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Coronaviruses are specific crown-shaped viruses that were first identified in the 1960s, and three typical examples of the most
recent coronavirus disease outbreaks include severe acute respiratory syndrome (SARS), Middle East respiratory syndrome
(MERS), and COVID-19. Particularly, COVID-19 is currently causing a worldwide pandemic, threatening the health of human
beings globally. The identification of viral pathogenic mechanisms is important for further developing effective drugs and
targeted clinical treatment methods. The delayed revelation of viral infectious mechanisms is currently one of the technical
obstacles in the prevention and treatment of infectious diseases. In this study, we proposed a random walk model to identify the
potential pathological mechanisms of COVID-19 on a virus–human protein interaction network, and we effectively identified a
group of proteins that have already been determined to be potentially important for COVID-19 infection and for similar
SARS infections, which help further developing drugs and targeted therapeutic methods against COVID-19. Moreover, we
constructed a standard computational workflow for predicting the pathological biomarkers and related pharmacological
targets of infectious diseases.

1. Introduction

Coronaviruses are specific crown-shaped viruses that were
first identified in the 1960s [1, 2]. In the 1960s, they were first
identified as pathogens for zoonotic diseases without a direct
and clear origin trace [2]. They are highly transmissible
viruses that can be spread via droplets and skin contact [3,
4]. Most coronaviruses are widely spread around the world.
They cause simple and mild symptoms that are the same as
cold and mild flu symptoms. However, specific coronavirus
subtypes cause severe and even deadly symptoms, inducing
large-scale pandemics regionally or worldwide. Three typical
examples of the most recent coronavirus disease outbreaks

include severe acute respiratory syndrome (SARS) [5, 6],
Middle East respiratory syndrome (MERS) [7, 8], and
COVID-19 [9, 10].

In 2003, the SARS outbreak occurred; it spread to more
than 20 countries and regions in the Eurasian continent
and resulted in the deaths of 774 people [5, 6]. The typical
symptoms of SARS are high fevers in the early stage and
severe inflammations in lung tissues after 2–7 days of quick
progression [11]. The large-scale SARS pandemic ended in
less than half a year as a result of the effective epidemiological
control exerted by the government [11]. After a decade,
MERS, another deadly and highly transmissible coronavirus,
emerged in 2012. MERS has more severe early cellular
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infection and invasion capacity than SARS [7]. It causes typ-
ical symptoms in less than 24h, whereas SARS causes symp-
toms in 72 h. Therefore, treating and curing patients infected
with MERS are more difficult than treating and curing
patients with SARS [8]. At the end of 2019, COVID-19, a
new coronavirus subtype, broke out. In accordance with cur-
rent epidemiological and clinical data, COVID-19 has been
confirmed to be a similar coronavirus subtype as MERS
and SARS [3]. However, compared with the two other coro-
navirus subtypes, COVID-19 causes more complicated clini-
cal symptoms [9] and has higher transmissible capacity [3]
and faster mutational rates [9]. These characteristics make
its prevention and treatment difficult. More than 150,000
people have been confirmed to be infected with COVID-19,
which has caused 5735 deaths. COVID-19 is currently caus-
ing a worldwide pandemic, threatening the health of human
beings globally [9].

The identification of viral pathogenic mechanisms is
important for further developing effective drugs and tar-
geted clinical treatment methods. The delayed revelation
of viral infectious mechanisms is currently one of the tech-
nical obstacles in the prevention and treatment of infec-
tious diseases. Although SARS and MERS have already
been finally controlled by regional governments, the patho-
genic mechanisms of these diseases have not been fully
revealed [12, 13]. SARS was controlled and banished in
2003, but its detailed mechanisms were not finally deter-
mined until 2005 [14, 15]. Meanwhile, the pathogenic mech-
anisms of MERS have still not been fully identified. The
investigation of the pathological mechanisms of virulent viral
pathogens by using traditional methods remains challenging.

In this study, we proposed a computational method to
identify the potential pathological mechanisms of COVID-
19, the coronavirus subtype that is now spreading all over
the world and causing the 2019–2020 coronavirus pandemic.
By using our prediction model, which is based on a random
walk algorithm on a virus–human protein interaction net-
work, we effectively identified a group of proteins that have
already been determined to be potentially important for
COVID-19 infection and for similar SARS infections.
Through our newly presented computational methods, we
identified a group of potential biomarkers for further devel-
oping drugs and targeted therapeutic methods against
COVID-19. Moreover, we constructed a standard computa-
tional workflow for predicting the pathological biomarkers
and related pharmacological targets of infectious diseases.

