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We consider a recently suggested “equation of state” for natively folded proteins, and verify its validity for a set of about
5800 proteins. The equation is based on a fractal viewpoint of proteins, on a generalization of the Landau-Peierls instability,
and on a marginal stability criterion. The latter allows for coexistence of stability and flexibility of proteins, which is required
for their proper function. The equation of state relates the protein fractal dimension d,, its spectral dimension d,, and the
number of amino acids N. Using structural data from the protein data bank (PDB) and the Gaussian network model (GNM),
we compute d.and d, for the entire set and demonstrate that the equation of state is well obeyed. Addressing the fractal
properties and making use of the equation of state may help to engineer biologically inspired catalysts.
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Introduction

Proteins are one of the major components of living cells. They
constitute more than half of the cell’s dry weight, and are
responsible for the execution of most cellular functions required
for life, including among others, catalysis and molecular
recognition within and between cells and their surroundings.
Understanding the relationships between structure, internal
dynamics, and enzymatic activity at the single-molecule level
could pave new ways to manipulate individual molecules.

Two seemingly conflicting properties of native proteins, such as
enzymes and antibodies, are known to coexist. While proteins
need to keep their specific native fold structure thermally stable,
the native fold displays the ability to perform large amplitude
conformational changes that allow proper function [1]. This
conflict cannot be bridged by compact objects which are
characterized by small amplitude vibrations [2]. Recently,
however, it became evident that proteins can be described as
fractals; namely, geometrical objects that possess self similarity
[3,4]. Adopting the fractal point of view to proteins makes it
possible to describe within the same framework essential
information regarding topology and dynamics.

Based on the fractal viewpoint, we have recently derived a
universal equation of state for protein topology. The same fractal
viewpoint allows describing the near equilibrium dynamics of
native proteins. We have recently shown that it leads to anomalous
dynamics [5]. For example, the autocorrelation function of the
distance between two a-carbons on a protein is predicted to decay
anomalously, first, at short times, as 1 —#® and later, at long times,
as t=F, where § and f are exponents that depend on various
fractal dimensions. This type of relaxation has been recently
observed in single molecule experiments [6,7]. Closely related is
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the anomalous diffusion of an «-carbon that is predicted by the
fractal model, where the mean square displacement is found to
increase as ~°. Such a behavior has also been recently observed
in molecular dynamics simulations [8].

Natively folded proteins can be characterized by broken
dimensions: the fractal and spectral dimensions [2,4,5,9-12]. The
mass fractal dimension d, describes the spatial distribution of the
mass within the protein via the scaling relation M (r) ~ %, where
M (r) is the mass enclosed in a sphere of radius 7 [3]. The spectral
dimension d, governs the density of low frequency vibrational normal
modes via the scaling relation g(w)~w®~!, where g(w)dw is the
number of modes in the frequency range [w,w + dw] [13]. While for
regular three dimensional (3D) lattices both d, and d, coincide with
the usual dimension of 3, for proteins it is usually found that d, <2
and 2<d, <3, leading to an excess of low frequency modes and a
more sparse fill of space [2,4,12]. Importantly, the regime d, <2 is
associated with the so-called Landau-Peierls instability, where the
amplitude of vibrations increases with the number of residues N
[14,15]. As this amplitude overcomes a threshold value, it may cause
the protein to unfold [2,12].

The Landau-Peirels instability is most readily derived using the
density of states. The static mean square displacement (MSD) of
an o-carbon, which is essentially the so-called B-factor, averaged
over all a-carbons of the protein, may be expressed as

kT
Coupy="2L [ 0t 1)
Dmin

where m is the average mass of an amino acid. Since g(®) ~ %=1,

it follows that if d, <2 the integral diverges with the lower bound
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Wnin- The latter depends on the protein radius of gyration R, and
the number of residues N as Wmin ~ Rgf‘]’ /ds ~ N~1/4_This leads
to {(Au;)*y ~N¥4=1 \hich increases with N for d <2. In
particular, the static MSD of surface residues has been argued to
grow as

<(Aui)2>surfacg NNz/d"+1/df 1 (2)

