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Review

Current Commonly Used Dynamic Parameters 
and Monitoring Systems for Perioperative 
Goal-Directed Fluid Therapy: A Review
Chin Fung Kelvin Kan* and John D. Skaggs
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Goal-directed fluid therapy (GDFT) is usually recommended in patients undergoing major surgery and 
is essential in enhanced recovery after surgery (ERAS) protocols. This fluid regimen is usually guided 
by dynamic hemodynamic parameters and aims to optimize patients’ cardiac output to maximize oxygen 
delivery to their vital organs. While many studies have shown that GDFT benefits patients perioperatively 
and can decrease postoperative complications, there is no consensus on which dynamic hemodynamic 
parameters to guide GDFT with. Furthermore, there are many commercialized hemodynamic monitoring 
systems to measure these dynamic hemodynamic parameters, and each has its pros and cons. This review 
will discuss and review the commonly used GDFT dynamic hemodynamic parameters and hemodynamic 
monitoring systems.
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INTRODUCTION

Fluid resuscitation is critical during perioperative 
periods to ensure vital organs receive adequate oxygen 
perfusion. Especially since patients usually fast for 8 
hours before surgery, which leads to dehydration [1]. 
Poor intraoperative fluid resuscitation can lead to poor 

patient outcomes [2].
Traditionally, intravenous (IV) fluid regimens are 

“liberal,” meaning high fluid amounts are given intra-
operatively. In abdominal surgery, that amount is up to 
7 liters (L) of fluids. However, these regimens lead to 
a weight gain of 3 to 6 kilograms, which suggests fluid 
overloading [3]. Other problems associated with liberal 
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regimens include pulmonary complications [4,5], pro-
longed wound healing [6], and bowel edema causing 
prolonged ileus [7]. Moreover, hypervolemia may lead 
to an increase in atrial natriuretic peptide release from 
the heart, which enhances the deterioration of endothe-
lial glycocalyx, a vital part of the vascular permeability 
barrier. This leads to vascular barrier loss and an increase 
in interstitial edema [8]. On the other hand, in patients 
undergoing low- to moderate-risk surgeries, a liberal flu-
id approach may be beneficial. For example, Holte et al. 
showed that patients who underwent laparoscopic cho-
lecystectomy, when given 40 ml/kg IV fluids instead of 
15 mL/kg IV fluids, had significantly improved postop-
erative pulmonary function, with less nausea, dizziness, 
and fatigue [9].

More recently, major surgeries and enhanced recov-
ery after surgery protocols (ERAS) have been adopting 
more “restrictive” IV fluid regimens. In previous studies, 
intraoperative restrictive fluid regimens varied from 1.0 
to 2.7L in abdominal surgeries [10]. While these regi-
mens may avoid the side effects of the liberal method, 

it may cause hypotension leading to organ damage. For 
example, The Restrictive versus Liberal Fluid Thera-
py in Major Abdominal Surgery (RELIEF) trial, which 
randomized 3,000 patients to a liberal fluid regimen vs 
a restrictive fluid regimen, showed an increase in acute 
kidney injury (8.6% vs 5.0%). However, there is no dif-
ference in the rate of disability-free survival at one year. 
Other studies have shown that restrictive fluid regimens 
do have significant benefits in major surgeries. For ex-
ample, multiple studies have shown that restrictive fluid 
regimens decrease postoperative ileus recovery in colon 
resections [11,12], and in the length of stay as well as 
60-day surgical complications in patients who underwent 
hyperthermic intraperitoneal chemoperfusion [13].

While liberal and restrictive fluid regimens have 
pros and cons, the definition of “liberal” or “restrictive” 
is arbitrary and depends on individual institutions or cli-
nicians. Therefore, Goal-Directed Fluid Therapy (GDFT) 
has been utilized in several surgeries to avoid hypoten-
sion and fluid overloading by giving the “just right” 
fluid amount. This review aims to evaluate the current 

Table 1. Commonly Used Dynamic Hemodynamic Parameters and Monitors
Static Hemodynamic 
Parameters

Dynamic Hemodynamic Parameters Hemodynamic Monitors

Central Venous Pressure (CVP) Pulse Pressure Variation (PPV) Flotrac™
Mean arterial pressure (MAP) Stroke Volume Variation (SVV) LidCO™
Cardiac Output (CO) Pleth Variability Index (PVi) Masimo Radical 7 Pulse CO-Oximeter™

Aortic blood flow peak velocity 
variation (ΔVpeak)

ClearSight™

PiCCO™
Esophageal Doppler
Transthoracic and Transesophageal 
Echocardiogram

Table 2. Commonly Used Commercialized Hemodynamic Monitor Systems

Monitor Company Measured Parameters Technique
Flotrac™ Edwards Lifesciences CO, SV, SVV, and SVR Arterial pulse contour analysis
LiDCO™rapid Masimo SV, SVR, SVV, oxygen delivery, 

and PPV
Arterial pulse power analysis

ClearSight™ Edwards Lifesciences CO, SV, SVV, SVR, and MAP Arterial pulse contour analysis
Radical 7 Pulse CO-
Oximeter™

Masimo PVi and Perfusion Index Plethysmograph waveform 
analysis

PiCCO™ Pulsion Medical System CO, CI, ejection fraction, 
global end-diastolic volume, 
global ejection fraction, 
intrathoracic blood volume, and 
extravascular lung water

Thermodilution

Esophageal Doppler Deltex Medical Aortic blood flow Ultrasound
Echocardiogram Multiple Vendors VTI and cardiac blood flow Ultrasound



Kan and Skaggs: GDFT monitoring techniques and parameters 109

evidence and literature on commonly used dynamic pa-
rameters and hemodynamic monitor systems, which have 
been used for multicenter GDFT randomized clinical 
trials (RCT), and verified perioperatively in other studies 
(Table 1 and Table 2).

