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Abstract: Three novel lanthanide complexes with the ligand 4,4-difluoro-1-(1,5-dimethyl-1H-pyrazol-
4-yl)butane-1,3-dione (HL), namely [LnL3(H2O)2], Ln = Eu, Gd and Tb, were synthesized, and,
according to single-crystal X-ray diffraction, are isostructural. The photoluminescent properties
of these compounds, as well as of three series of mixed metal complexes [EuxTb1-xL3(H2O)2]
(EuxTb1-xL3), [EuxGd1-xL3(H2O)2] (EuxGd1-xL3), and [GdxTb1-xL3(H2O)2] (GdxTb1-xL3), were stud-
ied. The EuxTb1-xL3 complexes exhibit the simultaneous emission of both Eu3+ and Tb3+ ions, and
the luminescence color rapidly changes from green to red upon introducing even a small fraction
of Eu3+. A detailed analysis of the luminescence decay made it possible to determine the observed
radiative lifetimes of Tb3+ and Eu3+ and estimate the rate of excitation energy transfer between these
ions. For this task, a simple approximation function was proposed. The values of the energy transfer
rates determined independently from the luminescence decays of terbium(III) and europium(III) ions
show a good correlation.

Keywords: pyrazoles; diketones; lanthanides; luminescence; europium; terbium; gadolinium; energy
transfer; color tuning

1. Introduction

The unique luminescent properties of lanthanide ions are actively studied due to
the possibility of their use in emitting materials [1–3], biovisualization [4–7], banknote
protection [8] and in creating sensing materials [9–11].

The sensitization of the luminescence of lanthanide ions with an organic ligand has
been studied since Weissman in 1942 [12] discovered sensitization of the luminescence
of europium(III) ions in various chelates. This phenomenon, called the “antenna effect”,
underlies the modern approach to creating Ln-based luminescent materials and allows
one to avoid the problem of low-efficiency of direct excitation due to low absorption
coefficients of rare-earth ions [5,13]. Various conjugated ligands, such as aromatic car-
boxylic acids [14–16], Schiff bases [17] and related compounds [18], as well as various
diketones [19–21], have been proposed as antennae.
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Among all possible chelating O,O-bidentate ligands, no doubt, 1,3-diketones are the
most important and the most studied up to date.

Lanthanide (III) diketonates have been proposed as emitting layers in OLED [22,23],
as NMR shifting and discriminating agents [24], luminescent thermometers [25] and sensor
materials [26]. Diketones, bearing both aromatic and perfluorinated substitutions, are
widely used in coordination chemistry, chemical technology and as intermediates in organic
and heterocyclic chemistry. Much less attention was paid to 1.3-diketones, which contain
partially fluorinated substitutions, e.g., CHF2–group. Some derivatives of 4,4-difluoro-1-
phenylbutane-1,3-dione (1) were described mainly in patents and in medicinal chemistry
journals since they are important building blocks in the synthesis of Celecoxib analogs a
potent cyclooxygenase-2 (COX-2) inhibitors [27–29]. In coordination chemistry utilizing
diketones with CHF2–, the group is very limited. In fact, only two compounds were
used as a ligands, namely, fore mentioned 4,4-difluoro-1-phenylbutane-1,3-dione (1), and
4,4-difluoro-1-(thiophen-2-yl)butane-1,3-dione (2). Complexes with Al3+ [30], Zr4+ [31],
Mn2+ [32], Co2+ [33], Ni2+ [34] and Pd2+ [35] were reported up to date.

In the lanthanide series, only diketone 1 was tested as a ligand for the synthesis of
Sc3+ [36], Tb3+ [37] and Eu3+ [38] complexes with a small set of ancillary diimine ligands.

We have recently reported unusual structural peculiarities and superb luminescent
properties of lanthanide complexes with pyrazole-based 1,3-diketones, bearing perfluori-
nated chains of various lengths [23,39–43]. However, 1,3-diketones with pyrazole moieties
and CHF2–groups have never been studied as ligands before. Here we want to report on
our first results on synthesis and luminescent properties of Tb3+, Eu3+ and Gd3+ complexes
with 1-(1,5-dimethyl-1H-pyrazol-4-yl)-4,4-difluorobutane-1,3-dione (3).
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Among the many works devoted to luminescent lanthanide coordination compounds
in recent years, researchers are attracted by works devoted to mixed-metal lanthanide
complexes (MMLC) containing various emission centers, usually Eu3+ and Tb3+. This is
facilitated by both a profound understanding of the luminescence physics of monometallic
compounds and diverse applications of MMLC. Such compounds exhibit properties of
“luminescent thermometers” [44,45] and also can act as chemical sensors [10,46,47] and
color-tunable emitting materials [48–50]. The relative proximity of the excited state energies
of Eu3+ (~17,240 cmer1) and Tb3+ (~20,400 cm−1) and the relatively small metal-to-metal dis-
tances in most common structures [51] cannot only provide two independent luminescence
processes for each of the ions but also allow the transfer of excitation energy from Tb3+

