
Solitons Beyond Binary: Possibility of
Fibre-Optic Transmission of Two Bits per
Clock Period
Philipp Rohrmann, Alexander Hause & Fedor Mitschke

Institute for Physics, University of Rostock, Universitätsplatz 3, 18055 Rostock, Germany.

Optical telecommunication employs light pulses travelling down optical fibres; in a binary format logical
Ones and Zeroes are represented by the presence or absence of a light pulse in a given time slot, respectively.
The fibre’s data-carrying capacity must keep up with increasing demand, but for binary coding it now
approaches its limit. Alternative coding schemes beyond binary are currently hotly debated; the challenge is
to mitigate detrimental effects from the fibre’s nonlinearity. Here we provide proof-of-principle that coding
with solitons and soliton molecules allows to encode two bits of data per clock period. Solitons do not suffer
from nonlinearity, rather, they rely on it; this endows them with greater robustness. However, they are
universally considered to be restricted to binary coding. With that notion now refuted, it is warranted to
rethink future systems.

T
oday massive streams of short light pulses are sent down optical fibres to carry the world’s telephone, telefax,
and internet traffic. The fibre’s data-carrying rate is by and large limited by Shannon’s celebrated theorem1,
with some modifications to take the particular nature of optical signals into account2,3. The channel capacity

is limited by the available bandwidth (< 30 THz) and by a factor depending on the coding scheme. In binary
coding a logical One is represented by a pulse, and a logical Zero by its absence within a certain clock period. Clock
periods of commercial systems are now often 25 ps (corresponding to 40 GBits/s transmission rate). Many such
‘channels’, at staggered wavelengths, may be transmitted simultaneously through the same fibre, a concept known
as wavelength division multiplexing. This way a fibre provides a capacity of several tens of Terabits per second.
Current technology already comes quite close to that mark, and there is now much discussion about the upcoming
‘‘capacity crunch’’4. Several coding schemes have been suggested that all abandon the binary format.

To code more than one bit of information per clock period, one might use pulses with different peak powers as
different symbols. However, the fibre’s optical nonlinearity affects pulses of different peak powers in different
ways, and considerable signal distortions would arise. Therefore, constant-power schemes exploiting the phase or
the state of polarization of the light pulse, or a combination thereof, are now favored, and quite a few variants have
been proposed and tested. The challenge is to find formats robust enough to be insensitive to the multitude of
detrimental effects and perturbations that a signal may encounter during transmission. To avoid problems from
nonlinearity, either the power is kept quite low, or some complex correction is employed – and often a com-
bination of both. Highly respectable results have been obtained along these lines by using sophisticated coding
schemes combined with complex error compensation techniques (for a recent review see5), and some of these
methods are in commercial use already.

We pursue a quite different approach. As discovered in 19736 and first demonstrated in 19807, there is a kind of
light pulses that does not suffer from nonlinearity precisely because it relies on it. These pulses, known as solitons,
have been considered by many to be the natural bits for optical telecommunication on grounds that they
constitute the stable solutions of the underlying nonlinear propagation equation, the nonlinear Schrödinger
equation8,9.

In solitons a stable balance exists between the nonlinearity-induced phase modulation on one hand, and
dispersive effects on the other. Solitons are remarkably robust in the presence of perturbations, to the point that
after suffering distortion they can self-heal to some degree. They are used in a few commercial systems, but in
most recent research they were discounted as supposedly useful for binary coding only.

To understand why this may have been premature one needs to consider the fibres employed today. For several
years now, the preferred type is so-called dispersion-managed fibre. It consists of periodically alternating seg-
ments of two fibre types with opposite-sign group velocity dispersion coefficients. With the path-average
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dispersion then close to zero, dispersive effects are reduced. It has
been shown that soliton-like pulses still exist in the sense that they are
stabilized by nonlinearity; however, their shape is different from the
conventional solitons in constant-dispersion fibre, and it expands
and contracts again in each dispersion period. These pulses are there-
fore somewhat different from conventional solitons and are known
as dispersion managed (DM, for short) solitons.

A few years ago we have demonstrated experimentally that two
DM solitons can form a stable bound state10. The phenomenon was
also noted in theoretical work11–14 and is recently also pursued in15,16.
The binding mechanism ultimately results from the optical Kerr
effect which creates interaction forces between light pulses, and soli-
tons in particular17,18. In constant-dispersion fibres two equal-energy
copropagating pulses, depending on their relative phase, can only
either collide or fly apart, but a stable equilibrium separation exists in

the DM case. If pulses get perturbed away from that position, they
move right back – much like the nuclei in diatomic molecules. We
therefore called this structure a ‘‘soliton molecule’’; its binding mech-
anism has been studied in detail in19. One may wonder whether use of
a set of different molecules would allow enhanced coding of data.