WHAT IS PERIOPERATIVE GOAL-
DIRECTED FLUID THERAPY?

Perioperative GDFT aims to maximize oxygen deliv-
ery to tissue by optimizing cardiac output (CO) through 
fluid resuscitation. Optimal cardiac output is defined as 
the top of the Frank-Starling preload-stroke volume curve 
[14]. At max capacity, which is at the top of the curve, 
the increase in end-diastolic pressure increases the stroke 
volume (SV) less when compared to the lower part of the 
curve. Thus, less “elastic.” The ideal fluid status will be at 
max capacity where the increase in end-diastolic volume 
does not change the SV significantly (Figure 1).

CURRENT EVIDENCE FOR GOAL-
DIRECTED FLUID THERAPY

Multiple large-scale RCTs have shown GDFT’s 
benefits in the perioperative setting. Additionally, smaller 
studies demonstrated that GDFT has clinical benefits in 
non-cardiac, cardiac, and vascular surgery high acuity 
patients [15-18]. PubMed and clinicaltrials.gov searches 
with the terms “Goal-Directed Fluid Therapy” and “mul-
ticenter randomized clinical trials” are summarized in Ta-
ble 3. On the other hand, pushing the patient to the top of 
the Frank-Starling curve will lead to increased natriuretic 
peptides secreted by the heart, which provokes vasodila-
tion, capillary leakage, and diuresis [19].

The largest GDFT multicenter RCT to date, the Op-
timization of Cardiovascular Management to Improve 
Surgical Outcome (OPTIMIZE) trial, randomized 734 
high-risk adult patients undergoing major gastrointestinal 
surgeries. The GDFT group which used LiDCO™rapid 
(LiDCO Ltd, Cambridge, UK) as a monitor to guide 
fluid resuscitation had lower 30-day moderate or major 
complications and mortality (36.6% vs 43.4%) when 
compared to control. Though there was no difference in 
morbidity on day 7; infection, critical care-free days, and 
all-cause mortality at 30 days; all-cause mortality at 180 
days; length of hospital stay [20]. Serum biomarkers from 
participants in the OPTIMIZE trial also showed no evi-
dence of GDFT induced cardiac damage, as there was no 
elevation of troponin I concentration and N-terminal pro-
brain natriuretic peptide [21]. Furthermore, a sub-study 
of the OPTIMIZE trial showed GDFT reduced health 
care costs [22]. Another multicenter RCT on GDFT, the 
FEDORA trial, randomized 450 low- to moderate-risk 
patients undergoing major abdominal, urological, gy-

necological, or orthopedic surgery to GDFT-guided by 
esophageal doppler or control groups. The FEDORA trial 
showed that patients in the GDFT group had fewer mod-
erate to severe complications, such as acute kidney inju-
ry, pulmonary edema, and respiratory distress syndrome 
(8.6% vs 16.6%), and a shorter length of stay. However, 
there was no change in mortality [23].

Conversely, some studies have shown that GDFT 
lacks benefits. For instance, Gómez-Izquierdo et al. 
demonstrated that GDFT using esophageal doppler did 
not decrease the incidence of postoperative ileus in a RCT 
of 128 patients; even though it did increase CO and SV, 
and reduced perioperative IV fluids administration [24]. 
Moreover, Challand et al. showed no difference in dis-
charge readiness and length of stay between patients who 
underwent major colorectal surgery in the GDFT group 
guided by esophageal doppler and the control group [25]. 
Besides abdominal surgeries, GDFT has been shown to 
lack effect in major vascular surgeries. Bisgaard et al. 
showed that in patients who underwent open elective ab-
dominal aortic surgery, GDFT-guided by LiDCO™plus 
(LiDCO Ltd, Cambridge, UK) did not decrease postop-
erative complications or length of stay in the intensive 
care unit [26]. Additionally, very recently, Fischer et al. 
demonstrated in a RCT involving 447 intermediate-risk 
patients who underwent hip or knee arthroplasty that 
GDFT-guided by the Pleth Variability Index (PVi) had 
no effect in hospital stay, acute renal failure, and cardiac 
complications when compared to the control group [27].

While there are currently mixed GDFT trial results, 
more large-scale multicenter trials with a heterogeneous 
patient population may help resolve debates about its 
clinical benefits. Two notable differences in all these clin-
ical trials are that they use different fluid responsiveness 
parameters and monitoring systems to guide fluid resus-
citation.

Figure 1. Frank-Starling Curve. At the curve plateau, 
the end-diastolic volume increase does not increase the 
stroke volume as much. In contrast, at the lower part of 
the curve, the same amount of increase in end-diastolic 
volume increase the stroke volume much greater.
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accurate in low perfusion states due to its use of perfusion 
index.