ions to Eu3+. The thermal dependence of the efficiency of such transfer mainly determines
the working mechanism of “luminescent thermometers” [52].

The existence of energy transfer in MMLC can be confirmed by the following evi-
dence. Firstly, to provide approximately equal luminescence intensity of Eu3+ and Tb3+,
the terbium(III) content in MMLC usually should exceed 90%. Second, quite often, the
luminescence excitation spectra of Eu3+ contain peaks corresponding to the excitation of
Tb3+ ions [10,51]. Third, introducing Eu3+ ions reduces the lifetimes of the excited state of
terbium(III) ions significantly [52]. Finally, in a number of cases, decay curves of Eu3+ are
not described satisfactorily by usual single- or biexponential models but contain the initial
growth period [10]. Unfortunately, a detailed analysis of such kinetic curves, which can
be used to determine the constant energy transfer process from Tb3+ to Eu3+, is scarcely
presented in the literature.

Compounds [LnL3(H2O)2], Ln = Eu, Gd, Tb, which were synthesized in this work,
turned out to be convenient model objects for studying the dependence of kET on the Eu:Tb
ratio in mixed-metal complexes [Eu1-xTbxL3(H2O)2].
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2. Results
2.1. Synthesis

The compounds were synthesized according to the common reaction of lanthanide
hydroxide with an alcoholic solution of the ligand. This procedure excludes the ingress of
foreign ions into the reaction mixture [20]. The composition of the compounds was con-
firmed by elemental analysis data (Table S1), almost complete coincidence of the IR spectra
(Figures S1–S3). XRD powder patterns of all complexes coincide with the theoretical ones cal-
culated for the europium(III), gadolinium(III) and terbium(III) complexes (Figures S4–S7).

Thermogravimetric Analysis

The decomposition of the Eu and Tb complexes occurs in three stages, corresponding
to the peaks of the thermal effect.

At 140–165 ◦C, a 4% mass loss occurs for TbL3 with an endothermic effect, which
corresponds to eliminating two water molecules from the coordination environment of
lanthanide. Then, at the temperature of 200–290 ◦C, a loss of 29% of the sample mass
with an exothermic effect is observed, which may indicate partial thermal decomposi-
tion of the ligand with water formation. Upon further heating at 300–600 ◦C, the mass
of the sample decreases by 38.5% with intense heat release, which is explained by the
ligand decomposition with the formation of water and carbon dioxide. Further heating
of the sample to 700 ◦C does not lead to mass loss. Thus, the complex completely decom-
poses at 600 ◦C with the formation of TbF3 (experimental weight loss 71.5%, theoretical
weight loss taking into account the formation of TbF3 74.3%) and some amount of carbon
(Supplementary Materials Figure S8).

The decomposition behavior of EuL3 is similar to the decomposition of the terbium(III)
complex. However, there is a difference in the temperatures of the stages. The first stage of
decomposition is observed at 160–190 ◦C; the second at 190–300 ◦C; the third at 300–560 ◦C.
At the third stage, EuF3 is formed (experimental weight loss 25.7%, theoretical weight loss
25.1% (Figure S9). Thus, the TbL3 complex is more thermally stable.

2.2. Crystal Description

The complexes LnL3 (Ln = Eu, Gd, Tb) are isostructural (Table 1). The molecules of
LnL3 are formed by lanthanide atom, three chelate ligands L and two water molecules
(Figure 1; selected distances and angles are given in Table 2). The geometry of polyhedrons
LnO8 corresponds to a square antiprism (see Table S2), which are formed by two planes,
O1O6O8O4 and O2O5O3O7. The angles between planes of pyrazole and organometallic
chelate ring (LnO2C3) are 6.5(2), 7.4(2) and 40.0(2) for EuL3, 6.4(2), 7.6(2) and 39.9(2) for
GdL3, 6.3(2), 7.8(2) and 39.9(2) for TbL3. The crystal packing is due to intermolecular
H-bonds, C–H . . . O, C–H . . . F, and π-π stacking (between pyrazole moieties) interactions
(Figure 2, Tables S3 and S4).

