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Neuronal variability reflects probabilistic inference
tuned to natural image statistics

Dylan Festa® ', Amir Aschner?, Aida Davila?, Adam Kohn'?3 & Ruben Coen-Cagli® 2™

Neuronal activity in sensory cortex fluctuates over time and across repetitions of the same
input. This variability is often considered detrimental to neural coding. The theory of neural
sampling proposes instead that variability encodes the uncertainty of perceptual inferences.
In primary visual cortex (V1), modulation of variability by sensory and non-sensory factors
supports this view. However, it is unknown whether V1 variability reflects the statistical
structure of visual inputs, as would be required for inferences correctly tuned to the statistics
of the natural environment. Here we combine analysis of image statistics and recordings in
macaque V1 to show that probabilistic inference tuned to natural image statistics explains the
widely observed dependence between spike count variance and mean, and the modulation of
V1 activity and variability by spatial context in images. Our results show that the properties of
a basic aspect of cortical responses—their variability—can be explained by a probabilistic
representation tuned to naturalistic inputs.

TDepartment of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA. 2 Dominick Purpura Department of Neuroscience,
Albert Einstein College of Medicine, Bronx, NY, USA. 3 Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY,
USA. ®email: ruben.coen-cagli@einsteinmed.org

| (2021)12:3635 | https://doi.org/10.1038/s41467-021-23838-x | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23838-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23838-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23838-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23838-x&domain=pdf
http://orcid.org/0000-0003-3803-1542
http://orcid.org/0000-0003-3803-1542
http://orcid.org/0000-0003-3803-1542
http://orcid.org/0000-0003-3803-1542
http://orcid.org/0000-0003-3803-1542
http://orcid.org/0000-0003-2052-5894
http://orcid.org/0000-0003-2052-5894
http://orcid.org/0000-0003-2052-5894
http://orcid.org/0000-0003-2052-5894
http://orcid.org/0000-0003-2052-5894
mailto:ruben.coen-cagli@einsteinmed.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

n sensory cortex, neuronal activity is typically variable, both in

the absence of sensory input and for repeated presentations of

a stimulus’2. This variability is modulated by several
sensory>~1! and non-sensory!'2-16 factors, suggesting it may play
a functional role rather than simply reflecting noise. Under-
standing the functional role of variability is at the core of the
inquiry of neural coding!7-22.

Parametric descriptive models can quantify how stimuli
modulate neuronal variability”-11:23-24, but they do not address
why modulation of variability occurs and what functional role it
might play. Here we develop and test a normative model, based
on efficient coding?>~28 and probabilistic inference!029-33, to
explain the properties of response variability in sensory cortex. In
this approach, we hypothesize about functional and computa-
tional principles of cortical processing, to generate predictions
about cortical activity. Specifically, we propose that probabilistic
inference tuned to the statistics of natural images can explain the
properties of response variability in visual cortex.

Although normative models have typically been used to explain
trial-averaged responses, they can also be used to explain
response variability?0-34-36 In particular, some aspects of varia-
bility in primary visual cortex (V1) can be explained by the theory
of neural sampling. This theory builds on the broader idea that
the brain approximates operations of probabilistic inference37-38,
and hypothesizes that instantaneous neuronal activity represents
samples from a probability distribution20343%, According to this
view, variability of neuronal activity reflects uncertainty about the
visual input (i.e., the width of the inferred probability distribu-
tion). As a result, variability is reduced by stimulus onset* and
stimulus contrast>40, because of a reduction in uncertainty!?.

Here we hypothesize that modulation of uncertainty by visual
input should reflect inferences tuned to the statistics of natural
images, and thus the properties of response variability should reflect
the statistical structure of images. To test this prediction, we consider
a successful modeling framework, the Gaussian scale mixture
(GSM*1:42), This model assumes that images are composed by local
features (e.g., oriented edges; Fig. 1a) and global features (e.g., image
contrast), and that V1 neurons aim to represent the local features
while discarding the global features!%:27:334344 GSMs can explain the
modulation of trial-averaged V1 responses by stimuli in the surround
of the receptive field (RF*>-°0). However, it is unclear whether
this framework can also explain the surround modulation of
variability>!>? and whether this modulation reflects the statistical
properties of natural inputs.

Here we combine modeling and electrophysiology in macaques
to test our hypothesis that V1 variability is tuned to natural image
statistics. First, we show analytically that the dependence between
spike count variance and mean observed empirically>717 emerges
in the GSM from the multiplicative interactions between local
and global image features. Second, we show that stimuli in the RF
surround modulate these interactions, and thus also response
variability. Finally, we test predictions about surround modula-
tion of firing rate and variability with recordings in V1 of awake
and anesthetized macaques viewing natural images and gratings.

Our results show that visual context modulates neuronal
response strength and variability independently, suggesting these
modulations reflect probabilistic inference about local visual
features. Our work thus provides evidence that the tuning of
cortical variability can be explained assuming the brain performs
operations of probabilistic inference of natural image statistics.

Results

The dependence between spike count variance and mean
reflects multiplicative interactions between latent variables. To
study the relation between natural image statistics and V1 cortical

variability, we considered the GSM because it captures the most
prominent aspects of low-level image statistics, namely the sparseness
of Vl-like, oriented visual features and their nonlinear statistical
dependence?’#1. We assumed that the instantaneous firing of V1
neurons (Methods Eq. 4) represents samples from the inferred
probability distribution (termed posterior distribution!%3!) of orien-
ted visual features encoded by the neurons. The inference of the
posterior distribution requires inverting the so-called generative
model of stimuli: that is, how features—small patches with different
orientations and positions—are combined to produce images
(Fig. 1a). Given an input image, model neurons then encode the
inferred probability distribution of the coefficients of those features in
the image. This is illustrated schematically for a vertical feature in
Fig. 1b—top. The posterior distribution (middle column) in this case
was broad with a large mean, indicating that the vertical feature was
strongly present in the input image, though its precise coefficient was
uncertain. Conversely, the image in Fig. 1b—bottom contains little
evidence for the vertical feature, leading to a narrow posterior cen-
tered near zero. In the sampling framework, neuronal responses
represent samples from this posterior distribution (Fig. 1b, right
column). Thus, the variance of the spike count distribution (ie., the
neuronal variability) reflects the variance or width of the posterior,
corresponding to the uncertainty about the coefficient of the encoded
feature.