2. Materials and Methods

2.1. Dataset Construction of Target Human Proteins. Similar
to the construction strategy used in a previous work [16],
protein–protein interactions (PPIs) between the virus and
its host (human) can be used to determine the course of
COVID-19 infection. Whether a human protein interacts
with viral proteins can be determined on the basis of func-
tional terms from the Gene Ontology (GO) database [17].
A human protein and COVID-19 protein that shared at least
1 GO term were assumed to interact with each other. The
human protein was called the target human protein. Only

GO terms at levels below 3 were considered to remove pro-
tein pairs sharing generic GO terms. For example, root GO
terms (“GO: 0008150: biological process,” “GO: 0005575: cel-
lular component,” and “GO:0003674: molecular function”),
their children, and the children of their children terms
were ignored in the following analysis. Through this
approach, we constructed a dataset of target human pro-
teins. All protein sequences of COVID-19 (Reference
Genome MN908947) were downloaded from the NCBI
protein database (http://www.ncbi.nlm.nih.gov/) in accor-
dance with a preprinted article of Fast and Chen [18],
and the sequences of the 11 COVID-19 proteins (orf1ab,
S, orf3a, orf6, E, M, orf8, N, orf7b, orf7a, and orf10) are
listed in Supporting Information S1.

2.2. PPI Data from STRING. Search Tool for the Retrieval of
Interacting Genes (STRING) (http://string.embl.de/) is an
online database resource. It compiles experimental and pre-
dicted PPIs with a confidence score. The PPIs in STRING
are derived from several sources, such as (conserved) coex-
pression, automated text mining, genomic context predic-
tions, high-throughput lab experiments, and previous
knowledge in databases. Accordingly, they can widely mea-
sure the associations of proteins, which is a great advantage
compared with PPIs reported in other databases, such as
DIP (Database of Interaction Proteins) database [19] and
BioGRID [20]. Thus, we collected a weighted PPI network
G from STRING, in which the network nodes represent pro-
teins and the network edges represent interactions between
proteins with weights that indicate the significance of shared
similar biological functions [21, 22]. Notably, the weight of
each interaction edge was assigned with a weight, which
was defined as the original confidence score reported in
STRING. In this study, we analyzed the network wherein
every two proteins in one interaction were in the target
human protein dataset. The constructed network contained
19,247 nodes and 4,274,001 edges.

2.3. RandomWalk with Restart Algorithm. The random walk
with restart (RWR) algorithm, one of the typical network-
based feature ranking algorithms [23, 24], can simulate a ran-
dom walker that starts from one or several seed nodes and
walks on a network.

RWR can update the weight (probability) vector of net-
work nodes in an iterative manner in accordance with the fol-
lowing mathematical description: let Pi be the probability
vector after the ith updating procedure. The next new proba-
bility vector Pi+1 will be updated depending on the previous
vector Pi as

Pi+1 = 1 − λð ÞAPi + λP0, ð1Þ

where A is the column-wise normalized adjacency matrix of
the given network, λ indicates the probability of the walker
returning to the seed nodes, and P0 is an initial probability
vector. When the probability vector becomes convergent,
the RWR algorithm stops and outputs the final Pi+1. Each ele-
ment of the final Pi+1 indicates the probability that the corre-
sponding nodes are associated with the seed nodes.
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In this work, 11,419 mapped candidate human pro-
teins shared the same GO functions of COVID-19 were
picked up as seed nodes in the RWR algorithm. Initializa-
tion vector P0 was constructed. It consisted of 19,247 ele-
ments, wherein the elements corresponding to the seed
genes were set to 1/11419, the other elements were set to
zero, and the probability of returning to seed node λ
was set to 0.8 as suggested in some studies [25–29]. The
algorithm termination rule was kPi+1 − Pik1 < 10−6.