Table 1. Selected crystal data and parameters for structure refinement of the Ln3+ complexes.

Parameter EuL3 GdL3 TbL3

Empirical formula C27H31EuF6N6O8 C27H31F6GdN6O8 C27H31F6TbN6O8
Formula weight 833.54 838.83 840.50

Т (K) 100(2) 120(2) 100(2)
Crystal system triclinic

Space group P-1
Crystal size (mm) 0.05 × 0.05 × 0.03 0.05 × 0.05 × 0.03 0.05 × 0.05 × 0.03

a (Å) 11.084(5) 11.066(2) 11.054(2)
b (Å) 11.968(4) 11.928(2) 11.920(2)
c (Å) 13.711(8) 13.673(2) 13.652(3)
α (◦) 64.189(15) 64.208(3) 64.197(5)
β (◦) 86.98(2) 77.956(3) 86.896(8)
γ (◦) 72.669(14) 72.477(4) 72.426(5)
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Table 1. Cont.

Parameter EuL3 GdL3 TbL3

V (Å3) 1556.8(13) 1543.2(5) 1537.6(5)
Z 2 2 2

Dcalc (g·cm−3) 1.778 1.805 1.815
µ (mm−1) 2.109 2.244 2.395
θ range (◦) 1.95–28.28 1.95–28.0 1.94–27.48

Range of h, k and l
−14→14
−15→15
−18→16

−14→14
−13→15

0→18

−13→14
−15→14
−17→17

Тmin/Тmax 0.6579/0.7461 0.1806/0.3401 -
F(000) 832 834 836

Number of parameters 461 460 461
Reflections collected 14,998 13,219 22,779
Unique reflections 7658 7254 7041

Reflections with I > 2σ(I) 6931 6354 6311
Rint 0.0304 0.0548 0.1272

GooF 1.062 1.077 1.014
R1(I > 2σ(I)) 0.0325 0.0546 0.0350

wR2 (I > 2σ(I)) 0.0679 0.1075 0.0857

Molecules 2021, 26, x FOR PEER REVIEW 4 of 15 
 

 

Crystal size (mm) 0.05 × 0.05 × 0.03 0.05 × 0.05 × 0.03 0.05 × 0.05 × 0.03 
a (Å) 11.084(5) 11.066(2) 11.054(2) 
b (Å) 11.968(4) 11.928(2) 11.920(2) 
c (Å) 13.711(8) 13.673(2) 13.652(3) 
α (°) 64.189(15) 64.208(3) 64.197(5) 
β (°) 86.98(2) 77.956(3) 86.896(8) 
γ (°) 72.669(14) 72.477(4) 72.426(5) 
V(Å3) 1556.8(13) 1543.2(5) 1537.6(5) 

Z 2 2 2 
Dcalc (g·cm−3) 1.778 1.805 1.815 
μ (mm−1) 2.109 2.244 2.395 
θ range (°) 1.95–28.28 1.95–28.0 1.94–27.48 

Range of h, k and l 
−14→14 
−15→15 
−18→16 

−14→14 
−13→15 
0→18 

−13→14 
−15→14 
−17→17 

Тmin/Тmax 0.6579/0.7461 0.1806/0.3401 - 
F(000) 832 834 836 

Number of parameters 461 460 461 
Reflections collected 14,998 13,219 22,779 
Unique reflections 7658 7254 7041 

Reflections with I > 2σ(I) 6931 6354 6311 
Rint 0.0304 0.0548 0.1272 

GooF 1.062 1.077 1.014 
R1(I > 2σ(I)) 0.0325 0.0546 0.0350 

wR2 (I > 2σ(I)) 0.0679 0.1075 0.0857 

 
Figure 1. Molecular structure of EuL3 (H atoms at C atoms of ligands are omitted; the inset shows the EuO8 polyhedron). Figure 1. Molecular structure of EuL3 (H atoms at C atoms of ligands are omitted; the inset shows the EuO8 polyhedron).

Table 2. Selected distances and angles for LnL3.