We studied whether, in the GSM, response variance depends on
response mean, as observed in V12717, The GSM assumes x= v g
where the sensory input x is the result of local features g (the
variables encoded by the neurons) multiplied by a global modulator v
(e.g., image contrast). To gain intuition about the mean-variance
relationship of the model, we first considered the simplest
formulation of a GSM, where x and g are 1-dimensional. Although
the expression relating these quantities—x=1v g—is deterministic,
knowledge of x is insufficient to determine g, due to the unknown v.
Computing the probability distribution of g by accounting for the
possible values of v is a fundamental operation of probabilistic
inference, called marginalization3>3, Crucially, because of the
multiplication, both the inferred value of g and its uncertainty (i.e.,
the mean and standard deviation of the posterior over g) are
divisively related to v (Egs. 2, 3). For instance, assume we observed
x =10 and we inferred that v is likely to be between 1 and 2 (Fig. 1c,
dark blue), then by marginalization we would infer that g is with high
probability between 5 and 10 (Fig. 1c, light blue). If instead v was
inferred to be in the interval 4-5 (Fig. 1c, dark brown), then g could
only take values between 2 and 2.5, thus shrinking both in mean and
variance (Fig. 1c, light brown). This example illustrates why a neuron
whose responses reflect samples from the inferred distribution of g
should display a dependence between mean and variance in its
response statistics. Note that this dependency is not linear, nor do
mean and variance strictly follow each other as they would in a
Poisson process. In general, the relative scaling depends on model
choices, such as the uncertainty on the priors and, for high
dimensional inputs, the stimulus structure (as explained in the next
section). Notice too that if the mixer term v were additive instead of
multiplicative, then changes in its inferred value would only change
the inferred mean of g not its variance, leading to different
predictions (Supplementary Fig. SI).

To validate this intuition more rigorously, we considered
GSM inference on real images. As in past normative
models?7-33-43.44 " we implemented a GSM with oriented
filters>* spatially arranged to define both the RF of the model
neuron and its surround (Fig. 2a; details in Methods). The
model was trained on a large ensemble (N = 10,000) of natural
image patches extracted from the BSDS500 database®
(https://github.com/BIDS/BSDS500).

Given an input image, the visual inputs x (a vector) were
determined by the activations of those filters applied to the
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Fig. 1 Sampling-based inference in the GSM model explains the dependence between spike count variance and mean. a Representation of the

generative process of the Gaussian scale mixture (GSM) model (Methods Eg. 1). The image (left) is described as the combination of local oriented features
weighted by Gaussian coefficients, further multiplied by a global modulator and corrupted by additive Gaussian noise. b Encoding of sensory information
according to the sampling hypothesis: the goal of a model neuron is to represent the posterior distribution (orange, middle) of the feature it encodes. The
activity of the neuron corresponds to samples from that distribution, therefore the histogram of spike counts over time or repetitions (green, right) reflects
the distribution. € Tuning of mean and variance in a 1-dimensional version of the GSM with no noise. For fixed input x, the visual feature g and the

modulator v are bound to lie on the hyperbole v = x/g (black line). Therefore, a larger estimate of v implies reduced mean and variance of the posterior
distribution of g (blue versus brown curves). d Mean versus variance of a GSM model neuron in response to 1000 patches of natural images. Patches were
selected randomly, with the requirement of sufficient signal strength inside the RF, i.e., above the median of the full distribution of (><12Jr + x2) on natural
scenes, where x;, and x;_ are the odd and even phases of the center-vertical filter (see Methods). e The Fano factor (FF; ratio between mean and variance)
as a function of the mean for the same GSM simulation reported in (d). Red dashed line represents the best linear fit. Pearson correlation coefficient 0.214,

(p<10~4%, two-sided t test of the null hypothesis of zero correlation).

image. We denoted by g the corresponding local visual features.
First, we verified that the multiplicative effect of the modulator
allows the GSM to capture the statistics of natural images*!
better than an additive modulator (Supplementary Fig. S1). We
found through analytical derivations and simulations that
the variance of the inferred g grows with the mean, and both are
divisively scaled by the estimate of the global modulator v,
leading to a general reduction of uncertainty when the estimate
of v increases (Methods Egs. 2, 3; see Supplementary Text for
derivation). We then simulated model responses to a wide
range of natural images (Fig. 1d), and characterized the
mean-variance relation. The response variance of the model
neuron scaled proportionally with its mean. Furthermore the
ratio of variance to mean, termed Fano factor (FF), increased on
average for stimuli that elicited stronger mean responses

(Fig. le), in qualitative agreement with the statistics of V1
neurons’. Importantly, training a GSM on different image sets,
such as white noise, led to different parameter values but
qualitatively similar predictions for neural responses (Supple-
mentary Fig. S2), indicating that the mean-variance depen-
dence arises from matching the generative model’s structure to
image statistics (i.e., multiplicative latent interactions) rather
than fine-tuning its parameters.