PULSE PRESSURE VARIATION (PPV) IN 
GOAL-DIRECTED FLUID THERAPY

PPV is a fluid responsiveness dynamic parameter 
described by Coyle et al. in 1983 [34]. PPV is calculated 
by measuring PP alterations during the respiratory cycle 
(Figure 2b) [35]. In general, patients with a PPV <12% 
are unlikely to benefit from further fluid therapy, whereas 
those with >12% are more likely to benefit from fluid re-
suscitation [36]. Compared to CVP, which requires a cen-
tral venous catheter, PPV requires a minimally invasive 
or noninvasive monitor, commonly an arterial catheter. It 
is important to note that PPV does not indicate a patient’s 
fluid status or preload; rather, it is only an indicator of the 
patient’s position on the Frank-Starling curve [37].

PPV has been used to guide GDFT. For example, 
Malbouisson et al. showed that PPV-guided GDFT re-
duced postoperative complications such as respiratory, 
renal, and hepatic dysfunctions, and hospital length of 

DYNAMIC PARAMETERS FOR GOAL-
DIRECTED FLUID THERAPY

The criterion standard of CO measurement remains 
using intermittent thermodilution with a pulmonary ar-
tery catheter (PAC). However, this measurement requires 
a PAC, making it impractical in many perioperative set-
tings. As such, there are many CO surrogates and param-
eters developed to measure a patient’s fluid status and SV 
as defined by “static” and “dynamic.” These parameters 
are summarized in Table 1.

Although CVP is traditionally used as a static pa-
rameter to assess fluid responsiveness, multiple studies 
showed that it is unreliable [28]. In contrast, dynamic 
parameters were shown to estimate fluid responsiveness 
and status with reasonable accuracy [29-32].

DYNAMIC PARAMETERS AND THE FRANK-
STARLING CURVE

These dynamic parameters depend on the Frank-Star-
ling relationship. Under the relationship, the left ventricle 
(LV) SV changes due to intrathoracic pressure. This is 
because increased intrathoracic pressure compresses the 
right ventricle (RV), which decreases RV preload. If a 
patient’s fluid status is at the Frank-Starling curve pla-
teau, respiratory pressure will have little effect on the RV 
preload. Thus, the RV preload respiratory variations will 
be low, and there will be no effect on the LV SV [33]. 
Because the LV SV and arterial compliance correlate with 
the arterial pressure, thus arterial pressure parameters, 
such as pulse pressure (PP), correlate with the LV SV 
variations.

As shown in Figure 2a and b, the arterial wave area 
under the curve (AUC) is the LV SV, whereas the wave 
peak is the systolic blood pressure (SBP) and the wave 
trough is the diastolic blood pressure (DBP). PP equals 
SBP – DBP. Both LV SV and PP vary during the respira-
tion cycle (Figure 2d). If a patient is at the Frank-Starling 
curve plateau, both the arterial pressure AUC and the PP 
will have minimal variations during the respiration cycle. 
Figure 2c shows the pulse oximetry plethysmography 
which also correlates with the arterial pressure waves 
and thus also oscillates during the respiratory cycle. In 
the section below we will discuss the four commonly 
used fluid responsiveness dynamic parameters for GDFT 
guidance: pulse pressure variation (PPV), pleth variabili-
ty index (PVi), stroke volume variation (SVV), and aortic 
blood flow peak velocity variation (ΔVpeak).

Figure 3 shows the dynamic parameter equations, 
which are crucial to understand how to interpret each 
parameter accurately, and for providers to judge the ap-
propriateness to use each parameter in different physio-
logical states or surgeries. For example, PVi may not be 

Figure 2. PPV and SVV calculations. A-D, EKG, arteri-
al pressure, pulse oximetry plethysmography, respiratory 
pattern, respectively. B and C, both arterial pressure and 
pulse oximetry plethysmography oscillate during the re-
spiratory cycles, which is shown in D, due to the change 
in intrathoracic pressure, preload, and LV SV during me-
chanical ventilation. In B, the area arterial pressure wave 
under the curve is the LV SV. SVV (%) can be calculated 
with the equation (SV max – SV min) / SV mean. The 
arterial pressure wave peak is the SBP, and the trough is 
the DBP, PP is the difference between SBP and DBP. PPV 
(%) is calculated from 100 × (PP max – PP min) / ([PP 
max + PP min]/2) [121,122].
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arterial pulsation (AC) relative to total amount of light 
absorbed (DC). PVi is then calculated from the PI (Figure 
4a-c) [48].

In a single-center RCT, Cesur et al. showed that in 
70 ASA I and II patients, PVi-guided GDFT decreased 
the amount of fluids administered and the return of bowel 
function time [47]. Additionally, Patrice et al. demon-
strated that PVi-guided GDFT decreases lactate level 
and fluid administration during major abdominal surgery 
[48]. Likewise, a study by Yu et al. found Pvi-guided 
GDFT decreases blood lactate level in the first hour of 
surgery and reduces fluid administration. However, the 
study found no changes in lactate level beyond the first 
hour, possibly due to its small sample size of 30 patients 
[49].