2.4. Permutation Test. Based on the RWR algorithm, each
protein in the PPI network was assigned a probability, which
can indicate the associations between it and seed nodes.
However, this value was determined by not only the seed
nodes but also the topological structure of the network. Some
special nodes in the network may more easily receive high
probabilities than others. To control the influence of such
factor, a permutation test was designed. First, we randomly
constructed 1000 node sets, each of which contained 11,419
nodes. Second, for each node set, it was picked up as the input
of the RWR algorithm; accordingly, each node in the network
received a lot of probabilities. Finally, a P value was com-
puted for each node n, which was defined by

P value nð Þ = m
1000 , ð2Þ

where m denoted the number of probabilities on the ran-
domly produced node sets that were larger than the probabil-
ity on the actual seed nodes. Clearly, a node with a low P
value indicated that it was special for the seed nodes. Consid-
ering that 0.05 is a widely used threshold for statistical signif-
icance, we selected nodes with P values less than 0.05 and
their corresponding proteins were picked up for detailed
analysis.

3. Results and Discussion

In this study, we designed a computation method to investi-
gate the COVID-19 infection-related human genes. The
entire procedures are shown in Figure 1.

3.1. Human Proteins Sharing Common GO Functions with
COVID-19 Proteins. We downloaded the sequences of 11
COVID-19 proteins which are listed in Supplementary file
1. We predicted the domains and GO functions of these virus
proteins based on their sequences using InterProScan (http://
www.ebi.ac.uk/interpro/search/sequence/), and the InterPro
results are given in Supplementary file 2. The 20 GO terms
with level ≥ 3 were selected for the following analysis, as
listed in Supplementary file 3. Next, we extracted the human
proteins shared with the same 20 GO functions and these
candidate human proteins are listed in Supplementary file
4. Then, we mapped them into the STRING network and
finally obtained 11,419 proteins (Supplementary file 5).

3.2. Results of the RWR Algorithm and Permutation Test.
After the above data preparation, we applied the RWR
method with these 11,491 proteins as seeds on the STRING
network and calculated the RWR probabilities of all proteins

on the network. Meanwhile, we randomly selected the
same number of seed proteins 1000 times and calculated
all proteins’ permuted RWR probabilities. By comparing
the actual and 1000 permutated RWR probabilities, we
estimated the P value of a protein being truly associated
with COVID-19. Finally, we captured 486 highly confident
human proteins associated with COVID-19 according to
their RWR probabilities and permutation P values (<0.05),
as listed in Supplementary file 6. We analyzed and discussed
a few representative candidates as listed in Table 1 in refer-
ence to recent reports on their functions.

3.3. Analysis on Some Essential Human Proteins.On the basis
of our newly presented computational method, we applied
the RWR algorithm to identify potential proteins that might
functionally interact with the infectious process of COVID-
19, which causes the typical disease coronavirus disease-19.
According to recent publications, such proteins may not be
only functionally related to the infection process of
COVID-19 but may also participate in the infectious process
of SARS, another famous infectious disease of the respiratory
system. The detailed analyses can be seen below.

The first protein is ubiquitin-like 4A (UBL4A,
ENSP00000358674). This protein, which is one of the major
functional components of the BAG6/BAT3 complex, has
been widely reported to participate in the recognition and
delivery of misfolded and hydrophobic patch-containing
proteins to proteasomes for degradation [30, 31]. In 2017,
this protein was confirmed to participate in the
endoplasmic-reticulum-associated protein degradation
(ERAD) pathway in the viral infection cycle [32]. In fact,
the ERAD pathway has been reported to participate in the
infection processes of various well-known viruses, e.g., the
ERAD pathway has been confirmed to participate in the
pathogenesis of the SARS coronavirus [33]. Given that the
infectious mechanism of COVID-19 has also been confirmed
to be similar to that of SARS, we can reasonably predict that
the ERAD pathway and one of its specific components,
UBL4A, contribute to the pathogenesis of COVID-19 infec-
tion [34]. Another predicted protein, ubiquitin-like 4b
(UBL4B, ENSP00000334044), was identified by our newly
presented computational models. UBL4B is also a compo-
nent of the ERAD pathway and is therefore definitely func-
tionally correlated with the pathogenesis of multiple
coronaviruses, including SARS and COVID-19 [33, 34].