EuL3 GdL3 TbL3

Ln-O(L) 2.345 (2)-2.420 (3) 2.337 (4)–2.407 (4) 2.317 (2)-2.389 (2)
Ln-O(H2O) 2.445 (2), 2.536 (2) 2.419 (5)-2.518 (4) 2.412 (3), 2.510 (3)

C-O 1.259 (4)-1.278 (4) 1.258 (7)-1.272 (7) 1.261 (4)-1.279 (4)
O(L)-Eu-O(L) 71.91 (8), 72.89 (8), 73.54 (8) 72.01 (1), 73.10 (1), 73.57 (2) 72.72 (8), 73.66 (8), 74.24 (9)
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2.3. Luminescent Properties of EuL3, TbL3 and Ln1
xLn2

1−xL3, Ln1, Ln2=Eu, Gd, Tb

The optical excitation spectra of luminescence consist of several broad spectral bands
in the range of 260–300 nm and 310–370 nm, corresponding to π-π* transitions of the lig-
and, as well as narrow spectral bands, which are characterized by 4f8 intraconfigurational
transitions of ion. A band at 480–490 nm is present in the spectra of both compounds and
can be attributed to 7F2–5D2 transition in the case of EuL3 and 7F6–5D4 transition—in the
case of TbL3. Figure 3 demonstrates the excitation spectra together with the characteri-
zation of spectral components as the f-f* transitions of the ions. The excitation spectrum
of TbL3 scarcely contains bands associated with intraconfigurational transitions of Tb3+,
which indicates efficient sensitization of the ionic luminescence upon excitation through
the ligand. On the contrary, due to the lower energy of the 5D0 europium (III) ion resonant
level compared to the 5D4 level of the Tb3+ ion, luminescence sensitization efficiency is
less for complex EuL3 than that for complex TbL3 under optical excitation through ligand
environment. This follows from a comparison of the emission intensities at 619 nm upon
excitation through the ligand excitation bands and through the 7F0–5D2 transition of Eu3+.
Thus, the excitation of Eu3+ through its ligand environment in the mixed compound will
be less efficient than the excitation of Tb3+.

In addition, the spectra exhibit a broad band in the range of 380–450 nm, which can
be attributed to the states of charge transfer between ligand molecules (LLCT), within
ligand molecules (ILCT), or between the ligand and the ion (ligand to metal charge transfer,
LMCT). The latter appears due to the low reduction potential of Eu3+ ion. Since this spectral
feature is manifested for the Tb complex, which has a relatively high reduction potential, it
cannot be attributed to the LMCT state.

The luminescence spectra of the complexes (Figure 4) contain spectral bands that are
characteristic of f-f* transitions of the Eu3+ ion: 5D0→7F0 (580 nm), 5D0→7F1 (585–590 nm),
5D0→7F2 (610–620 nm), 5D0→7F3 (650–660 nm), 5D0→7F4 (690–710 nm); as well as f-f*

transitions of Tb3+ ion: 5D4 → 7F6 (480–500 nm), 5D4 → 7F5 (535–555 nm), 5D4 → 7F4
(575–595 nm), 5D4→ 7F3 (610–630 nm), 5D4→ 7F2. (640–660 nm), 5D4→ 7F1 (660–675 nm),
5D4 → 7F0 (675–685 nm). Upon dissolving EuL3 and TbL3 in CH3CN no significant shifts
in luminescence spectra occur (see Figure S10).
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As shown in Figure 4, with the increase in Eu concentration, the ratio of the spectral
contribution Tb/Eu changes. Table 3 demonstrates that the ratio of the integrals (I700/I545)
of the luminescence bands of Eu 5D0-7F4 (680–720 nm) and Tb 5D4→7F5 (535–555 nm)
slightly increases from 0.10 for Eu0.05Tb0.95 L3 to 0.18 in the case of Eu0.125Tb0.875 L3. Then,
the ratio of the integrals increases significantly with the increasing percentage of Eu up to
almost 30 in the case of Eu0.5Tb0.5 L3 and Eu0.75Tb0.25 L3. The spectral bands associated
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with the Eu and Tb emission have an equal number of Stark components with the same
relative intensities, which indicates identical symmetry of the coordination polyhedron.
Compounds Eu0.25Tb0.975 L3-Eu0.125Tb0.875 L3 are characterized by a more complex band
shape in the spectral region 610–630 nm due to the contributions from the 5D4→7F5
luminescence band of Tb3+ and 5D0→7F2 of the Eu3+ ion. For the studied complexes, the
chromaticity coordinates CIE were calculated (see Figure 5).