Currently, most GDFT studies using PVi are in ab-
dominal surgeries. While there are great promises for this 
parameter, more studies must be done on other types of 
surgery to verify its use. Moreover, there is no definitive 
PVi cutoff in predicting fluid responsiveness, but most 
RCTs decided that it is around 13% to 14% [48,50]. Ad-
ditionally, because PI is measured by pulse oximetry, nail 

stay, in high-risk patients undergoing open surgeries [38]. 
However, there have been small RCTs with negative clin-
ical results on PPV-guided GDFT. For instance, Suzuki 
et al. found that PPV-guided GDFT did not significantly 
affect renal, hemodynamic, and metabolic variables in 
patients after they underwent cardiac surgery [39].

Moreover, PPV faces some limitations. To ensure 
accurate PPV measurement, the patient must be mechan-
ically ventilated, the chest must be closed (an open chest 
will affect the interaction between the pericardium and 
mechanical ventilation), be in sinus rhythm, and intra-ab-
dominal pressure must be within the normal range [33]. 
Other parameters that may affect PPV readings include 
extreme bradycardia or high respiratory rate, low tid-
al-volume ventilation (must be between 6 to 8 ml/kg), 
high positive end-expiratory pressure (PEEP) (PEEP 
should be between 0 and 5 cm H2O), low arterial com-
pliance (high dose vasopressors, severe atherosclerosis), 
and RV or LV failure [32,33,40,41]. Also, if respiratory 
system compliance is ≤30 mL/cm H2O, such as in patients 
with ARDS, PPV will become less accurate [41,42].

PLETH VARIABILITY INDEX (PVi) IN GOAL-
DIRECTED FLUID THERAPY

PVi is calculated from plethysmographic waveform 
amplitudes and PP derived from pulse oximetry or other 
devices. It was commercialized in 2007 [43]. This dy-
namic parameter has been shown to predict fluid respon-
siveness as accurate as Stroke Volume Variation [44], 
esophageal doppler [45], and PPV [46]. PVi also depends 
on the increased intrathoracic pressure interaction with 
the RV preload and the LV SV upon mechanical venti-
lation, which causes variation in the plethysmographic 
waveform amplitudes and area under the curve (Figure 
2c). PVi is calculated by measuring perfusion index (PI) 
alterations during the respiratory cycle, which is de-
scribed as the percentage of light absorbed as a result of 

Figure 3. Dynamic Parameters and Physiology Equations.

Figure 4. PVi and PI calculations. In A, DC is the total 
amount of light absorbed and AC is the light absorbed as 
a result of arterial pulsation, which oscillates during respi-
ration. B, PI (%) is calculated with the equation (AC/DC) 
× 100%. C, PVi (%) is then calculated from the PI with the 
equation [(PI max – PI min) / PI max] × 100% [121].
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sponsive, it will be vice versa. Marc et al. first described 
this parameter in 2001, where he reported that ΔVpeak of 
12% has a sensitivity of 100% and a specificity of 89% 
to distinguish fluid responders from non-responders in 
adults [60].

ΔVpeak can be used to determine a patient’s fluid 
responsiveness in situations when PPV, SVV, or PVi 
cannot be measured accurately. This is especially true in 
pediatric and neonatal patients since they are ventilated 
by small tidal volumes, have higher arterial vascular 
compliance, and have higher chest wall and lung compli-
ance. Therefore, in these patients, changes in intrathorac-
ic pressure during mechanical ventilation may not cause 
the same circulatory changes as with adults. For example, 
Gan et al. demonstrated in a systemic review that ΔVpeak 
is the only dynamic or static variable that can predict fluid 
responsiveness in pediatric patients. PPV, SVV, and PVi 
did not predict fluid responsiveness in children [61].

Currently, there are no optimal cutoff points for 
ΔVpeak to assess fluid responsiveness. Furthermore, va-
soactive drug effects on this parameter in the pediatric 
population are largely unknown [62]. However, this new-
er dynamic parameter holds many promises in pediatric 
resuscitation. A multicenter RCT is currently investigat-
ing ΔVpeak-guided GDFT on postoperative outcomes 
in pediatric patients undergoing elective or urgent major 
noncardiac surgery [63]. It will be interesting to see what 
this RCT shows and how ΔVpeak can further enhance 
pediatric surgery fluid optimization and postoperative 
outcomes.

GOAL-DIRECTED FLUID THERAPY 
MONITORING SYSTEMS

Currently, there are many methods to monitor fluid 
responsiveness dynamic parameters in the perioperative 
setting [51]. Traditionally, the Swan–Ganz catheter has 
been used to measure CO, a fluid responsiveness static 
parameter, despite multiple studies showing Swan–Ganz 
catheters do not improve clinical outcomes [64]. More-
over, it is invasive and can lead to numerous compli-
cations such as thrombosis, pulmonary artery rupture, 
infection, and arrhythmia on insertion [51]. Therefore, 
other minimal or noninvasive hemodynamic monitoring 
systems have been developed [65,66]. In the section be-
low, we will focus on common and popular monitoring 
systems which have been verified and used preoperative-
ly for GDFT. A summary of the monitoring systems is 
shown in Table 2.