The next protein identified was uridine monopho-
sphate synthetase (UMPS, ENSP00000232607), which
contributes to the de novo pyrimidine biosynthetic path-
way. As a biofunctional enzyme, this protein can help con-
vert orotic acid into orotidine-5′-monophosphate and
further convert orotidine-5′-monophosphate into uridine
monophosphate [35, 36]. Uridine monophosphate, the ter-
minal product of UMPS, has been widely reported to partic-
ipate in coronaviral infection processes [37–39], especially
RNA-polymerase-associated processes [38, 39]. In contrast
to the infection processes of other coronaviruses, SARS infec-
tion exhibits abnormal uridine monophosphate regulation
[38]. Although experimental evidence remains lacking, we
can still reasonably speculate that UMPS is functionally

3BioMed Research International

http://www.ebi.ac.uk/interpro/search/sequence/
http://www.ebi.ac.uk/interpro/search/sequence/


correlated with the COVID-19 infectious process consider-
ing that uridine monophosphate and its regulator UMPS
are essential for RNA polymerases in RNA viruses, such as
COVID-19.

POTEF (ENSP00000350052) is the next predicted pro-
tein that potentially contributes to COVID-19 infection. Sim-
ilar to UBL4A, POTEF is a specific protein that contributes to
the regulation of protein binding [40, 41]. This protein has
been identified as A26C1B in various infectious models. In
2010, it was found to participate in the infection of HIV in
chimpanzees [42]. Furthermore, POTE, the family of
POTEF, contributes to macrophage-mediated antiviral bio-
logical processes [43]. Considering that the pathogeneses of
SARS and other coronavirus have been confirmed to interact
with macrophages and related immune responses [44] and
macrophage infiltration in the lungs has already been widely

reported [45, 46], this protein may also participate in
COVID-19 pathogenesis.

The next predicted protein is LOC101927789
(ENSP00000310146). This novel identified fusion pseudo-
gene has been identified to be a reactor against chemical
exposure and is functionally correlated with another effec-
tive protein, MALAT1 [47]. Recent publications confirm
that MALAT1 is functionally related to the infectious pro-
cesses of various viruses, including coronaviruses [48–50].
Although direct evidence showing that our predicted pro-
tein contributes to the infection of coronaviruses (SARS or
COVID-19) remains lacking, we can reasonably speculate
that MALAT1, together with our predicted fusion pseudo-
gene, participates in some conserved biological or pathologi-
cal processes of coronaviruses.

The final discussed protein is UBBP4
(ENSP00000464265), which has been widely reported to
act as a pseudogene and is functionally correlated with psori-
asis [51, 52]. Similar to UBL4A and UBL4B, UBBP4 can con-
tribute to the regulation of the ERAD pathway [53] and
therefore may be functionally correlated with COVID-19
infection. This relationship validates the efficacy and accu-
racy of our prediction.

4. Conclusions

All the predicted proteins were functionally confirmed to
contribute to viral and coronaviral infection processes.
Notably, many of the predicted proteins were functionally
correlated with protein degradation and RNA metabolism,
which are essential for viral infection, implying their
potential functional relationships with COVID-19 infec-
tion. Our results will help design drugs and targeted ther-
apy against COVID-19.

COVID-19
protein sequence

COVID-19
protein domains

COVID-19
GO functions

InterProScan

Human protein
GO annotations

Candidate human proteins shared
the same GO functions of COVID-19

Human protein
interaction network (STRING)

Mapped candidate human proteins as seeds

Highly confident human proteins associated with COVID-19

Permuted
seeds 1st

Permuted
seeds 1000th…

RWR with 1,000 permutations
for significant P value estimation

Figure 1: Analysis flow chart of the identification of COVID-19 infection-related human genes. First, the Gene Ontology (GO) functions of
COVID-19 proteins are extracted. Second, human proteins sharing these GO functions are selected. Third, these human proteins are set as the
input of the random walk with restart (RWR) algorithm, which is applied to the protein interaction network reported in STRING. Finally, the
permutation test followed to further select human proteins with significant P values.

Table 1: Representative candidate of COVID-19 infection-related
human genes.

Ensembl ID Probability P value Gene name

ENSP00000358674 7:86E − 05 <0.001 UBL4A

ENSP00000367869 7:65E − 05 <0.001 GNB1

ENSP00000232607 7:53E − 05 <0.001 UMPS

ENSP00000350052 7:20E − 05 0.010 POTEF

ENSP00000334044 6:61E − 05 <0.001 UBL4B

ENSP00000310146 6:55E − 05 <0.001 None

ENSP00000464265 6:55E − 05 <0.001 UBBP4

ENSP00000355865 6:17E − 05 <0.001 PARK2

ENSP00000340944 5:67E − 05 0.027 PTPN11

ENSP00000377751 5:65E − 05 0.034 SCOC
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