We have proposed a marginal stability criterion [16], in which
most proteins “‘exploit” the Landau-Peierls instability to attain
large amplitude vibrations, which is required for their proper
function, yet maintaining their native fold. Thus proteins are
assumed to exist in a thermodynamic state close to the edge of
unfolding. Based on this and the Landau-Peirels instability of the
surface residues, Eq. (2), a general equation of state has been
proposed that relates between the spectral dimension d,, the fractal
dimension d,, and the number of amino acids along the protein
backbone M

2 1 b

EA
& 4 T

3)

where b is a molecular fit parameter depending on the temperature
T, the GNM spring constant vy, and the GNM cutoff R:
b=In(yR?/kgT)) [12]. Tt has been shown that this equation is
obeyed by about 500 proteins regardless of their source or function
[12]. In the present study we check the validity of Eq. (3) for a
much larger set of over 5,000 proteins, using a range of statistical
methods, and show that also for this very large set Eq. (3) is
beautifully fulfilled. This supports the marginal stability criterion
that led to this equation.

Methods

We have used all data files present in the Protein Data Bank
(PDB) [17] and filtered out proteins exceeding 95% sequence
identity and proteins that have ligands, RNA, or DNA. We have
also removed incomplete data files, files that contained data of the
a-carbons alone, and also files of proteins smaller than 100 amino
acids that are too small to be characterized as fractals. With this
screening the set has been reduced to 5793 proteins.

The fractal and spectral dimensions were calculated for all 5793
proteins in similar ways to the procedure described by [12].
Finding the protein center of mass and placing the origin of
coordinates at the ten nearest a-carbons, the mass was calculated
as a function of the distance r on a log-log scale. The fractal
dimension d, has been obtained as the slope of this plot for
distances below the protein gyration radius R,, averaged over the
ten origin of coordinates, see examples in Fig. 1. It should be noted
that when a few alternative locations of an atom are given, only
the “4” location (usually the most abundant one) has been used.

To find the spectral dimension d,, we calculate the cumulative
density of normal vibrational modes G(w), G(w)= [}’ do'g(w),
representing the number of modes up to a frequency w. To obtain
the vibrational modes, we used a frequently applied elastic model
for protein vibrations, the Gaussian network model (GNM)
[12,18-23]. Two values were taken for the interaction distance
cutoff R,, that describes the range of the interaction between an o-
carbons pair, R, =6 A and R.=7 A. Plotting on a log-log scale
G(w) against the frequency o, the slope in the low frequency
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Figure 1. Fractal dimension. The fractal dimension of three selected
proteins: 1FTR (1184 amino acids, dr =2.66), 1UC8 (505 amino acids,
dr=251) and 3TSS (190 amino acids, dy=2.50). The mass M(r)
enclosed in concentric spheres of radius r is plotted against r (measured
in units of A) on a log-log scale and the slope determines the fractal
dimension, M (r)~r%. The plots of 1FTR and 1UC8 were shifted along
the y axis (+1 and +0.5 respectively) for clarity.
doi:10.1371/journal.pone.0007296.g001

range (containing about 24% of the modes, independent of the
protein type or size N) defines d, i.e. G(w) ~w®, see examples in
Fig. 2 for the case R.=6 A.

To deal with the large number of proteins in this set, both
procedures were automated using suitable computer codes. The
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Figure 2. Spectral dimension. The spectral dimension of three
selected proteins (same proteins as in Fig. 1): 1FTR (1184 amino acids,
d;=1.93), TUC8 (505 amino acids, d; =1.73) and 3TSS (190 amino acids,
dy=1.52). The cumulative density of normal modes G(w) is plotted
against the frequency o (measured in units of the spring natural
frequency) on a log-log scale and the slope determines the spectral
dimension, G(w) ~w®.

doi:10.1371/journal.pone.0007296.9002
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automatically calculated spectral dimension values were compared
(for the case R,=7 A) to the manually obtained values for the set
of 543 studied in [12]. We found almost vanishing mean of the
difference between the two results (0.0034), showing that the error
is statistical, and a low standard deviation (0.083), suggesting good
agreement between the two methods of calculation.

In order to generally check for correlations between 2/d;+ 1 / dy
and 1/InN, simple regression was conducted (using SPSS). This
shows statistical significance with p<<0.001 and very high F-test
values (F1,5791)=3263 and K1,4247)=2120 for R.=6 A,
F1,5791)=4059 and F1,3888)=2314 for R, =7 A).