Flotrac™ for Goal-Directed Fluid Therapy
Flotrac™ (Edwards Lifesciences, Irvine, CA, USA) 

was first introduced in 2005 to be used with the EV1000 
monitor or Vigileo monitor [67]. It uses a blood flow sen-

coloring, skin coloring, and altered physiological states 
(such as methemoglobin) may change infrared light ab-
sorption leading to inaccurate calculations. Finally, be-
cause PVi is based on the same principle as PPV, both 
suffer the same limitations.

STROKE VOLUME VARIATION (SVV) IN 
GOAL-DIRECTED FLUID THERAPY

SVV is calculated from the difference between the 
maximum and minimum SV over the respiratory cycle 
and is caused by changes in RV preload due to alterations 
in intrathoracic pressure (Figure 2b). Patients with a SVV 
of <10% are unlikely to be fluid responsive, whereas 
those with SVV >15% are likely to benefit from fluid 
resuscitation [51].

SVV-guided GDFT has been shown in multiple sin-
gle-center RCTs that it is an effective way to decrease 
postoperative complications in bowel, orthopedics, and 
neurosurgery [52-56]. For instance, Gottin et al. com-
pared three methods of resuscitation in patients undergo-
ing pancreatic surgery: liberal, restrictive, and SVV-guid-
ed GDFT. This study demonstrated that SVV-guided 
GDFT and restrictive fluid resuscitation decreased major 
surgical complications such as postoperative fistula, ab-
dominal collection, and hemorrhage compared to liberal 
fluid resuscitation [57]. However, while most studies 
showed that SVV-guided GDFT improved postoper-
ative outcomes, some studies showed the contrary. For 
example, Iwasaki et al. showed that SVV-guided GDFT 
hepato-biliary-pancreatic surgery patients had greater 
amount of fluids administered, and lower PaO2/FiO2 ratio 
on postoperative day one [58].

Interestingly, Wang et al. showed that in elective ret-
roperitoneal tumor resections, patients who were resusci-
tated at SVV 9% has increased serum syndecan-1, inter-
leukin-6, and tumor necrosis factor-α, as well as higher 
incidence of fever and blood transfusion when compared 
to patients resuscitated at SVV 14%. This suggests that 
increased fluid administration may enhance perioperative 
glycocalyx shedding leading to significant inflammatory 
responses [59].

Because SSV is based on the same principle as PPV, 
it also faces the same restriction as discussed above [41].

AORTIC BLOOD FLOW PEAK VELOCITY 
VARIATION (ΔVpeak) IN GOAL-DIRECTED 
FLUID THERAPY

Because LV SV changes during different phases of 
mechanical ventilation, the aortic blood flow peak veloc-
ity will also vary. If the patient is at the plateau of the 
Frank-Starling relationship and thus fluid nonresponsive, 
such variations will be minimal. If the patient is fluid re-
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LidCO™ for Goal-Directed Fluid Therapy
LiDCO™plus (Masimo, Irvine, CA, US) must be 

calibrated by lithium dilution before being used. This cal-
ibration method boluses 0.5 to 1.0 ml of lithium chloride 
(0.15 mmol ml-1) through a central or peripheral venous 
line. Then, blood is aspirated through an arterial catheter 
at a constant rate of 4 ml min−1 with a disposable electrode 
selective for lithium. The change in electrode voltage is 
converted to plasma lithium concentration, and a lithium 
concentration vs time curve is plotted to calculate plasma 
flow. Blood flow is calculated with plasma flow divided 
by 1 – packed cell volume [51].

After calibration, it uses a propriety PulseCO™ al-
gorithm, a pulse power algorithm, to calculate the CO. 
The algorithm uses the conservation of mass, rather than 
pulse contour, and assumes the net power change in a 
heartbeat between the input of a mass (SV) of blood mi-
nus the blood mass lost to the periphery during the beat 
has a linear relationship with net flow [75]. By doing so, 
LiDCO™ can also calculate the SV, SVR, SVV, oxygen 
delivery, and PPV.

LiDCO™plus has been validated and compared 
against other hemodynamic monitoring systems. For 
example, Mora et al. showed that LiDCO™plus is com-
parable to PAC thermodilution in patients with impaired 
LV SV after cardiac surgery [76]. The newer models of 
LiDCO™, such as the LiDCO™rapid and LiDCO™ 
LXi, are noninvasive and require no calibration. Instead, 
they use a two-finger cuff applied to the patient’s hand 
to measure the parameters. These newer models still use 
the same algorithm and have shown benefits in multiple 
RCTs [77,78]. More importantly, the OPTIMIZE trial 
used LiDCO™rapid-guided GDFT, which showed post-
operative clinical benefits.

However, like Flotrac™, some studies have ques-
tioned LiDCO™rapid’s accuracy. For example, Asmao-
to et al. examined Flotrac™ and LiDCO™rapid across 
a broad range of cardiac indexes (CI). Both monitors 
tended to underestimate CIs when the PAC measured CIs 
were relatively high [79]. LiDCO™rapid is a convenient 
and noninvasive option to guide fluid therapy, though 
there are unanswered questions about its utility in differ-
ent physiological states. More studies on different types 
of surgery may help address some of these issues.

