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Goal-directed fluid therapy (GDFT) is usually recommended in patients undergoing major surgery and
is essential in enhanced recovery after surgery (ERAS) protocols. This fluid regimen is usually guided
by dynamic hemodynamic parameters and aims to optimize patients’ cardiac output to maximize oxygen
delivery to their vital organs. While many studies have shown that GDFT benefits patients perioperatively
and can decrease postoperative complications, there is no consensus on which dynamic hemodynamic
parameters to guide GDFT with. Furthermore, there are many commercialized hemodynamic monitoring
systems to measure these dynamic hemodynamic parameters, and each has its pros and cons. This review
will discuss and review the commonly used GDFT dynamic hemodynamic parameters and hemodynamic

monitoring systems.

INTRODUCTION

Fluid resuscitation is critical during perioperative
periods to ensure vital organs receive adequate oxygen
perfusion. Especially since patients usually fast for 8
hours before surgery, which leads to dehydration [1].
Poor intraoperative fluid resuscitation can lead to poor

patient outcomes [2].

Traditionally, intravenous (IV) fluid regimens are
“liberal,” meaning high fluid amounts are given intra-
operatively. In abdominal surgery, that amount is up to
7 liters (L) of fluids. However, these regimens lead to
a weight gain of 3 to 6 kilograms, which suggests fluid
overloading [3]. Other problems associated with liberal
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Table 1. Commonly Used Dynamic Hemodynamic Parameters and Monitors

Static Hemodynamic
Parameters

Dynamic Hemodynamic Parameters Hemodynamic Monitors

Central Venous Pressure (CVP)
Mean arterial pressure (MAP)
Cardiac Output (CO)

variation (AVpeak)

Pulse Pressure Variation (PPV)
Stroke Volume Variation (SVV)
Pleth Variability Index (PVi)
Aortic blood flow peak velocity

Flotrac™

LidCcoO™

Masimo Radical 7 Pulse CO-Oximeter™
ClearSight™

PiCCO™
Esophageal Doppler

Transthoracic and Transesophageal
Echocardiogram

Table 2. Commonly Used Commercialized Hemodynamic Monitor Systems

Monitor Company Measured Parameters Technique

Flotrac™ Edwards Lifesciences CO, SV, SVV, and SVR Arterial pulse contour analysis

LiDCO™rapid Masimo SV, SVR, SVV, oxygen delivery, Arterial pulse power analysis
and PPV

ClearSight™ Edwards Lifesciences CO, SV, SVV, SVR, and MAP Arterial pulse contour analysis

Radical 7 Pulse CO- Masimo PVi and Perfusion Index Plethysmograph waveform

Oximeter™ analysis

PiCCO™ Pulsion Medical System CO, Cl, ejection fraction, Thermodilution

global end-diastolic volume,
global ejection fraction,
intrathoracic blood volume, and
extravascular lung water

Deltex Medical

Multiple Vendors

Esophageal Doppler
Echocardiogram

regimens include pulmonary complications [4,5], pro-
longed wound healing [6], and bowel edema causing
prolonged ileus [7]. Moreover, hypervolemia may lead
to an increase in atrial natriuretic peptide release from
the heart, which enhances the deterioration of endothe-
lial glycocalyx, a vital part of the vascular permeability
barrier. This leads to vascular barrier loss and an increase
in interstitial edema [8]. On the other hand, in patients
undergoing low- to moderate-risk surgeries, a liberal flu-
id approach may be beneficial. For example, Holte et al.
showed that patients who underwent laparoscopic cho-
lecystectomy, when given 40 ml/kg IV fluids instead of
15 mL/kg IV fluids, had significantly improved postop-
erative pulmonary function, with less nausea, dizziness,
and fatigue [9].

More recently, major surgeries and enhanced recov-
ery after surgery protocols (ERAS) have been adopting
more “restrictive” IV fluid regimens. In previous studies,
intraoperative restrictive fluid regimens varied from 1.0
to 2.7L in abdominal surgeries [10]. While these regi-
mens may avoid the side effects of the liberal method,