Results

The results for the whole set appear in the supporting
information S1 and are shown in Figs. 3 and 4 (for R, =6 A and
7 A, respectively), where we plot the combination 2/d,+ 1 /dy
against 1/InN. In order to present the whole set of data, we
designed a (smoothed) colored histogram based on a 100 x 100
grid, where a pixel color represent the number of proteins
associated with the pixel. The data is first fitted to Eq. (3) (dashed
lines). This leads to b=4.555 for R, =6 A (correlation coefficient
cc =0.596), see Fig. 3, and b=3.242 for R,.=7 A (cc=0.605), see
Fig. 4. Using b=~In(yR/k,T}, with kzT/7 in the range 0.5 A% to
2 A?, we can estimate 4 to be in the range 3 to 5. The value of 4 is
within the expected range.

We also fitted the data to an equation resembling Eq. (3) but in
which the value “1” is replaced by a free parameter a:

2 1 b

& &~ )

)

This is done in order to verify if the free fit recovers the value a=1.
The results of this fit are also shown in Figs. 3—4 (full lines), and
yield a=0.884 and b=5.197 for R,=6 A (Fig. 3, cc =0.600), and
a=0.710 and b=4.841 for R=7A (Fig. 4, cc=0.642).
Remarkably, the colored histogram shows a ridge roughly
centered at the best fitting theoretical lines.
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Figure 3. Full data setfor Rc =6 A, colored histogram. The values
of 2/d,+1/ds against 1/InN plotted for the full data set (5793 proteins)
with Rc=6 A. The data is presented using a smoothed colored
histogram based on a 100 x 100 grid, see the color scale on the right
(low density areas colored blue and high density red). The data was fitted
to Eq. (3) (dashed line) and to Eq. (4) (full line).
doi:10.1371/journal.pone.0007296.9g003
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Figure 4. Full data set for Rc=7 A, colored histogram. Same as
in Fig. 3 but for Re =7 A.
doi:10.1371/journal.pone.0007296.g004

To improve the accuracy of the analyses, a subset was
constructed containing only those proteins whose both d, and d,
values have been determined with a very high precision, such that the
squared correlation coefficients for the power-law fits of both M (r)
and G(w) were in the range R?>0.99. Accordingly, this subset for
R,=6 A (containing 4249 proteins) is not identical to the subset for
R,=7 A (containing 3890 proteins), see the supporting informa-
tion S1 for details. The results are presented in Figs. 5-6. Fitting to
Eq. (3) (dashed lines) leads to b=4.476 for R.=6 A (Fig. 5,
cc=0.576) and b=3.078 for R,=7 A (Fig. 6, cc=0.593). Fitting
the data to Eq. (4) (full lines), yields a=0.952 and b=4.747 for
R,=6 A (Fig. 5, cc=0.577), and a=0.833 and b=4.031 for
R,=7 A (Fig. 6, cc=0.611).

Although the data analysis presented in Fig. 3-6 appears
complete, it fails to give equal weight to proteins of different sizes.
All four different data sets used above are very rich in proteins of
small (100-200 residues) and intermediate size, a consequence of
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Figure 5. High precision data set for Rc=6 A, colored
histogram. The values of 2/d,+1/dsagainst 1/InN plotted for the
refined subset of increased precision for Rc =6 A (4249 proteins), using
a colored histogram (same as in Fig. 3).The data was fitted to Eq. (3)
(dashed line) and to Eq. (4) (full line); the two lines are almost
indistinguishable.

doi:10.1371/journal.pone.0007296.9g005
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Figure 6. High precision data set for Rco=7 A, colored
histogram. Same as in Fig. 5 but for the refined subset of increased
precision for R =7 A (3890 proteins).
doi:10.1371/journal.pone.0007296.9g006

their abundance in nature, while being poor in large proteins. Yet,
the linear regression presented in Figs. 3-6 gives each protein an
equal weight. Thus, while the small/intermediate size proteins are
spread over a relatively limited range of .V, they are overwhelming
the linear regression, which is undesirable.

To circumvent this artifact, we have separated the x-axis
(1/InN) into 100 bins. For each bin we calculate the mean value of
2/dy+1/dy. The error of 2/d;+1/dy for each bin is estimated as
the standard deviation of this value. The results are summarized in
Figs. 7, 8, 9, 10.