Masimo Radical 7 Pulse CO-Oximeter™ for Goal-
Directed Fluid Therapy

Masimo Radical 7 Monitor (Masimo, Irvine, CA, 
US) can measure the PVi using a Masimo pulse oximeter, 
which can be attached to the ear, digits, or forehead [80]. 
This monitor does not need to be calibrated and is nonin-
vasive. It is also the only commercially available monitor 
to measure PVi.

sor that is attached to an arterial catheter. Hemodynamic 
parameters such as CO, SV, SVV, and systemic vascular 
resistance (SVR) are calculated every 20 seconds with a 
proprietary algorithm using pulse contour analysis. SV 
is derived from the equation: K × Pulsatility (standard 
deviation of the arterial pressure wave over 20 seconds), 
where K is a constant. K is derived from the sex, age, 
height and weight according to methods described by 
Langewouters et al. [68] and the skewness and kurtosis 
of the individual arterial waveform. K is recalculated au-
tomatically every minute based on the patient’s specific 
vascular compliance. Then, the CO is calculated by mul-
tiplying SV with pulse rate [69].

Flotrac™ does not need to be calibrated for use 
[67]. However, because the hemodynamic parameter cal-
culations are heavily dependent on the constant, K, the 
software needs to recognize changes in vasodilation or 
vasoplegia to calculate an accurate CO.

Some studies have found that Flotrac™ is compara-
ble to other hemodynamic monitoring systems. For ex-
ample, Mclean et al. found that Flotrac/Vigileo™ is com-
parable to transthoracic doppler echocardiography when 
measuring CO [70]. Also, Cannesson et al. showed that 
in patients undergoing coronary artery bypass grafting, 
the CO estimated by Flotrac™ is comparable with PAC 
thermodilution [71]. However, many studies questioned 
its accuracy, even when it was updated to its newest soft-
ware version: the fourth generation. While Flotrac™ is 
reasonably accurate in stable patients, in patients with 
low SVR, Flotrac™ does not provide accurate CO mea-
surement when compared to invasive CO monitoring 
[67]. For instance, Murata et al. showed that in end-stage 
liver failure patients, fourth-generation Flotrac™ and 
PAC readings had poor agreement with each other during 
liver transplantation [72]. Moreover, Lin et al. found that 
fourth-generation Flotrac™ had a 61.82% and 51.80% 
error in estimating the CO before and after cardiopulmo-
nary bypass, respectively. Therefore, found it unsuitable 
to be used during or after cardiopulmonary bypass [73].

Nonetheless, Flotrac™ remains popular and has 
been used in multiple RCTs to guide GDFT with good 
clinical outcomes [53,74]. For example, Yu et al. demon-
strated that in major gynecologic oncology surgery pa-
tients, Flotrac™-guided GDFT decreased postoperative 
complications risk significantly (OR = 0.572), especially 
in surgical site infection risk (OR = 0.127). Furthermore, 
GDFT patients received significantly less fluid infusion 
than the control group [74].

While Flotrac™ is easy and convenient to use, 
many questions remain of its use in high-risk patients, 
especially in patients suffering from vasoplegia. In the 
future, newer software updates from the manufacturer 
may resolve such issues and allow it to better estimate 
hemodynamic parameters.
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contour method to estimate CO [88].
Conflicting studies have shown that ClearSight™ 

may or may not be comparable to other invasive or 
minimally invasive hemodynamic monitoring systems. 
For example, Wang et al. showed that ClearSight™ is 
comparable to PAC thermodilution in estimating CO in 
cardiac surgery patients [89]. However, while Tanioku 
et al. found that ClearSight™ was interchangeable with 
arterial catheters in measuring MAP, it had significant 
biases when measuring SBP and DBP in cardiovascular 
surgeries [90]. Moreover, Kanazawa et al. demonstrat-
ed that ClearSight™ was inaccurate in estimating CI in 
patients with reduced cardiac ejection fraction (<55%) 
when compared to PAC thermodilution. However, it is 
accurate in measuring MAP [91].

Some studies also found that ClearSight™-guided 
GDFT has no postoperative benefits. Stens et al. showed 
that using ClearSight™ calculated CI, PPV and MAP for 
GDFT guidance had no impact on postoperative com-
plications [92]. Furthermore, Fischer et al. found that in 
low-risk colorectal patients, using ClearSight™-guided 
GDFT does not affect hospital length of stay, postopera-
tive mortality, and the total number of complications [93]. 
Similarly, Davies et al. found that ClearSight™-guided 
GDFT offers no postoperative complication benefits in 
high-risk patients undergoing hip fracture repair [94]. 
Given these questionable study results, this monitoring 
system needs to be studied more in multicenter RCTs to 
verify its benefit in GDFT.

PiCCO™ for Goal-Directed Fluid Therapy
PiCCO™ (Pulsion Medical System, Munich, Ger-

many) uses the transpulmonary thermodilution technique 
for CO estimations. To calibrate the monitor, it requires 
a bolus of cold saline in a central venous catheter, then 
a thermo-sensor tip arterial catheter senses the decrease 
in blood temperature. The difference between this system 
and PAC transpulmonary thermodilution is that the cold 
solution is bolused into a central vein, not in the right 
atria. Therefore, the temperature change detection is 
at a peripheral artery rather than the pulmonary artery. 
Uniquely, this monitoring system can also measure glob-
al end-diastolic volume [95], global ejection fraction, 
intrathoracic blood volume, and extravascular lung water 
[96].