Table 3. Calculated ratios of integrated intensities of the 5D0→7F4 Eu3+ transition and 5D4→7F5 Tb3+ transition (I700/I545)
and CIE coordinates for the investigated complexes.

2.5 5 7.5 10 12.5 15 25 50 75

I700/I545 0.02 0.10 0.14 0.18 0.40 3.09 9.02 29.46 28.07
CIE 0.37, 0.58 0.45, 0.51 0.56, 0.42 0.49, 0.48 0.48, 0.48 0.52, 0.46 0.66, 0.34 0.67, 0.33 0.68, 0.32
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2.4. Description of Luminescence Decays

In the simplest case, luminescence decay is caused by the relaxation of the sole excited
state and obeys the single-exponential law:

I = Ioe−
t

τobs , (1)

where:
τobs =

1
kobs

=
1

krad + knr
, (2)

krad and knr—rate constants of radiative and nonradiative processes of excited state
relaxation. In some cases, a deviation from single-exponential law is observed; and biexpo-
nential decay is the most common. The biexponential decay is usually explained by the
presence of two independent luminescent centers.

The luminescence decay of EuL3, TbL3, as well as Eu1-xGdxL3 and GdxTb1-xL3 can
be successfully described with single-exponential curves. Rate constants kobs calculated
this way are shown in Table 4.
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Table 4. Decay constants for EuxGd1−xL3 and GdxTb1−xL3.

Compound kEu (Eu3+ Decay) Compound kTb (Tb3+ Decay)

TbL3 2.91
Eu0.01Gd0.99 L3 3.51 Gd0.01Tb0.99 L3 2.66

Eu0.025Gd0.975 L3 3.60 Gd0.025Tb0.975 L3 2.63
Eu0.05Gd0.95 L3 3.60 Gd0.05Tb0.95 L3 2.75

Eu0.075Gd0.925 L3 3.60 Gd0.075Tb0.925 L3 2.72
Eu0.1Gd0.9 L3 3.60 Gd0.1Tb0.9 L3 2.68

Eu0.125Gd0.875 L3 3.53 Gd0.125Tb0.875 L3 2.86
Eu0.15Gd0.85 L3 3.57 Gd0.15Tb0.85 L3 2.64
Eu0.2Gd0.8 L3 3.52 Gd0.2Tb0.8 L3 2.65

Eu0.25Gd0.75 L3 3.41 Gd0.25Tb0.75 L3 2.77
EuL3 3.34

The luminescence decays of [EuxTb1-xL3(H2O)2] registered at 545 nm (Tb3+emission)
can be well fitted by single-exponential decay. Estimated τobs of Tb3+ emission sharply
decrease with increased Eu3+ concentration. It can be explained by the nonradiative energy
transfer from Tb3+ ions to Eu3+ ions since the resonance energy state (5D0) of Eu3+ ion lies
lower than the 5D4 state for Tb3+ ion [53].

The typical luminescence decay curve of europium(III) emission in [EuxTb1−xL3(H2O)2]
(x < 0.25) has an uncharacteristic behavior at short times, in which increased emission
intensity is observed (see Figure 6).
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Europium(III) luminescence decays can be described by the following model, here-
inafter nonradiative relaxation of excited states of Tb3+ and Eu3+ is omitted:

Eu∗
kEu→ Eu + hνEu (3)

Tb∗
kTb→ Tb + hνTb (4)

Tb∗
kET→ Eu∗ (5)
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The decay rate of luminescence can be expressed by the following differential equations:{
∂CEu∗

∂t = −kEuCEu∗ + kETCTb∗
∂CTb∗

∂t = −(kTb + kET)CTb∗

the solution of these equations allows one to obtain the form of the dependence of the Eu3+

and Tb3+ ions luminescence on time:

CEu∗ = C1e−kEut + C2e−k1t, (8)

STb∗ = C0
Tb∗ e

−k1t, (9)

where:
k1 = kET + kTb, (10)

C2 = −S0
Tb∗

kET
k1 − kEu

, (11)

C1 = S0
Eu∗ − C2. (12)

Notably, the decay of europium(III) luminescence is described by the biexponential
law with a negative pre-exponential factor (C2) of the second exponential component.

As the europium(III) concentration increases, the probability of energy transfer from
Tb to Eu increases, reflected in an increased kEu constant (Table 5). At high Eu con-
centrations, the luminescence of terbium(III) cannot be detected because nonradiative
relaxation occurs.