These analyses confirm the intuition that the dependence
between posterior variance and mean observed in the GSM
emerges from the multiplicative interactions between the global
modulator and the local variables. Because this partition between
local and global variables in the GSM is known to capture well the
statistics of natural images?”#, our result establishes a precise
link between image statistics and cortical variability.
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Fig. 2 Surround stimulation reduces GSM uncertainty and V1 variability for natural images. a In the GSM, the inputs to the model neuron are provided
by the activity of quadrature pairs of oriented filters, corresponding to the spatial RF (green) and its surround (magenta). b Noise-free GSM model applied
to an image without (blue) and with (brown) surround. The surround stimulus does not change the constraint between g. (the local feature associated with
the RF center) and v, but it influences the estimate of the modulator and therefore also the estimate of g.. ¢ FF averaged across small (1°) and large (3.1° or
6.7°) natural image patches. Black and gray circles: average FF across images for each V1 neuron; black denotes a significant difference (p < 0.05) across
the two conditions. Orange circle: average FF of the GSM response for the same set of images. For the conversion to spike counts (see Methods, Eq. 4) we
used the scaling factor ¢ = 2. The p values were computed with a two-sided paired sample t test, of the null hypothesis that the difference between the two
conditions had mean equal to O. d-f Tuning of the mean spike count (green) and FF (blue), for natural image patches of varying size. d GSM model, scaling
factor ¢ =15. This constant was different than in (c), because the experiments of (¢) used images with a broader range of orientation and frequency
content than (d). e Data from one awake fixating macaque V1, for two example neurons and a single image presented at different sizes. Mean rate (green
dots) and FF (blue dots) have been computed over 110 stimulus presentations. f Population average across neurons (86 in total) and image patches (10 in
total). The error bars in (d, e, f) represent the 68% c.i. and are computed by bootstrapping.

Surround stimulation reduces uncertainty and V1 variability.
The previous analysis shows that variability in the GSM is
influenced by the inferred values of the global modulator.
Therefore, the framework predicts that variability is sensitive to
stimulus manipulations that affect the inferred global modulator.
Specifically, stimuli that lead to a higher estimate of the mod-
ulator present less uncertainty over the hidden feature, and thus
should reduce response variability. To test this prediction, we
considered the modulation of V1 activity induced by spatial
context—by stimuli in the surround of a neuron’s RF—because
spatial context can reduce stimulus uncertainty without modify-
ing the stimulus drive inside the RF>°.

First, we verified for the GSM that surround stimuli (i.e., image
regions that activate the surround filters) reduce uncertainty. The
activity of the model neuron is associated with the oriented
feature in the center. However, the surround input contributes to
the estimate of the global modulator, and therefore influences the
neuronal response. Specifically, our analytical results show that,
for a fixed RF input, surround stimulation increased the estimated
modulator and therefore had a suppressive influence both on the
mean and variance of the neuronal response (Fig. 2b; Methods
Eq. 3), validating our intuition that surround stimuli reduce

uncertainty because they result in a higher estimate of the global
modulator.

Next, we tested whether surround stimulation reduces V1
variability, relative to RF stimulation alone, by analyzing previously
published data on V1 surround modulation in anesthetized
macaques®®. In these experiments, natural image patches were
presented at two different sizes, either masked to fit within the
average RF (1°), or extending well beyond into the surround
(3.1-6.7°). Among the neurons with a significant change in FF across
conditions (127/261 neurons, p < 0.05), the vast majority (91.3%) had
a lower FF for large images than small ones, consistent with model
predictions. The average FF, across all neurons, was also lower for
large images than small ones (1.15 versus 1.22, p< 1076, N=261
neurons). We verified with a mean-matching analysis that this
difference in FF could not be explained by differences in spike count
mean (Supplementary Fig. S3). This result agrees qualitatively with
the model (Fig. 2¢, orange symbol), although surround suppression
of FF was stronger in the model, possibly because surround
modulation in the GSM is recruited by all images, whereas in V1
it is weak or absent for many images’3. Consistent with this
possibility, the strength of surround suppression of responsivity and
of FF were positively correlated (Supplementary Fig. S4).
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Distinct effects of RF and surround stimulation on variability
suppression. Suppression of response variability by large stimuli
might not be due solely to surround stimulation. Visual stimuli
reduce the variability measured in spontaneous activity*. There-
fore large images might reduce variability by providing stronger
drive to the RF, in those cases where small images did not
completely cover the RF. To test whether stimuli larger than the
RF induced further reduction of the FF, beyond the reduction
caused by the stronger RF drive, we considered responses to
circular patches of natural images, with sizes ranging from much
smaller to much larger than the typical RF.

We first studied the effects of stimulus size in the GSM. We
found that the mean response peaked for images matched in size
to the RF and decreased for larger stimuli, consistent with past
work#4, The FF, on the other hand, decreased monotonically with
stimulus size, well after the stimulus filled the RF (Fig. 2d),
because large stimuli lead to a larger estimate of the global
modulator (Supplementary Fig. S5A). The difference between
the behavior of the FF and the mean indicates that it should be
possible to dissociate the effects of variability reduction from the
modulation of spike count mean: stimuli smaller than the RF and
larger than the RF can elicit similar average responses but with
different variability.

We tested these predictions in V1 responses to natural images of
different sizes in one awake fixating macaque. For the two example
neurons of Fig. 2e, the mean spike count displayed the typical non-
monotonic size dependence (green), whereas the FF decreased
monotonically (blue). Similar effects were evident across all recorded
neurons for stimuli ranging from approximately half the RF size up
to several times larger (N = 86; Fig. 2f). The FF decreased by 18.7% as
stimuli increased from ~% RF size to RF size, and an additional 5.7%
as stimuli increased from RF size to approximately twice that size
(Table 1, left), which is the average extent of the suppressive surround
in V1464849 Furthermore, the FF decreased for stimuli larger than
the RF compared to stimuli smaller than the RF, even when both
stimuli evoked approximately the same number of spikes (Table 1,
right). To be sure that our results were not affected by inaccurate
estimates of RF size, due to variations in local contrast across natural
images, we measured responses to static gratings in the same animal,
and obtained similar results (Table 1, experiment 2; Supplementary
Fig. S6A). New analyses of previously published data from
anesthetized animals®® also confirmed these results (Table 1,
experiment 3; Supplementary Fig. S6B), ruling out the possibility
that microsaccades in the awake animals might have introduced
biases.