Goedje et al. found that PiCCO™ had a compara-
ble and robust correlation with PAC thermodilution with 
a mean bias of 0.07-liter min-1 (2 SD 1.4-liter min-1) in 
post-cardiac surgery patients. These patients had vari-
ous CO (ranging from 3.0 to 11.8 liter min-1) and SVR 
(ranging from 252 to 2434 dyn s cm-5) [97]. Moreover, it 
has been shown to improve postoperative outcome when 
used to guide GDFT. For instance, Jing et al. demonstrat-
ed that PiCCO™-guided GDFT decreased volume infu-

Multiple studies used Masimo pulse oximetry for 
GDFT to achieve improved postoperative outcomes. For 
instance, Saugel et al. showed that PVi-guided GDFT re-
duced ileus significantly and decreased fluid administrat-
ed in colorectal surgical patients [81]. Also, Collange et 
al. found that a PVi >9% before renal artery unclamping 
is an individual risk for delayed graft function in renal 
transplant patients [82]. However, the Optimization using 
the Pleth Variability Index (OPVI) trial, in which 447 
ASA I and ASA II patients were randomized, showed 
that forehead measured Pvi-guided GDFT did not shorten 
hospital stay, or reduce postoperative complications such 
as AKI. This study, however, attributed these results to 
patients being of lower acuity [27].

Compared to other dynamic parameters, PVi is 
equivalent. For example, Coeckelenbergh et al. showed 
that in low- to intermediate-risk abdominal surgeries, pa-
tients who underwent PVi-guided GDFT or PPV-guided 
GDFT had no significant differences in hospital length 
of stay, postoperative outcomes, and amount of fluids 
administered [83]. In another study, Pişkin et al. showed 
that PVi and inferior vena cava distensibility index could 
predict fluid responsiveness comparably in intensive care 
patients [84].

However, PVi may be inaccurate in specific patient 
populations. Konur et al. found that in liver transplant 
patients, PVi cannot distinguish fluid responders from 
non-responders. PVi value was similar at baseline be-
tween responders and non-responders in the dissection 
and anhepatic phase. Only SVV measured by the PiC-
CO™ monitoring system was reliable [85]. Likewise, 
Le Guen et al. showed that PVi does not respond to fluid 
challenges and had poor agreement with esophageal dop-
pler measurements in renal transplant patients [86].

Because PVi measurements require adequate per-
fusion, a change in blood flow may affect its reading. 
Currently, Masimo Radical 7 Pulse CO-Oximeter™ 
cannot determine if a decrease in blood flow is due to a 
depressed cardiovascular system or impaired blood flow 
to the tissue. Additionally, any physiological or patholog-
ical influences on the peripheral vascular flow, such as 
in patients with severe Raynaud’s phenomenon or with 
peripheral vascular disease, may affect PVi readings [87]. 
Thus, PVi should be used and interpreted cautiously.

ClearSight™ for Goal-Directed Fluid Therapy
ClearSight™ (Edwards Lifesciences, Irvine, CA, 

USA) is a noninvasive monitor which uses a finger cuff to 
estimate CO, SV, SVV, SVR, and mean arterial pressure 
(MAP). It was introduced in 2007 as Nexfin™. The finger 
cuff inflates and deflates to keep the diameter of finger 
arteries constant throughout the cardiac cycle. From the 
finger pressure waveform, it calculates the brachial pres-
sure waveform using an algorithm. Then, it uses the pulse 
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Transesophageal (TEE) or Transthoracic Echocar-
diogram (TTE) are frequently used to guide fluid therapy 
in high-risk cardiothoracic and liver transplant surgeries. 
They are ultrasound imaging techniques that can visual-
ize the heart or the aorta directly [107]. This direct vi-
sualization allows multiple hemodynamic parameters to 
be calculated or measured in real-time. For example, the 
LV outflow tract velocity time integral (VTI) is a mea-
surement by ECHO of how far blood travels during the 
flow period. It is a LV systolic function surrogate, which 
can be used to calculate the SV and then the CO, by 
multiplying with HR [108]. Moreover, TEE can estimate 
the preload using the LV end-diastolic area [109]. These 
visualized changes in preload can detect even minor vol-
ume deficits. TEE and TTE can also detect inferior vena 
cava diameter variations (ΔIVCD) during tidal respira-
tion in mechanically ventilated patients, which correlates 
with SVV [110]. ΔIVCD can also be used to calculate the 
caval index (Figure 3); a caval index <50% is strongly 
associated with a CVP of <8 mmHg [111].

While TEE and TTE are well-established monitors 
for fluid resuscitation intraoperatively and has shown 
benefits in intensive care patients, it lacks studies on post-
operative outcomes in low- and moderate-risk surgeries. 
Furthermore, TEE has limitations. It cannot be used in 
patients with previous esophageal surgeries and cannot 
be used in esophageal surgeries. Probe insertion can lead 
to bleeding in cirrhotic patients with esophageal varices. 
Also, both TTE and TEE probes must be positioned by a 
trained professional to interpret the images. Finally, the 
TEE probe cannot be used in awake patients.