Table 5. Europium(III) decay and constants, calculated for EuxTb1-xL3 compounds.

Compound kEu (Eu3+ Decay)
k1 = kET + kTb. Calculated from

Eu3+ Decay
k1 = kET + kTb. Calculated from

Tb3+ Decay

Eu0.01Tb0.99 L3 2.95 3.03 2.84
Eu0.025Tb0.975 L3 2.82 5.58 3.58
Eu0.05Tb0.95 L3 3.01 5.85 4.07

Eu0.075Tb0.925 L3 3.23 7.29 5.79
Eu0.1Tb0.9 L3 3.40 8.15 7.03

Eu0.125Tb0.875 L3 3.39 8.99 7.96
Eu0.15Tb0.85 L3 3.35 8.73 7.38
Eu0.2Tb0.8 L3 3.47 12.40 10.87

Eu0.25Tb0.75 L3 3.40 14.84 n/a

Observed rate constants kTb
obs and kEu

obs also include nonradiative relaxation processes:

kTb
obs = kTb

r + kTb
nr (13)

kEu
obs = kEu

r + kEu
nr. (14)

The energy transfer rate constant can be estimated by subtracting the kTb determined
for the corresponding complex by the formula from k1 (Table S9).

3. Materials and Methods

Lanthanide nitrates, hexahydrates (99.99%) and other reagents were purchased from
Aldrich and used without additional purification. Elemental analyses were performed
on the Elemental Vario MicroCube CHNO(S) analyzer. Metal content was determined
by complexometric titration with Trilon B solution in the presence of Xylenol Orange as
an indicator. Complexes were decomposed before analysis by heating with concentrated
HNO3. 1H and 19 F NMR spectra were recorded on Bruker AC-300 instrument (300 and
283 MHz, respectively) at 300 K for solutions in CDCl3. TMS was used as an internal
standard for 1H NMR spectra and CFCl3 for 19 F NMR spectra (δ = 0.00). 13C NMR
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spectra were recorded on a Bruker DXR-500 instrument operated at 125.8 MHz with TMS
as internal standard. Mass spectra were recorded on a Thermo DSQ II/Thermo Trace
instrument; the ionization energy was 70 eV (direct sample injection).

To determine the lanthanide content in mixed metal complexes, a weighted amount
of the complex (about 100 mg, exact weight) was destructed in a volumetric flask with a
hot concentrated nitric acid. The solution was brought to volume with double distilled
water, diluted as necessary, and analyzed by ICP MS using PerkinElmer ELAN DRC-II
mass spectrometer.

Photoluminescence spectra and luminescence excitation spectra were recorded at
ambient temperature in the crystalline phase. For this task, a Horiba Jobin Yvon Fluo-
rolog FL3-22 spectrofluorometer equipped with a 450 W xenon lamp emitting within the
250–900 nm spectral range was employed. The luminescence of the samples was detected
with a Hamamatsu R928 photomultiplier operating within 200–850 nm. The decay kinet-
ics of europium(III) luminescence was observed by the 5D0-7F4 transition (maximum at
700 nm) and not by the more usual intense 5D0-7F2 transition. This choice of the band for
detecting luminescence is associated with the overlap of the 5D0-7F2 transition (maximum
at 617 nm) with the 5D4-7F3 minor transition of terbium(III) (with a maximum at 611 nm).

Single crystal X-ray studies of crystals were carried out on a Bruker D8 Venture
(for [Ln(L)3(H2O)] (Ln = Eu (EuL3), Tb (TbL3)) and Bruker D8 Quest (for [Gd(L)3(H2O)]
(GdL3))) diffractometers equipped with a CCD detector (MoKα, λ = 0.71073 Å, graphite
monochromator) [54]. A semiempirical adjustment for absorption was introduced for EuL3
and GdL3 [55]. Using Olex2 [56], the structures were solved with the ShelXT [57] structure
solution program using Intrinsic Phasing and refined with the olex2.refine [58] refinement
package using Least-Squares minimization against F2 in anisotropic approximation for
non-hydrogen atoms. The hydrogen atoms in the ligands were calculated geometrically
and refined in the “riding” model. The crystallographic parameters and the structure
refinement statistics are shown in Table 1. Supplementary crystallographic data for the
compounds synthesized are given in CCDC numbers 2074491 (for EuL3), 2074616 (for
GdL3), 2074492 (for TbL3). These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif, accessed on 24
April 2021 (CCDC: Cambridge, UK).