For the sake of completeness we mention that the basic idea has
been raised before in Ref.20 where a solution of the NLSE (non-DM
fibre) was found that is basically a three-soliton compound.
However, given the large separation of the pulses the binding forces
must be quite weak (if they exist at all21,). Also, two-pulse molecules
would need to have two very unequal pulse powers which is awkward
from the technical standpoint of detection at the receiver. A similar,
quite rigorous recent study22 is silent about molecules larger than two
pulses. DM fibre, now the commonly deployed fibre type, is not
treated in Refs.20,22. In Ref.23 an information-theoretical treatment
shows that bound 2-soliton compounds can enhance transmission
capacity to just below twice the single-soliton value; the paper is silent
about physical and technical considerations. It must further be men-
tioned that inside the resonator of fibre lasers a wealth of soliton
phenomena has been observed, including soliton molecules24,25.
However, in these systems the underlying equation is not the non-
linear Schrödinger equation but the complex Ginzburg-Landau
equation26; these compounds (with properties different from the
ones studied here) therefore do not exist in passive fibres and thus
are unlikely to be of much use for data transmission.

Results
We have investigated whether there are also molecules of more than
two pulses. Here we report experimental demonstration that three-
pulse molecules exist. As expected on theoretical grounds19, neigh-
boring pulses of the molecule are in antiphase. In the experiment we
prepare a three-pulse compound of suitable shape, and compare its
fibre input and output shape. The setup is sketched in Fig. 1; for
further details see below in Methods.

A perfect preservation of shape is not achieved, and was not
expected. We intentionally use an entirely passive system, to rule

Figure 1 | Sketch of the experimental setup. Top half, symbol generator:

The pulse shaper carves the desired structures from the laser pulses.

Bottom half, propagation and data acquisition: Flip mirrors allow easy

comparison of shapes before and after fibre propagation.

Figure 2 | Temporal shape of complex waveform of single DM soliton (left), two-pulse molecule (center) and three-pulse molecule (right). Shown are

field amplitude envelopes (lower part, left axis) and phases (upper part, right axis). Points with error bars are experimental data.
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out any doubt about a possible influence of amplifier gain dynamics
on the pulse shapes, but must then accept some impact from loss.
Further limitations are set chiefly by the Raman effect which in our
experiment is more severe than it would in a real-world installation
(see below). The Raman effect causes the pulses to receive power-
dependent frequency shifts; as soon as differences in the peak heights
arise, these cause differential phase shifts which distort the structure.
Moreover, by dispersive effects there is then a transfer of power
between the pulses; once the relative phases have evolved on, this
transfer would reverse itself. In effect, the structure found at the fibre
end is asymmetric, pulses have unequal power, and the phase jumps
of originally p are smeared out. Nonetheless, it still hangs together as
a unit, and maintains the pulse-to-pulse separation.

In Fig. 2 we show the pulse shapes at launch and at the fibre end,
the latter both from simulation and from measured data. The overall
shape deviations are visible, but it is equally clear that simulation and
measurement agree very closely. This shows that all perturbing
effects are well understood. They will set an ultimate limit to the span
over which soliton molecules can be transmitted error-free, but for
reasonable distances such transmission is feasible.

We turn to a discussion of parameter dependencies. We convinced
ourselves that antiphase pulses are indeed required; for initial phase
differences sufficiently different from p no stable transmission was
observed. We then tested whether the separation between neighbors
exhibits a particular equilibrium value. In Fig. 3 we show experi-
mental data in comparison to simulations for the output temporal

profile when the pulse separation at launch is varied. Data shown
represent a two-pulse molecule (upper row) and a three-pulse mole-
cule (lower row). The first column shows the simulated temporal
profiles of the pulse groups. The shapes are not perfectly preserved
in the presence of all the perturbations, in particular the Raman
effect, and some asymmetry arises. Nevertheless, the basic structure
holds up well. To acquire substantial amounts of data as in these
scans we forgo a full amplitude-and-phase characterization and
resort to autocorrelation measurements. Simulated data are therefore
self-convoluted to autocorrelation traces in the second column for
the convenience of direct comparison with measured data in the
third column. In the fourth column, positions of maxima are ex-
tracted from the measurements for the sake of clarity. Straight lines
indicate the loci where input separation equals output separation, in
other words, the expected positions in the absence of any interaction.
The measured traces cross these lines at positions of equilibria
(marked by circles). The direction of the crossing distinguishes stable
and unstable equilibria; here the equilibria are stable. The data of
Fig. 2 were taken at these positions.