Note that the FF was lower on average for stimuli smaller than
Y2 RF size (Fig. 2f, leftmost point). This was true for the subset of
neurons with large RF (N =65/86), whereas the FF decreased
strictly monotonically for neurons with smaller RFs (Supplemen-
tary Fig. S7). Both the large apparent RF size and the non-

monotonicity of the FF would be expected if stimuli were not
perfectly centered on the RF (Supplementary Fig. S8). Further-
more, the FF decreased monotonically with stimulus size in the
anesthetized dataset, for which stimulus centering could be
controlled more tightly (Supplementary Fig. S7).

These analyses show that stimulation of the RF surround
reduces response variability, beyond the known reduction from
spontaneous to stimulus-driven activity*.

Surround suppression of variability is orientation selective.
Surround suppression of mean firing rate is known to be stronger
for image patches with matched orientation inside and outside
the RF, and weaker when the surround orientation is orthogonal
to the center®>47:49:57-59 1t is not known whether variability is
similarly tuned. In our GSM model, surround tuning of mean
responses (Fig. 3a, green) was obtained by using surround filters
with the same orientation as the feature of interest inside the RF
(details in Methods), as in past implementations2”-43,

Because the GSM predicts that surround suppression of both
mean spike counts and variability is controlled by the inferred
strength of the global modulator, we found that surround
suppression of model response variability and of mean spike
counts were similarly tuned (Fig. 3a). We verified that this
corresponded to a smaller estimate of the global modulator for
orthogonal surround stimuli (Supplementary Fig. S5B), which in
turn resulted in weaker surround suppression of variability.

To test these model predictions, we measured V1 responses to
compound static gratings in two awake, fixating macaques (N =71
neurons). Consistent with past literature, the mean response was
suppressed (relative to no surround) more when the surround and
center orientations were matched (Fig. 3b; average suppression
matched 0.844, orthogonal 0.885; average reduction 6.28%, p =
0.0043). In agreement with model predictions, the FF was smaller
for the matched surround (Fig. 3¢; average FF matched 0.973,
orthogonal 1.02; average reduction 4.73%, p = 0.032), and this was
true in the majority (N = 9/14) of neurons with a significant change
(p <0.05). However, although consistent with the GSM prediction,
the magnitude of the effect was small (see also Discussion). One
reason might be that, in our data, 26/71 neurons responded more
strongly to matched than orthogonal surrounds (i.e., opposite to
the surround tuning of our GSM implementation), which may be
due both to imperfect stimulus centering and to the known
heterogeneity in the orientation tuning of surround suppression of
firing rate?®. Consistent with this explanation, we verified that if we
restricted our analysis to neurons that responded more weakly
to matched than orthogonal surround (N = 45/71; average reduc-
tion 17.3%, p <10~>), the surround tuning of FF was also stronger
(average reduction 7.37%, p = 0.013) than for the entire population
(Supplementary Fig. S9).

Table 1 Response variability decreases with stimulus size.

(N =229; Supplementary Fig. S4)

Experiment FF decrease FF decrease p Value Mean-matched FF decrease p Value
(%2 RF)-(1 RF) (1 RF)-(2 RF) (size < RF)-(size > RF)

1. Natural, awake 18.7% 57% 0.0082 25.7% <10—>

(N = 86; Fig. 2f)

2. Gratings, awake 31.7% 9.0% 0.05 47.7% <10-3

(N =19; Supplementary Fig. S4)

3. Gratings, anesthetized 14.2% 7.0% <10-3 22.6% <10—>

Rows: separate experiments, with number of neurons selected in each experiment (inclusion criteria in Methods). Columns: Column 1, experiments. Columns 2-4, changes in FF with stimulus size.

Columns 5 and 6, mean-matched (see Methods) change in FF with stimulus size. In all cases, a positive change denotes a reduction in FF for larger stimuli. Column 2: change in FF (Methods, Eq. 5) from
the stimulus closest to % of the RF size (out of all tested sizes) to the RF-sized stimulus. Column 3: change in FF from the RF-sized stimulus to the large stimulus (closest to 2 x RF size). Column 4: the p
value for the second column. Column 5: FF change from stimuli smaller to larger than RF size. Sizes are selected to match the mean spike count across neurons (spike count change <3%, p > 0.05, for all
experiments). Column 6: p value for column 5. The p values were computed with a one-sided paired samples t test of the null hypothesis that the difference between the two conditions had mean < 0.
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40 (b, c) Percent change in the mean spike count (b) and Fano factor (¢) from orthogonal to matched surround orientation, in V1 of two awake fixating
macaques. Yellow bars denote neurons with a significant change across conditions. The difference is considered significant when the 68% c.i.'s of the two

conditions (computed by bootstrapping) do not overlap.

Our analysis shows that surround suppression of variability in
V1 is tuned to the orientation of surround stimuli, in a manner
similar to the tuning of firing rate suppression, suggesting partly
shared mechanisms. In the GSM framework, this tuning arises
because only matched surround stimuli provide information
about the global modulator and thus reduce uncertainty.

Discussion

We have presented a theoretical framework that explains V1
variability and its modulation by spatial context in natural ima-
ges, as reflecting probabilistic inference about local features in
visual inputs. Our work builds on the theory of neural
sampling!020:3439 in which neuronal variability encodes uncer-
tainty of the inferences, and offers two main contributions. First,
we established a precise link between V1 response variability and
the statistics of natural images. We showed that the dependence
between spike count variance and mean, and the modulation of
variability by spatial context are general consequences of prob-
abilistic inference when there are multiplicative interactions
between latent variables, which is a widely-adopted description of
natural image statistics?”-41:4460-62 " Second, we validated our
model with measurements of V1 activity. Consistent with model
predictions, spatial context in images modulated V1 variability
beyond the known reduction of variability from spontaneous to
stimulus-driven activity*. Furthermore, the tuning of contextual
modulation of variability was similar to (although weaker than)
that of mean spike counts, suggesting shared mechanisms.