Currently, TEE-guided GDFT is being investigated 
in a multicenter RCT for pediatric surgery postoperative 
outcomes [112]. It will be interesting to see how it will 
impact pediatric resuscitation.

CONCLUSION

In the last 20 years, there has been much advance in 
noninvasive detection of fluid status perioperatively, as 
an alternative to using PAC thermodilution. Each moni-
toring system uses different physiological principles and 
offers various pros and cons. Furthermore, these systems 
use different algorithms and methods to calculate dynam-
ic parameters. Because of these different calculations, dif-
ferent monitors can display different values for the same 
dynamic parameter. As such, a clinician should consider 
the type of surgery being done, and the current evidence 
for GDFT-guided by that monitoring system and dynamic 
parameter. Moreover, a clinician should understand and 
be familiar with how dynamic parameters are calculated, 
and how they are derived from the monitoring systems.

Dynamic parameters are all based on the physiolog-
ical principles of mechanical ventilation, intra-thoracic 

sion, hospital stay length, and time needed for ambulation 
[98]. However, in emergency surgeries, PiCCO™-guided 
GDFT increased major complications (95% vs 40% in the 
control group) and did not decrease in-hospital mortality 
[99].

While PiCCO™ offers a less invasive approach than 
PAC, it still requires a central venous catheter and arteri-
al catheter, which may be impractical in many surgeries 
and can only be used in high-risk patients. Therefore, this 
method continues to have many limitations.

Esophageal Doppler for Goal-Directed Fluid 
Therapy

Esophageal Doppler (ED) is an ultrasound-based 
technique introduced in the 1970s, which allows aortic 
blood flow measurements in the descending thoracic aor-
ta to calculate CO and SV [100]. It is the only minimal-
ly invasive CO monitor evaluated and endorsed by the 
United States Agency for Healthcare Research and Qual-
ity and the United Kingdom Centre for evidence-based 
purchasing [101].

The ED is a 6-mm probe positioned at the distal 
esophagus to measure blood flow velocity in the descend-
ing thoracic aorta. The blood flow velocity waveform also 
can be used to measure flow time, which is the time from 
the start of the waveform upstroke to return to baseline. 
When corrected for HR, flow time is found to be a sen-
sitive measure of LV filling, thus an accurate RV preload 
measurement [102].

ED is comparable to PAC thermodilution in mea-
suring intensive care patients’ CO [103]. Studies also 
showed that ED produced similar clinical results as 
Flotrac™-guided GDFT [104] and NICOM-guided 
GDFT [105]. Furthermore, a systemic review by ECRI 
Evidence-based Practice Center, an independent federal-
ly certified patient safety organization by the US Depart-
ment of Health and Human Services, has found that there 
is high quality evidence that ED reduces postoperative 
complications and hospital length of stay [106]. Due to 
its accuracy and longevity, ED had become the noninva-
sive fluid status monitor of choice. Both the RELIEF and 
FEDORA trials used ED-guided GDFT.

Despite much evidence supporting ED’s use in 
GDFT, some limitations exist. First, it requires some 
skills; thus, the user must be trained. Secondly, it cannot 
be used in esophageal surgeries, patients with esophageal 
anatomical anomalies, or with recent esophagus surger-
ies. Thirdly, liver cirrhosis patients may have esophageal 
varices and ED can induce bleeding. Finally, the doppler 
signal can be poor due to aorta or user issues.

Echocardiogram (ECHO) for Goal-Directed Fluid 
Therapy
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2,502 patients undergoing major elective gastrointestinal 
surgery. This study will be the largest GDFT trial to date 
and will be using ClearSight™ or Flotract™ as hemo-
dynamic monitors, with SVV as the dynamic parameter. 
Primary outcomes will be 180 day mortality, 30-day AKI 
rate, and acute cardiac event within 24 hours and 30 days 
[116].

As technology advances, perioperative hemodynam-
ic monitors have also become more non-invasive. One 
exciting technology is the wireless and wearable doppler 
which may be comparable to TEE. For example, Kenny 
et al. showed that a wearable wireless carotid doppler at 
the common carotid artery is equivalent to TEE during 
coronary bypass surgeries; it can accurately detect the 
common carotid artery VTI, and significant changes in 
SV and aortic VTI after a straight leg raise test [117,118]. 
Wang et al. also described a wearable and flexible ultra-
sound doppler device similar to an electrocardiogram 
lead which can monitoring real time blood flow velocities 
in human arteries [119]. These new technologies and de-
vices can circumvent the minimally invasive or invasive 
hemodynamic monitor systems’ limitations.

Another exciting progress is the increasing use of 
artificial intelligence, machine learning and big data to 
solve hemodynamic problems. Hatib et al. described the 
hypotension prediction index, which is developed by ma-
chine learning from the arterial waveform of 13,000 past 
hypotensive events and 12,000 non-hypotensive events. 
HPI can predict hypotension 15 minutes before the actual 
event occurs [120]. In the future, a new hemodynamic 
algorithm may go beyond PPV or SVV to allow patient 
fluid resuscitation before hypotension happens.
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