Aortic blood flow
VTI and cardiac blood flow

Ultrasound
Ultrasound

it may cause hypotension leading to organ damage. For
example, The Restrictive versus Liberal Fluid Thera-
py in Major Abdominal Surgery (RELIEF) trial, which
randomized 3,000 patients to a liberal fluid regimen vs
a restrictive fluid regimen, showed an increase in acute
kidney injury (8.6% vs 5.0%). However, there is no dif-
ference in the rate of disability-free survival at one year.
Other studies have shown that restrictive fluid regimens
do have significant benefits in major surgeries. For ex-
ample, multiple studies have shown that restrictive fluid
regimens decrease postoperative ileus recovery in colon
resections [11,12], and in the length of stay as well as
60-day surgical complications in patients who underwent
hyperthermic intraperitoneal chemoperfusion [13].
While liberal and restrictive fluid regimens have
pros and cons, the definition of “liberal” or “restrictive”
is arbitrary and depends on individual institutions or cli-
nicians. Therefore, Goal-Directed Fluid Therapy (GDFT)
has been utilized in several surgeries to avoid hypoten-
sion and fluid overloading by giving the “just right”
fluid amount. This review aims to evaluate the current
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evidence and literature on commonly used dynamic pa-
rameters and hemodynamic monitor systems, which have
been used for multicenter GDFT randomized clinical
trials (RCT), and verified perioperatively in other studies
(Table 1 and Table 2).

WHAT IS PERIOPERATIVE GOAL-
DIRECTED FLUID THERAPY?

Perioperative GDFT aims to maximize oxygen deliv-
ery to tissue by optimizing cardiac output (CO) through
fluid resuscitation. Optimal cardiac output is defined as
the top of the Frank-Starling preload-stroke volume curve
[14]. At max capacity, which is at the top of the curve,
the increase in end-diastolic pressure increases the stroke
volume (SV) less when compared to the lower part of the
curve. Thus, less “elastic.” The ideal fluid status will be at
max capacity where the increase in end-diastolic volume
does not change the SV significantly (Figure 1).

CURRENT EVIDENCE FOR GOAL-
DIRECTED FLUID THERAPY

Multiple large-scale RCTs have shown GDFT’s
benefits in the perioperative setting. Additionally, smaller
studies demonstrated that GDFT has clinical benefits in
non-cardiac, cardiac, and vascular surgery high acuity
patients [15-18]. PubMed and clinicaltrials.gov searches
with the terms “Goal-Directed Fluid Therapy” and “mul-
ticenter randomized clinical trials” are summarized in Ta-
ble 3. On the other hand, pushing the patient to the top of
the Frank-Starling curve will lead to increased natriuretic
peptides secreted by the heart, which provokes vasodila-
tion, capillary leakage, and diuresis [19].

The largest GDFT multicenter RCT to date, the Op-
timization of Cardiovascular Management to Improve
Surgical Outcome (OPTIMIZE) trial, randomized 734
high-risk adult patients undergoing major gastrointestinal
surgeries. The GDFT group which used LiDCO™rapid
(LiDCO Ltd, Cambridge, UK) as a monitor to guide
fluid resuscitation had lower 30-day moderate or major
complications and mortality (36.6% vs 43.4%) when
compared to control. Though there was no difference in
morbidity on day 7; infection, critical care-free days, and
all-cause mortality at 30 days; all-cause mortality at 180
days; length of hospital stay [20]. Serum biomarkers from
participants in the OPTIMIZE trial also showed no evi-
dence of GDFT induced cardiac damage, as there was no
elevation of troponin I concentration and N-terminal pro-
brain natriuretic peptide [21]. Furthermore, a sub-study
of the OPTIMIZE trial showed GDFT reduced health
care costs [22]. Another multicenter RCT on GDFT, the
FEDORA trial, randomized 450 low- to moderate-risk
patients undergoing major abdominal, urological, gy-
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Frank-Starling Relationship Curve

T Max Capacity: End-
" diastolic volume
increases SV by a small
amount

Stroke
Volume

Normal Range: End-
diastolic volume
increases SV
significantly

-—

End-DiastolicVolume

Figure 1. Frank-Starling Curve. At the curve plateau,
the end-diastolic volume increase does not increase the
stroke volume as much. In contrast, at the lower part of
the curve, the same amount of increase in end-diastolic
volume increase the stroke volume much greater.

necological, or orthopedic surgery to GDFT-guided by
esophageal doppler or control groups. The FEDORA trial
showed that patients in the GDFT group had fewer mod-
erate to severe complications, such as acute kidney inju-
ry, pulmonary edema, and respiratory distress syndrome
(8.6% vs 16.6%), and a shorter length of stay. However,
there was no change in mortality [23].