Natural image statistics and contextual modulation of response
variability. Normative models of visual processing have
explained properties of V1 representations from optimization and
efficiency principles related to the statistics of the natural
environment?>-2863,64 This work has typically addressed only the
trial-averaged spike counts. However, across-trial variability is
substantial in cortex and can strongly influence perception!7-38:05:66,
Understanding cortical processing requires addressing this varia-
bility, which we have done via the neural sampling theory.

The hypothesis that neuronal variability reflects sampling from
a distribution3? is rooted in machine learning research focused on
efficient inference schemes®’. Past work in neural network
modeling has shown how samples might be generated dynami-
cally, and in a manner that is fast enough for accurate inference
within short, biologically relevant timescales®8-71,

While past work has addressed the plausibility of neural sampling,
we have focused instead on contextual effects, for two important
reasons. First, contextual effects disambiguate between two key
aspects of neural coding: the strength of the stimulus feature
represented by the neuron, and the uncertainty about that feature.
This is because stimuli in the RF surround do not directly affect the
inputs to the RF, but they can modulate uncertainty. This is different
from contrast modulation!® and other common experimental
manipulations (e.g., adding stimulus noise’273), that modulate both
the strength of a visual feature and its uncertainty. Second, natural
visual inputs have rich statistical structure that extends across the
visual field. There is abundant evidence suggesting a relation between
spatial structure in images and spatial contextual effects in
cortex?73303,7475  Contextual modulation of V1 trial-averaged
responses has been characterized extensively with artificial
stimuli*~4%, and is also prominent for natural inputs®!-7°, Past work
using the GSM and its extensions has explained a wide range of those
phenomena, as reflecting a computation optimized to the statistics of
natural images?’#344 The modeling and experimental results
presented here are consistent with this prior work, as we report
strong and tuned surround suppression of mean spike counts
(Figs. 2d-f, 3). But our findings go beyond this previous work, by
establishing a general relation between response variability and
natural image statistics (Fig. 1c) and relating surround influences on
mean spike counts and on variability (Figs. 2d-f, 3).

Our model could be further extended to account for the fact
that contextual modulation is weak or absent for some stimuli,
such as when contextual inputs are not informative33. Variability
reduction by stimulus context should be weaker or absent for
such uninformative contextual stimuli, which would be consistent
with our observations that, when we used natural images, the
level of surround suppression of FF varied substantially across
images (Fig. 2c and Supplementary Fig. S4), and that suppression
was also weaker for orthogonal grating surrounds (Fig. 3c).
Although V1 responses agreed well with model predictions, we
observed a quantitative discrepancy between the two: contextual
modulation of FF and its tuning were much stronger in the
model. This could reflect that, in the model, the main source of
uncertainty (particularly for the high-contrast stimuli we used),
and therefore variability, is the unknown value of the global
modulator. Model response variability is therefore extremely
sensitive to contextual stimuli. In V1, there are likely multiple
latent sources of uncertainty that could partly mask the effects of
our experimental manipulation of spatial context. Addressing this
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discrepancy may require considering non-sensory contextual
factors such as attention and behavioral state®3.

Influences of divisive normalization on variability and other
response statistics. Our mathematical analysis of the GSM
inference shows that response strength and variability are jointly
modulated by divisive normalization’”8. This is because the
mean and variance of the inferred distribution of the local fea-
tures depend divisively on the inferred value of the global mod-
ulator (Methods, Eq. 3), which in turn is obtained by combining
the inputs corresponding to all features** (Methods Eq. 2).
Therefore, our model points to divisive normalization as the key
operation for surround modulation of rate and variability. There
is abundant indirect evidence that normalization modulates
responses beyond firing rate. For instance, stimulus manipula-
tions that engage normalization, such as varying contrast and
size%77, also modulate variability>>1->2. In addition, although the
mechanisms of normalization are debated’®, network models
based on inhibitory stabilization8? reproduce many of those
stimulus-induced effects, indicating a common mechanism that
could control both firing rate8182 and variability3? consistently
with normalization.

Other work has established the connection between normal-
ization and variability more directly. A descriptive model of
stochastic normalization has been shown to fit changes in
variability with stimulus contrast!! and orientation noise®3, and
revealed that, even for fixed stimuli, variability is reduced during
epochs of strong normalization!!. Our analytical results on
normalization and variability bridge the gap between this
literature and a theory of the computational role of variability.

Relation to other descriptive models and functional explana-
tions of cortical variability. Previous work used a GSM to
demonstrate stimulus dependent changes in response statistics!0.
In particular, Orban et al.l% suggested that a GSM could unify
effects of response mean and variability. Our work extends this
study in two important aspects. First, Orban et al. used approx-
imate inference in their GSM, based on a maximum a posteriori
estimate for the global scaling variable. Consequently, posterior
variance was exclusively due to observation noise, while variance
resulting from uncertainty in the global scaling variable was
ignored. This required tuning a nonlinear conversion from
membrane potential to spike counts to account for realistic
response variability$*. Here, we include both sources of uncer-
tainty—input noise and the unknown global latent variable—and
we show that the GSM framework is sufficient to capture the
dependence between response mean and variance for a wide
range of inputs (Fig. 1c, d), without further tuning the conversion
from membrane potential to spikes. Second, the treatment of
Orban et al. was sufficient for a coarse grained account of con-
textual effects (such as changes in sparseness and reliability), but
our analysis unveils a more complex repertoire of contextual
effects for natural images, leading to detailed predictions that
related statistical dependencies across visual space to contextual
modulation of V1 variability.

Another recent model®3 proposes that uncertainty is repre-
sented in the response variability, and is thus related to sampling
and to our work. However, Hénaff et al.83 propose that variability
is partitioned into two terms, Poisson variability and fluctuations
in response gain’. Uncertainty is encoded specifically by the
amplitude of the gain fluctuations. Different from our work,
the Poisson term in that framework does not have a functional
role and is left unexplained, and there is no precise relation
between V1 variability and the statistics of natural images.
In addition, whereas sampling-based representations can

approximate the full posterior distribution, the model of
Hénaff et al33 focuses only on the mean and variance
(uncertainty) of the posterior. Therefore, future experimental
work could further distinguish between these theories by
comparing higher-order statistics of V1 responses to the
corresponding statistics in the visual inputs.