Discussion
The existence of a three-pulse molecule is a significant result because
it makes an alphabet of four different symbols complete: no pulse,
single soliton, two-pulse molecule, and three-pulse molecule. There
with two bits of information can be coded into a single time slot
(clock period). We experimentally confirmed that the same fibre

Figure 3 | Study of temporal structure of (a) double and (b) triple pulses. The temporal separation of pulses at launch is varied (vertical axes), and the

resulting output profiles are recorded. Color scale indicates power levels. From left to right: Simulated temporal profile; same but self-convoluted for

autocorrelation; measured autocorrelation profile; same but maxima extracted for better visibility, with auxiliary lines indicating positions in the absence

of interaction. The equilibrium distances are highlighted by dashed horizontal lines; equilibrium positions are marked as circles in the right panels.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 866 | DOI: 10.1038/srep00866 3



can support all four symbols. This completes our proof-of-principle
demonstration that a data stream using all four symbols is possible:
Coding of two bits per clock period has thus been demonstrated for a
soliton-based format for the first time.

Note that solitons and soliton molecules, like any other light sig-
nal, can exist in two orthogonal states of polarization, and they have a
well-defined phase structure. Therefore, all presently investigated
schemes of phase modulation and/or polarization multiplexing can
potentially be combined with the soliton approach. Soliton molecules
would provide an extra bit, or in other words a doubling of the data-
carrying capacity of the fibre, to augment any of those schemes. Due
to considerable added complexity over the case shown here, an
experiment to test this suggestion must be consigned to the future.
However, we anticipate that as an added benefit detection noise
problems would be reduced because the transmitted power would
be higher than in conventional schemes. This is possible because for
solitons nonlinearity is natural, rather than an external nuisance to
be avoided.

Methods
An overview of our setup is sketched in Fig. 1. As a light source we employ an optical
parametric oscillator (Coherent Inc. /APE GmbH) tunable near 1540 nm wave-
length. It is pumped by a modelocked Ti:sapphire laser (Coherent Inc. model Mira,
modified for 250 fs pulse duration), which in turn is pumped by 10 W of 532 nm
light from a solid state laser (Coherent, Inc. model Verdi V10). From these pulses we
generate a Gaussian with defined width and peak power as an approximation for a
single DM soliton, and two or three Gaussians with defined separations and relative
phases for the pulse pairs and triplets, respectively. This is done by carving the target
shapes from laser pulses in a pulse shaper arrangement27 involving two gratings and a
liquid crystal light modulator (CRI, Inc. model SLM-128-D-NM) controlled by a
desktop computer. The same computer also controls massive sequences of data
acquisitions as in Fig. 3.

We use ten dispersion periods, each consisting of a 22 m segment of OFS
TrueWave RS with b2 5 14.259 ps2/km at 1540 nm, and a 24 m segment of OFS
TrueWave SRS with b2 5 25.158 ps2/km at 1540 nm, respectively; this puts the path
average dispersion at 20.655 ps2/km. (The fibre begins and ends with a half-segment
of SRS fibre). Dispersion values were verified and measured up to fifth order by white
light interferometry. The fibre’s nonlinearity coefficient and Raman time have
previously been obtained for this particular fibre line in the context of other work.
Splice losses were carefully measured individually when the fibre was assembled; they
total 1.55 dB. The energy of a single DM soliton depends on pulse width and wave-
length, but is typically about 10 pJ.

This fibre line is a scale model of a typical commercial fibre line with 40 GBit/s bit
rate using 7.5 ps wide pulses. When the pulse duration t is scaled down, fibre length
must be reduced accordingly in proportion to t2. With the < 250 fs pulses provided
by the source, the dispersion map period is therefore scaled down 900-fold. With a
total length of ten dispersion map periods, or 460 m of fibre, our scale model thus
corresponds to a real-life version with a span of just above 400 km. Note that some
perturbations grow faster as t22, e.g. the Raman effect as t24; this implies that in
assessing complications from these effects our experiment is very conservative.

To assess pulse shapes and compare fibre input and output we use flip mirrors. In
order to obtain a full amplitude-and-phase characterization we use the frequency-
resolved optical gating (FROG)28 technique in a homemade setup; data with excessive
FROG error are discarded. Likewise, possible false reconstructions as described in
Ref.29 are detected by simultaneous check of the optical spectra with an optical
spectrum analyzer (Anritsu model MS 9740A), and are also discarded. For Fig. 3
FROG traces were reduced to those of an optical autocorrelator.

Numerical simulations are employed to back up the experiments. A standard split-
step Fourier method is applied to the nonlinear Schrödinger equation with additional
terms taking into account higher-order dispersion up to fifth order, losses (mostly at
splices), and the Raman effect8, with all parameters as pertaining to the fibre used. The
only parameters tuned to match experimental data are the chirp of the laser pulses
and the pulse peak power in the fibre. The chirp is known only approximately because
it changes with adjustment; we account for that by slight variations of the assumed
value. The peak power is derived from average power measurements; for best cor-
respondence of experiment and simulation we corrected by a few percent which
remains within the uncertainty of the nonlinearity coefficient and the power meter
calibration.
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