Conversely, some studies have shown that GDFT
lacks benefits. For instance, Gomez-Izquierdo et al.
demonstrated that GDFT using esophageal doppler did
not decrease the incidence of postoperative ileus in a RCT
of 128 patients; even though it did increase CO and SV,
and reduced perioperative IV fluids administration [24].
Moreover, Challand et al. showed no difference in dis-
charge readiness and length of stay between patients who
underwent major colorectal surgery in the GDFT group
guided by esophageal doppler and the control group [25].
Besides abdominal surgeries, GDFT has been shown to
lack effect in major vascular surgeries. Bisgaard et al.
showed that in patients who underwent open elective ab-
dominal aortic surgery, GDFT-guided by LiDCO™plus
(LiDCO Ltd, Cambridge, UK) did not decrease postop-
erative complications or length of stay in the intensive
care unit [26]. Additionally, very recently, Fischer et al.
demonstrated in a RCT involving 447 intermediate-risk
patients who underwent hip or knee arthroplasty that
GDFT-guided by the Pleth Variability Index (PVi) had
no effect in hospital stay, acute renal failure, and cardiac
complications when compared to the control group [27].

While there are currently mixed GDFT trial results,
more large-scale multicenter trials with a heterogeneous
patient population may help resolve debates about its
clinical benefits. Two notable differences in all these clin-
ical trials are that they use different fluid responsiveness
parameters and monitoring systems to guide fluid resus-
citation.
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DYNAMIC PARAMETERS FOR GOAL-
DIRECTED FLUID THERAPY

The criterion standard of CO measurement remains
using intermittent thermodilution with a pulmonary ar-
tery catheter (PAC). However, this measurement requires
a PAC, making it impractical in many perioperative set-
tings. As such, there are many CO surrogates and param-
eters developed to measure a patient’s fluid status and SV
as defined by “static” and “dynamic.” These parameters
are summarized in Table 1.

Although CVP is traditionally used as a static pa-
rameter to assess fluid responsiveness, multiple studies
showed that it is unreliable [28]. In contrast, dynamic
parameters were shown to estimate fluid responsiveness
and status with reasonable accuracy [29-32].

DYNAMIC PARAMETERS AND THE FRANK-
STARLING CURVE

These dynamic parameters depend on the Frank-Star-
ling relationship. Under the relationship, the left ventricle
(LV) SV changes due to intrathoracic pressure. This is
because increased intrathoracic pressure compresses the
right ventricle (RV), which decreases RV preload. If a
patient’s fluid status is at the Frank-Starling curve pla-
teau, respiratory pressure will have little effect on the RV
preload. Thus, the RV preload respiratory variations will
be low, and there will be no effect on the LV SV [33].
Because the LV SV and arterial compliance correlate with
the arterial pressure, thus arterial pressure parameters,
such as pulse pressure (PP), correlate with the LV SV
variations.

As shown in Figure 2a and b, the arterial wave area
under the curve (AUC) is the LV SV, whereas the wave
peak is the systolic blood pressure (SBP) and the wave
trough is the diastolic blood pressure (DBP). PP equals
SBP — DBP. Both LV SV and PP vary during the respira-
tion cycle (Figure 2d). If a patient is at the Frank-Starling
curve plateau, both the arterial pressure AUC and the PP
will have minimal variations during the respiration cycle.
Figure 2c shows the pulse oximetry plethysmography
which also correlates with the arterial pressure waves
and thus also oscillates during the respiratory cycle. In
the section below we will discuss the four commonly
used fluid responsiveness dynamic parameters for GDFT
guidance: pulse pressure variation (PPV), pleth variabili-
ty index (PVi), stroke volume variation (SVV), and aortic
blood flow peak velocity variation (AVpeak).

Figure 3 shows the dynamic parameter equations,
which are crucial to understand how to interpret each
parameter accurately, and for providers to judge the ap-
propriateness to use each parameter in different physio-
logical states or surgeries. For example, PVi may not be
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D Pulse Oximetry Plethysmography

%_/_M

Figure 2. PPV and SVV calculations. A-D, EKG, arteri-
al pressure, pulse oximetry plethysmography, respiratory
pattern, respectively. B and C, both arterial pressure and
pulse oximetry plethysmography oscillate during the re-
spiratory cycles, which is shown in D, due to the change
in intrathoracic pressure, preload, and LV SV during me-
chanical ventilation. In B, the area arterial pressure wave
under the curve is the LV SV. SVV (%) can be calculated
with the equation (SV max — SV min) / SV mean. The
arterial pressure wave peak is the SBP, and the trough is
the DBP, PP is the difference between SBP and DBP. PPV
(%) is calculated from 100 x (PP max — PP min) / ([PP
max + PP min]/2) [121,122].

accurate in low perfusion states due to its use of perfusion
index.