Methods
Model of V1 resp
The Gaussian scale mixture (GSM) generative model. The observable variables are
given by the outputs of linear, oriented filters>* applied to grayscale input images.
We assume oriented filters because they approximate well those optimized to
natural images, and also represent a canonical choice for V1 models that used the
GSM framework!0-33:43.4471 One pair of filters (even and odd phase, forming a
quadrature pair) represents the RF of the model neuron, and another eight pairs
are uniformly distributed on a circle around the RF, all with the same orientation
(represented in Fig. 2a as vertical). The surround filters slightly overlap with the RF
filters, to reflect that suppressive surround mechanisms in V1 partly overlap with
the RF%Y (see Fig. 2a). The responses of the 18 filters form a 18-dimensional input
vector, denoted as x.

The generative model uses latent variables to capture the statistics of x, as
follows:

x=vg+n

. 1)
g ~ N(0,C,); v ~ Rayleigh(1); # ~ N(0,C

noise)
The observable x results from the product of the feature vector g, which has the
same dimensionality of x, and a positive scalar v, that acts as global modulator. The
additive noise 1 plays the role of observation noise in the generative model. That is,
it accounts for the fact that the GSM is not a perfect model of the statistics of the
observable x on natural images. As we explain below, this additive noise is also
helpful to account for realistic response variability with weak stimuli
(Supplementary Fig. S10). We assume that g and n are generated from multivariate
normal distributions, with mean 0 and covariances C, and Cpoise, respectively; v
follows a Rayleigh distribution with mean 1. Note that changing the Rayleigh
parameter is equivalent to rescaling C,.

Model optimization. The covariance of the noise term, denoted as Cisc in Eq. 1, is
found numerically, by applying the filters to 10,000 white-noise patches. We take
the empirical covariance of the resulting outputs and scale it by a free parameter,
set heuristically at 0.1 to ensure a realistic response variability for weak inputs
(Supplementary Fig. $10). The covariance matrix C, is computed by moment
matching®®, based on the empirical covariance of filter outputs over 10,000 natural
image patches, scaled by a term that accounts for the mixer. This ensures that the
model is adapted to natural image statistics, as in previous work#4. The image
patches used for training are considered noise-free, and the noise level in the
trained model is tuned heuristically. This choice was motivated by convenience,
and by noticing that pixel noise tended to be small, reflecting the digital quality of
images and not indicative of sensory noise.

Probabilistic inference and sampling. Having defined the generative process, we can
express the posterior distribution of the latent feature of interest, for example the
center-vertical feature with odd spatial phase, g, given the filters response X to a
test image. This quantity is denoted P(g,, |X), and results from an operation of
Bayesian inference and marginalization over the other latent variables (Supple-
mentary Text, Section 1). In particular, the global modulator v plays a key role in
the inference of g; .. To gain further insight, we first derived analytical solutions for
the regime in which input noise is negligible, i.e., # = 0. First, v can be expressed
analytically and approximated for A>> 1 (Supplementary Text, Section 1) as:

E[rIX] = VAIL + OA "), with A = /X (C) %%, @
ij

where O(A™") represents a generic function that drops to zero asymptotically with
A~1L. This shows that the estimate of the mixer depends on the outputs of all filters.
Second, the distribution of the feature of interest, P(g, , |X), can also be expressed in
closed-form in the low-noise limit (Supplementary Text, Section 4). Its mean and
FF can be approximated as:

-~ X _ - X

E[g, %] = ﬁu + OA™")] and FF[g,, [%] = 4);1
In the approximation above (derived in Supplementary Text, Section 4), the
expected value of the feature of interest depends linearly on the input inside the RF,
X,,. However it is scaled by VX, a quantity approximately equal to the expected
value of the global modulator (Eq. 2), which includes the influence of the surround.
The variance instead scales divisively with the square of A, which in turn deter-
mines the reduction of variability (the FF in Eq. 3) by surround stimulation. This
analysis thus shows that, in the GSM inference, divisive normalization influences
both the mean and the variance of the posterior distribution, thus providing a

n+o0a™M 3
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normative explanation for the dependence between spike count variance and mean
observed in sensory neurons. Notice also that the expected value and the FF are not
always monotonically related, because A depends both on inputs inside and outside
the RF, and appears with different exponents in the FF and expected value. For
instance, surround stimulation affects only A and thus changes the FF and expected
value in the same direction, whereas changing contrast affects both numerator and
denominator resulting in opposite scaling of the expected value and FF (Supple-
mentary Fig. S11).

The analytical results in Eq. 3 refer to the reduced model without additive noise.
In this formulation, for very small inputs X ~ 0 the inferred mean and variance
converge to zero, resulting in model neurons with an unrealistically silent and
stable baseline activity. We therefore extended the generative model to non-zero
additive noise, and determined the model neuron responses numerically, by Monte
Carlo sampling, implemented through the Stan programming language (https://
mc-stan.org/). When comparing the analytical solution for the noiseless model
with the simulation results for the full model, we found that, as expected, they
differ predominantly in the regime of small inputs, where the model with noise still
preserves a non-zero response and variability (Supplementary Fig. S10).

Our choice of a fixed Rayleigh prior for the mixer (in line with past
work3343:44.80) i mainly due to mathematical convenience, as it allows us to obtain
analytical insights on the scaling of mean and variance with x, and A. Although
we focused here on qualitative predictions, for quantitative fits of GSM models to
neural data one could leverage the flexibility afforded by modifying the mixer prior
and introducing additional free parameters.