Results from the full set of 5793 proteins are presented in
Figs. 7-8. Fitting to Eq. (3) (dashed lines) leads to b =4.580 for
R.=6 A (Fig. 7, cc=0.957) and b=3.212 for R.=7 A (Fig. 8,
cc =0.928). Fitting the data to Eq. (4) (full lines), yields a=1.026
and b=4.429 for R.=6 A (Fig. 7, cc =0.958), and a = 0.870 and
b=3.977 for R,=7 A (Fig. 8, cc=0.946). Note that all lines pass
through almost all error bars, a remarkable result.
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Figure 7. Full data set for Rc =6 A, division into bins. The values
of 2/dy+1/ds against 1/InN plotted for the full data set (5793
proteins) with Rc =6 A. The values of 1/InN were divided into 100
equally sized bins. For each bin we show the average value of
2/dy+1/ds and the error bar presents its standard deviation. The data
was fitted to Eq. (3)(dashed red line) and to Eq. (3) (full black line); the
two lines are almost indistinguishable.

doi:10.1371/journal.pone.0007296.g007
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Figure 8. Full data set for Rc =7 A, division into bins. Same as in

Fig. 7 but for Re=7 A.
doi:10.1371/journal.pone.0007296.g008
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Figure 9. High precision data set for Rc=6 A, division into
bins. Same as Fig. 7 but for the refined subset of increased precision for
Rc=6 A (4249 proteins).

doi:10.1371/journal.pone.0007296.g009
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Figure 10. High precision data set for Rc=7 A, division into
bins. Same as Fig. 7 but for the refined subset of increased precision for
Rc=7 A (3890 proteins).

doi:10.1371/journal.pone.0007296.g010
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In Figs. 9-10 we present results from the high precision subset of
4249 proteins. Fitting to Eq. (3) (dashed lines) leads to b =4.535 for
R.=6 A (Fig. 9, cc=0.941) and b=3.124 for R, =7 A (Fig. 10,
cc =0.937). Fitting the data to Eq. (4) (full lines), yields a=1.065
and b=4.155 for R,=6 A (Fig. 9, cc=0.945), and a=0.917 and
b=3.609 for R,=7 A (Fig. 10, cc = 0.946). Here, as well, all lines
pass through almost error bars. This refined analysis gives an even
stronger support to Eq. (3).

Discussion

All correlation coefficients mentioned above (Figs. 3-10) are
considered excellent. In addition, the values of a are close to the
theoretically predicted value a = 1, similar to the set of 543 proteins
studied by [12]. In particular, the fits of the data to Eq. (4) for all
data sets belonging to R, =6 A (shown in Figs. 3,5,7 and 9) yields a
values that are remarkably close to 1. The distribution of the data
in all four sets appears as a ridge that is roughly centered at the
best fitting theoretical lines (Figs. 3-6), and when the binning
procedure is being used, all lines pass well through the error bars
(Figs. 7-10). We believe that these results strongly confirm the
universal behavior described by Eq. (3), thereby supporting the
theoretical arguments leading to this equation.

Importantly, a is found to be particularly close to 1 when the
binning procedure is introduced, in which we analyze the mean
value of 2/d;+ 1/df, for a given N, for its dependence on N. In
these cases we also obtain remarkably good correlation coeffi-
cients, significantly better than those obtained without binning.
This suggests that, as a group, proteins follow the equation of state,
although the error bars indicate that there are other factors present
that cause deviations from the equation. These factors could be
related to the protein specific structure and/or function.

The distribution of the data in all four sets appears as a ridge
that is roughly centered at the best fitting theoretical lines (Figs. 3—
6), and when the binning procedure is being used, all lines pass
well through the error bars (Figs. 7-10). We believe that these
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results strongly confirm the universal behavior described by Eq.
(3), thereby supporting the theoretical arguments leading to this
equation.

To conclude, our analysis confirms the fractal nature of proteins
and supports the predicted universal equation of state (3). This
suggests that the majority of proteins in the PDB exist in a
marginally stable thermodynamic state, namely a state that is close
to the edge of unfolding. This could be related to the fact that
enzymes require flexibility and large internal motion to function
properly [1]. We suggest that Eq. (3) can be used as a tool in the
design of artificial enzymes [24]. Interestingly, fractal-like
properties have also been suggested to appear in the configuration
space of peptides [25].
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