PULSE PRESSURE VARIATION (PPV) IN
GOAL-DIRECTED FLUID THERAPY

PPV is a fluid responsiveness dynamic parameter
described by Coyle et al. in 1983 [34]. PPV is calculated
by measuring PP alterations during the respiratory cycle
(Figure 2b) [35]. In general, patients with a PPV <12%
are unlikely to benefit from further fluid therapy, whereas
those with >12% are more likely to benefit from fluid re-
suscitation [36]. Compared to CVP, which requires a cen-
tral venous catheter, PPV requires a minimally invasive
or noninvasive monitor, commonly an arterial catheter. It
is important to note that PPV does not indicate a patient’s
fluid status or preload; rather, it is only an indicator of the
patient’s position on the Frank-Starling curve [37].

PPV has been used to guide GDFT. For example,
Malbouisson et al. showed that PPV-guided GDFT re-
duced postoperative complications such as respiratory,
renal, and hepatic dysfunctions, and hospital length of
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Cardiac Output (CO) Heart Rate = Stroke Volume
Pulse Pressure (PP)

Pulse pressure variation (PPV %)
Perfusion Index [Pl %)

Pleth Variability Index (PVi %)

Stroke Volume Variation (SVV %)

Caval Index (%) -
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Systolic blood pressure — Diastolic blood pressure

100% x [(Pulse pressure max — Pulse pressure min} / ([Pulse pressure max + Pulse pressure min] / 2]

(Arterial pulsation absorbance / Non-pulsatile blood absorbance) x 100%

[(Perfusion index max — Perfusion index min) / Perfusion index max] x 100%

(Stroke volume max — Stroke volume min) / Stroke volume mean

{Inferior vena cava expiratory diameter —Inferior vena cava inspiratory diameter) / (Inferior vena cava expiratory diameter)

Figure 3. Dynamic Parameters and Physiology Equations.

stay, in high-risk patients undergoing open surgeries [38].
However, there have been small RCTs with negative clin-
ical results on PPV-guided GDFT. For instance, Suzuki
et al. found that PPV-guided GDFT did not significantly
affect renal, hemodynamic, and metabolic variables in
patients after they underwent cardiac surgery [39].
Moreover, PPV faces some limitations. To ensure
accurate PPV measurement, the patient must be mechan-
ically ventilated, the chest must be closed (an open chest
will affect the interaction between the pericardium and
mechanical ventilation), be in sinus rhythm, and intra-ab-
dominal pressure must be within the normal range [33].
Other parameters that may affect PPV readings include
extreme bradycardia or high respiratory rate, low tid-
al-volume ventilation (must be between 6 to 8 ml/kg),
high positive end-expiratory pressure (PEEP) (PEEP
should be between 0 and 5 cm H,O), low arterial com-
pliance (high dose vasopressors, severe atherosclerosis),
and RV or LV failure [32,33,40,41]. Also, if respiratory
system compliance is <30 mL/cm H,O, such as in patients
with ARDS, PPV will become less accurate [41,42].

PLETH VARIABILITY INDEX (PVi) IN GOAL-
DIRECTED FLUID THERAPY

PVi is calculated from plethysmographic waveform
amplitudes and PP derived from pulse oximetry or other
devices. It was commercialized in 2007 [43]. This dy-
namic parameter has been shown to predict fluid respon-
siveness as accurate as Stroke Volume Variation [44],
esophageal doppler [45], and PPV [46]. PVi also depends
on the increased intrathoracic pressure interaction with
the RV preload and the LV SV upon mechanical venti-
lation, which causes variation in the plethysmographic
waveform amplitudes and area under the curve (Figure
2¢). PVi is calculated by measuring perfusion index (PI)
alterations during the respiratory cycle, which is de-
scribed as the percentage of light absorbed as a result of

Max

o B AC
A Pl= —eem x100%
- DC
¢ Plyac = Plign
PVI= ———— X 100%

o

Figure 4. PVi and PI calculations. In A, DC is the total
amount of light absorbed and AC is the light absorbed as
a result of arterial pulsation, which oscillates during respi-
ration. B, Pl (%) is calculated with the equation (AC/DC)
x 100%. C, PVi (%) is then calculated from the PI with the
equation [(PI max — Pl min) / Pl max] x 100% [121].

arterial pulsation (AC) relative to total amount of light
absorbed (DC). PVi is then calculated from the PI (Figure
4a-c) [48].