Conversion to spike counts. For the purpose of our analysis, x;; in Eq. 3 is assumed
greater than 0 (e.g., a grating stimulus in-phase with the filter). To cover the general
case, and appropriately express neural response and FF in terms of spike counts, we
performed the following transformation:

r=c/gl + g O

where ¢ is a fixed parameter set heuristically so that mean responses and FF are in a
realistic range (values are reported in the figure captions), and the + represent the
two spatial phases at the RF position. One strength of this framework (following
Orban et al.19) is that it is a fully normative model of response variability, and does
not need to assume additional noise in the spiking process. We can therefore
directly consider the instantaneous response r as a spike count, with a rounding
error that is small for sufficiently high c. In the no-noise approximation, the mean
and variance of r can be expressed analytically, and preserve the behavior of Eq. 4
(see Supplementary Text, Section 5). For the full model, we compute a single-trial
response r for each sample of g, g;_. The mean, variance and FF of the model
neuron are then found numerically, using 400 samples.

The simple form of Eq.4 allows for analytical results that provide useful
intuitions. However, when testing the GSM response to stimuli of fixed size, we
found that an increase in contrast led to a decrease in variance, in conflict with V1
data (Supplementary Fig. S11A, B). This behavior can be easily corrected
(Supplementary Fig. S11E, F) by using a different transformation between the
latent variable g and the neural response, in the form of a rectified expansive
nonlinearity!?. Note however that the GSM predictions for size tuning and
surround-orientation tuning stimuli are qualitatively robust to the specific choice of
transformation (Supplementary Fig. S12).

Neurophysiology

Animal preparation and data collection. We recorded data from male adult
macaque monkeys (Macaca fascicularis), either anesthetized (three animals) or
awake (two animals). The protocol and general methods employed for the anes-
thetized experiments have been described previously®”. In short, anesthesia was
induced with ketamine (10 mg/kg of body weight) and maintained during surgery
with isoflurane (1.5-2.5% in 95% O2), switching to sufentanil (6-18 ug/kg per h,
adjusted as needed) during recordings. Eye movements were reduced using
vecuronium bromide (0.15 mg/kg per h). Temperature was maintained in the
36-37 C° range, and relevant vital signs (EEG, ECG, blood pressure, end-tidal
PCO?2, temperature, and airway pressure) were monitored continuously to ensure
sufficient level of anesthesia and well-being. We implanted a 10 x 10 multielectrode
array (400 um spacing, 1 mm length) in V1.

For awake experiments the animal was first familiarized with a restraining chair
(Crist Instruments). Then a titanium headpost was implanted under full isoflurane
anesthesia in an aseptic environment. Postoperative analgesic (buprenorphine) and
antibiotic (enrofloxacin) were provided. After a 6 week recovery period, the animal
was trained to fixate in a 1.3° x 1.3° window. Eye position was monitored with a
high-speed infrared camera (Eyelink, 1000 Hz). Once sufficient performance was
reached, a second surgery was performed in which a craniotomy and durotomy
were performed over the occipital cortex. A 96-channel and a 48-channel
microelectrode array were implanted in V1 (and a third, 48-channel array in V4,
not considered here). The dura was sutured over the arrays and covered with a
gelatin film (Duragen). The craniotomy was covered with titanium mesh, held in
place with titanium screws. On the first day of recording we mapped the spatial
receptive fields of the sampled neurons by presenting small patches of drifting full
contrast gratings (0.5° diameter; 4 orientations, 1 cycle/deg, 3 Hz drift rate, 250 ms

presentation) at 25 distinct positions spanning a 3° x 3° region of visual space.
Subsequent stimuli were centered in the aggregate RF of the recorded units.

All procedures were approved by the Albert Einstein College of Medicine and
followed the guidelines in the United States Public Health Service Guide for the
Care and Use of Laboratory Animals.

Visual stimuli. Visual stimuli were generated with custom software (EXPO V1.5;
https://sites.google.com/a/nyu.edu/expo) and displayed on a cathode ray tube monitor
(Hewlett Packard p1230; 1024 x 768 pixels, with ~40 cd/m? mean luminance and 100
Hz frame rate) viewed at a distance of 110 cm (for anesthetized) or 60 cm (for awake).
In each session, stimuli were randomly interleaved, separated by a uniform gray screen
(blank stimulus). All grating stimuli were presented at 100% contrast.

Surround modulation experiments. We measured surround modulation in anes-
thetized animals with grayscale natural images (as described in33). Briefly, we
presented 270 images in total, each at two sizes (1° and 3.1-6.7°). These included 90
distinct images. For images with a dominant orientation, we presented four var-
iants rotated in steps of 45°, to increase the probability that each variant would
drive at least some of the recorded neurons. Images were presented for 200 ms
followed by 100 ms blank screen in pseudo-random order, each repeated 20 times.

Size-tuning experiments. We measured size tuning with grayscale natural images,
and both static and drifting gratings (Table 1 and Supplementary Fig. S6). In each
session of the awake experiments we presented ten natural images (a subset of the
270 described above) masked by a circular window with diameters of 0.34, 0.55,
0.90, 2.4, and 3.8°, with stimulus duration 200 ms and interstimulus interval of 100
ms. Images were presented 60-74 times each. We chose images that evoked strong
average responses in a majority of the neurons reported in Coen-Cagli et al.33. In
separate sessions, we measured size tuning with static circular gratings, with dia-
meters of 0.34, 0.55, 0.90, 2.4, and 3.8° orientations of 0, 45, 90, and 135° duration
of 250 ms, and interstimulus duration of 100 ms. We set the spatial frequency (1
cycle/deg) to be appropriate for V1 neurons at the recorded eccentricity. Each
stimulus was repeated 114-124 times. In the anesthetized experiments, we mea-
sured size tuning with static circular gratings, testing a larger range of conditions
(diameters of 0.34, 0.55, 0.90, 1.5, 2.4, 3.8, and 6.2° orientations of 0, 45, 90, and
135°), and repeated each stimulus 20 times.