3.1. Synthesis
3.1.1. Synthesis of 4,4-Difluro-1-(1,5-dimethyl-1H-pyrazol-4-yl)butane-1,3-dione (HL)

The ligand was obtained by a modified procedure described earlier [59].
Briefly, sodium hydride (4.0 g, 100 mmol, 60% dispersion in mineral oil) was placed in

a 500 mL round-bottom flack under Ar blanket, and 150 mL of dry THF was added with
vigorous stirring. Anhydrous EtOH (0.5 mL) was added in one portion at 0 ◦C, followed
by the dropwise addition of a solution of 1-(1,5-dimethyl-1H-pyrazol-4-yl)ethan-1-one [60]
(6.9 g, 50 mmol) and ethyl difluoroacetate (6.4 g, 51 mmol) in 30 mL of THF. When gas
evolution was ceased, the cooling bath was removed, and the reaction mixture was stirred
at room temperature for 15 h. After this, the dark brown solution with a small amount
of precipitate was re-cooled to 0 ◦C, 10 mL of anhydrous EtOH was added slowly to
decompose traces of NaH. The resulting solution was stirred for 30 min. The solvent was
removed by evaporation under reduced pressure (100 Torr, bath temperature 40 ◦C), then
EtOAc (40 mL) and subsequently a mixture of conc. HCl (20 mL) and crushed ice (80 mL)
was added to the residue. The organic phase was separated, and the aqueous phase was
then extracted with EtOAc (3 × 80 mL). The combined organic fractions were washed
with brine (50 mL), dried over MgSO4 and evaporated to dryness. The resulting brown oil
was distilled under diminished pressure. The yield was 8.76 g (81%). Yellow oil, which
solidified upon standing; bp 178–180 ◦C (9 torr).

1H NMR (300 MHz CDCl3) δ 7.54 (s, 1H, CH=); 6.10 (s, 1H, CH); 5.91 (t, 1H, J = 54.5 Hz,
CHF2); 3.83 (s, 3H, CH3); 2.52 (s, 3H, CH3). 13C NMR (128 Hz, CDCl3) δ 185.83; 175.31;
142.91; 139.45; 116.66; 109.40 (t, J = 245.0 Hz); 94.10 (t, J = 3.9 Hz); 36.12; 10.91. 19 F NMR

www.ccdc.cam.ac.uk/data_request/cif
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(283 MHz, CDCl3) δ–127.8 (d, 2F, J = 55 Hz). LRMS m/z (%): 216 [M]+ (4), 165 [M–CHF2] +

(81), 123 (81), 97 [Pyr+H]+ (100), 69 (32), 51 (22). Anal. calcd. for C9H10F2N2O2,%: C 50.00;
H 4.66; N 12.96; found,%: C 50.28; H 4.63; N 12.79.

3.1.2. Synthesis of Complexes

Preparation of EuL3:137.8 mg (0.309 mmol) of Eu(NO3)3·6H2O was dissolved in a
plastic centrifuge tube with 1.5 mL of water at vigorous shaking; to precipitate Eu(OH)3,
200.0 µL (20% excess) of concentrated ammonia solution (25%) was added. To isolate
pure Eu(OH)3, the solution with the precipitate was centrifuged for 2 min (8000 rpm),
the solution was decanted, and the precipitate was washed with water. Centrifugation
and subsequent washing of the precipitate were carried out until the smell of ammonia
disappeared. Then the obtained Eu(OH)3 was suspended in 3 mL of EtOH and added to a
solution of 200.0 mg (0.926 mmol) of the ligand in 5 mL of EtOH. The resulting mixture
was heated to boiling with stirring and left overnight at room temperature. The resulting
pale yellow precipitate was filtered on a vacuum pump and washed with 3 mL of diethyl
ether. The yield was 83%.

Preparation of TbL3: the procedure is the same as for the synthesis of EuL3. A total of
200 mg (0.926 mmol) ligand and 140.0 mg (0.309 mmol) Tb(NO3)3·6H2O were used. The
yield was 82%.

Preparation of GdL3: The procedure is the same as for the synthesis of EuL3. A total
of 200.0 mg (0.926 mmol) ligand and 139.4 mg (0.309 mmol) Gd(NO3)3·6H2O were used.
The yield was 78%.

