Equation (7).
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