Surround-orientation tuning experiments. We measured orientation tuning of
surround modulation in two awake monkeys, using static compound gratings with
a spatial frequency of 1 cyc/deg presented for 200 ms (100 ms interstimulus
interval). For monkey M we used a central grating of diameter 1°, orientations of 0
and 90° and an annular surround with inner diameter of 1° and outer diameter of
6°, with orientation either matched or orthogonal to the center. For monkey C, the
central grating was 0.5° in diameter; orientations were 0, 45, 90, and 135° and a
surround with inner diameter of 1.5° and outer diameter of 5°, with orientation
either matched or orthogonal to the center. We introduced this gap between center
and surround stimulus, to reduce the extent to which the surround stimulus
encroached on the neurons’ RFs. The results for both monkeys were qualitatively
similar. Therefore, we combined them in our analyses.

Data analysis. For each electrode, we extracted waveform signals (sampled at 30
kHz) whenever the extracellular voltage exceeded a threshold of 5 times the square
root of the mean square signal on each channel. We then sorted waveforms
manually using Plexon Offline Sorter V3, and isolated both single and multi-unit
clusters, here both referred to as neurons. Data analysis was then performed in Julia
1.5 (https://julialang.org).

Characterization of neuronal responses and inclusion criteria. We computed spike
counts in a fixed window with length equal to the stimulus duration, shifted by 50
ms after stimulus onset. We also computed baseline activity in the 50 ms window
from 20 ms before to 30 ms after stimulus onset. We excluded from further ana-
lyses all neurons that were not driven by any stimulus above baseline + 1 std. We
also excluded all natural images and grating orientations that, when presented at a
size closest to 1° (out of those presented), did not drive the neurons above the
baseline + 1 std. Next, we defined the response latency of each neuron as the first
time at which the peristimulus time histograms (regularized using a smoothing
cubic spline with parameter 2 - 107) at the preferred stimulus size (for size-tuning
experiments) or at the smallest size presented (0.5 or 1°, for the other experiments)
crossed a threshold of baseline + 1 std. All further analyses were performed on
spike counts in windows shifted by the latency of each individual neuron. In the
surround modulation experiments on anesthetized monkeys with natural image
patches (Fig. 2c) we selected only neurons that responded significantly to at least
ten distinct images.

We computed the mean spike count by averaging across trials, and characterized
variability by the FF, the ratio between across-trial variance and mean of the spike
count. We focused on the FF because, when compared across conditions, it quantifies
changes in variability beyond the changes in mean activity. We excluded neurons
whose average FF across all stimulus conditions was larger than 2.
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Because we were interested in surround modulation of variability, we excluded
neurons with RFs not well centered on the stimuli. In experiments with
anesthetized animals, we measured multi-unit spatial RFs using small circular
oriented gratings (size 0.5°, 4 orientations, 250 ms presentation), fitting the spike
counts with a two-dimensional Gaussian. We only kept for further analysis those
neurons whose RF center was within 0.4° of the stimulus center. Due to the limited
duration of the awake sessions, we could not measure spatial RFs prior to each
session. We therefore relied only on the responsivity to small stimuli (described
above), and on the following additional criteria (for size-tuning experiments, Fig. 2f
and Table 1), as a proxy for appropriate stimulus centering. First, we excluded the
neurons that had maximum response for very small (0.3°) or very large (>4°)
stimuli, because this was indicative of poor centering. Second, we excluded natural
images that elicited weak surround suppression of the mean spike count (below
15%). We verified that our results did not change qualitatively when we changed
this threshold (Supplementary Fig. S9).

Lastly, we excluded the neurons whose mean spike count was zero for any given
stimulus size (for size-tuning experiments) or surround condition (for surround-
orientation tuning experiments), because the FF is not defined in those cases. For
the surround-orientation tuning experiments (Fig. 3) we analyzed only the
preferred orientation out of those presented, to ensure responses were robust
enough that we could measure surround suppression effects reliably.

Statistical analysis. In the size-tuning experiments (Fig. 2e, f and Table 1) we first
computed mean spike count and FF for each neuron, each stimulus size and
condition (natural image identity or grating orientation). We then averaged across
conditions, using mean for spike counts and geometric mean for FFs, obtaining an
area-summation curve for both spike count and FF for each neuron (e.g., Fig. 2e).
The differences in FF across sizes were measured as:

Y%change in FF = 100 - (FF, — FFy)/((FF, + FFy)/2) (5)

Where « refers to the stimulus size closer to RF and f to the stimulus size
approximately twice the RF. To visualize population averages in Fig. 2f and Sup-
plementary Figs. S6, S7, we expressed stimulus size relative to RF size, and then
averaged across neurons for each relative size. Note that some of the relative sizes
were available only in a subpopulation with a specific RF size. In those points,
averages refer to the available neurons. Supplementary Fig. S7 shows instead the
groups as separate. For the surround-orientation tuning experiments, we quantified
differences in FF also by Eq. 5, but with « representing the stimulus with ortho-
gonal surround, and § the stimulus with matching surround. Confidence intervals
in the population plots were estimated by bootstrapping.

For the mean-matching tests in the area-summation experiment (Table 1 and
Supplementary Fig. S3), we compared the FF between stimuli that were smaller
versus larger than the RF, and elicited a similar trial-averaged spike count.
Specifically, we pooled the mean spike counts of all neurons and stimuli smaller
than the RF in one group, and all neurons and stimuli larger than the RF in a
second group. We then subsampled the same number of cases from each group, so
as to obtain identical histograms of mean spike counts. Lastly, we compared the FF
distributions of the two groups. The p values in Table 1 were computed using a
paired sample, one-sided ¢ test of the null hypothesis that differences between
samples from the two conditions (i.e., RF size versus 2 x RF size) had mean <0.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data for Fig. 2c and Supplementary Fig. S6B are publicly available on the CRCNS data
sharing site crcns.org. Data for the other figures can be found at https://doi.org/10.5281/
2en0do.4710066 88. Natural images used to train the GSM models are publicly available
in the BSDS500 database. Source data are provided with this paper.

Code availability
Code for model simulations and data analysis is available without restrictions on GitHub
https://github.com/rubencoencagli/festa-et-al-2020. https://doi.org/10.5281/zenodo.4710150.
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