The synthesis of mixed metal complexes was carried out according to the same proce-
dure as for monometallic complexes. Weighed portions of Eu(NO3)3·6H2O, Tb(NO3)3·6H2O,
and Gd(NO3)3·6H2O were taken in such a molar ratio as planned in the target compound,
x = 0.01, 0.025, 0.05, 0.075, 0.10, 0.125, 0.15, 0.25, 0.5, 0.75.

The isostructurality of the compounds is confirmed by matching PXRD patterns.
The Ln1:Ln2 ratio in synthesized compounds was verified by the EDX method. Thus, in
Ln1Ln2

(1−x)L3 compounds, various REE ions are statistically distributed. Analytical data
(IR and elemental analysis data are given in the SI)

4. Conclusions

The molecular complexes of the HL ligand obtained in the present work demonstrate
a bright luminescence of both europium (III) and terbium (III) ions. The isostructurality of
europium (III), terbium (III), and gadolinium(III) compounds makes it possible to obtain
mixed metal complexes with a statistical distribution of rare-earth ions, which opens up
possibilities for obtaining phosphors with a tunable emission color. The use of these
complexes, including mixed metal terbium–europium systems in OLED is of interest.

The proposed methodology for estimating the energy transfer constant between
terbium (III) and europium (III) ions will make it possible to better describe the lumi-
nescent properties of mixed metal complexes used as luminescent thermometers and
chemical sensors.

The methodology for studying the kinetics of energy transfer to the terbium-europium
bimetallic complexes includes a detailed analysis (Figures S11–S14, Tables S5–S8) of the
decay curve of europium (III) in the initial region where the rise to an exponential decay
was proposed.

Supplementary Materials: The following are available online: Table S1. CHN data and Ln1:Ln2
ratios for a mixed metal complexes Ln1

xLn2
1-xL3, Ln1, Ln2 = Eu, Gd, Tb; Figure SI1. IR spectra of

EuxGd1-xL3 complexes; Figure SI2. IR spectra of GdxTb1-xL3 complexes; Figure SI3. IR spectra of
EuxTb1-xL3 complexes; Figure SI4. PXRD patterns of EuL3, GdL3 TbL3 and simulated from single
crystal data of ones; Figure SI5. PXRD patterns of EuxGd1-xL3 compounds; Figure SI6. PXRD
patterns of GdxTb1-xL3 compounds; Figure SI7. PXRD patterns of EuxTb1-xL3 compounds; Figure
SI8. Mass loss (TG) and DTA curves (left) and signals from the mass spectro-metric detector of the
thermal decomposition products for [TbL3(H2O)2] (right); Figure SI9. Mass loss (TG) and DTA curves
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(left) and signals from the mass spectro-metric detector of the thermal decomposition products for
[EuL3(H2O)2] (right); Table S2. SHAPE analysis for compounds LnL3; Table S3. Selected parameters
of intermolecular π-π interactions in LnL3 (CgI/J is plane of 5-memberd ring, CgI-CgJ is distance
between ring centroids, α is dihedral angle between planes I and J, CgI-Perp is perpendicular distance
of CgI on ring J, CgJ_Perp is perpendicular distance of CgJ on ring I, Slippage is distance between
CgI and perpendicular projection of CgJ on ring I); Table S4. Selected parameters of O-H . . . O, O-H
. . . N, C-H . . . O, and C-H . . . F interactions in LnL3; Figure SI10. Emission spectra of EuL3 and TbL3
in CH3CN solution; λEX = 350 nm; Figure SI11. Eu3+ decay curves for for EuxGd1-xL3; λEX = 350 nm,
λEM = 700 nm; Table SI5. Eu3+ luminescence fitting parameters for EuxGd1-xL3; Figure SI12. Tb3+

decay curves for for GdxTb1-xL3; λEX = 350 nm, λEM = 545 nm; Table SI6. Tb3+ luminescence fitting
parameters for GdxTb1-xL3; Figure SI13. Eu3+ decay curves for for EuxTb1-xL3; λEX = 350 nm,
λEM = 700 nm; Table SI7. Eu3+ luminescence fitting parameters for EuxTb1-xL3; Figure SI14. Tb3+

decay curves for for EuxTb1-xL3; λEX = 350 nm, λEM = 545 nm; Table SI8. Tb3+ luminescence fitting
parameters for EuxTb1-xL3; Table SI9. Calculated Tb3+ to Eu3+ energy transfer rate constants for
EuxTb1-xL3 compounds.
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