In a single-center RCT, Cesur et al. showed that in
70 ASA T and II patients, PVi-guided GDFT decreased
the amount of fluids administered and the return of bowel
function time [47]. Additionally, Patrice et al. demon-
strated that PVi-guided GDFT decreases lactate level
and fluid administration during major abdominal surgery
[48]. Likewise, a study by Yu et al. found Pvi-guided
GDFT decreases blood lactate level in the first hour of
surgery and reduces fluid administration. However, the
study found no changes in lactate level beyond the first
hour, possibly due to its small sample size of 30 patients
[49].

Currently, most GDFT studies using PVi are in ab-
dominal surgeries. While there are great promises for this
parameter, more studies must be done on other types of
surgery to verify its use. Moreover, there is no definitive
PVi cutoff in predicting fluid responsiveness, but most
RCTs decided that it is around 13% to 14% [48,50]. Ad-
ditionally, because PI is measured by pulse oximetry, nail
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coloring, skin coloring, and altered physiological states
(such as methemoglobin) may change infrared light ab-
sorption leading to inaccurate calculations. Finally, be-
cause PVi is based on the same principle as PPV, both
suffer the same limitations.

STROKE VOLUME VARIATION (SVV) IN
GOAL-DIRECTED FLUID THERAPY

SVV is calculated from the difference between the
maximum and minimum SV over the respiratory cycle
and is caused by changes in RV preload due to alterations
in intrathoracic pressure (Figure 2b). Patients with a SVV
of <10% are unlikely to be fluid responsive, whereas
those with SVV >15% are likely to benefit from fluid
resuscitation [51].

SVV-guided GDFT has been shown in multiple sin-
gle-center RCTs that it is an effective way to decrease
postoperative complications in bowel, orthopedics, and
neurosurgery [52-56]. For instance, Gottin et al. com-
pared three methods of resuscitation in patients undergo-
ing pancreatic surgery: liberal, restrictive, and SV V-guid-
ed GDFT. This study demonstrated that SVV-guided
GDFT and restrictive fluid resuscitation decreased major
surgical complications such as postoperative fistula, ab-
dominal collection, and hemorrhage compared to liberal
fluid resuscitation [57]. However, while most studies
showed that SVV-guided GDFT improved postoper-
ative outcomes, some studies showed the contrary. For
example, Iwasaki et al. showed that SVV-guided GDFT
hepato-biliary-pancreatic surgery patients had greater
amount of fluids administered, and lower PaO_/FiO, ratio
on postoperative day one [58].

Interestingly, Wang et al. showed that in elective ret-
roperitoneal tumor resections, patients who were resusci-
tated at SVV 9% has increased serum syndecan-1, inter-
leukin-6, and tumor necrosis factor-o, as well as higher
incidence of fever and blood transfusion when compared
to patients resuscitated at SVV 14%. This suggests that
increased fluid administration may enhance perioperative
glycocalyx shedding leading to significant inflammatory
responses [59].

Because SSV is based on the same principle as PPV,
it also faces the same restriction as discussed above [41].

AORTIC BLOOD FLOW PEAK VELOCITY
VARIATION (AVpeak) IN GOAL-DIRECTED
FLUID THERAPY

Because LV SV changes during different phases of
mechanical ventilation, the aortic blood flow peak veloc-
ity will also vary. If the patient is at the plateau of the
Frank-Starling relationship and thus fluid nonresponsive,
such variations will be minimal. If the patient is fluid re-
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sponsive, it will be vice versa. Marc et al. first described
this parameter in 2001, where he reported that AVpeak of
12% has a sensitivity of 100% and a specificity of 89%
to distinguish fluid responders from non-responders in
adults [60].

AVpeak can be used to determine a patient’s fluid
responsiveness in situations when PPV, SVV, or PVi
cannot be measured accurately. This is especially true in
pediatric and neonatal patients since they are ventilated
by small tidal volumes, have higher arterial vascular
compliance, and have higher chest wall and lung compli-
ance. Therefore, in these patients, changes in intrathorac-
ic pressure during mechanical ventilation may not cause
the same circulatory changes as with adults. For example,
Gan et al. demonstrated in a systemic review that AVpeak
is the only dynamic or static variable that can predict fluid
responsiveness in pediatric patients. PPV, SVV, and PVi
did not predict fluid responsiveness in children [61].

Currently, there are no optimal cutoff points for
AVpeak to assess fluid responsiveness. Furthermore, va-
soactive drug effects on this parameter in the pediatric
population are largely unknown [62]. However, this new-
er dynamic parameter holds many promises in pediatric
resuscitation. A multicenter RCT is currently investigat-
ing AVpeak-guided GDFT on postoperative outcomes
in pediatric patients undergoing elective or urgent major
noncardiac surgery [63]. It will be interesting to see what
this RCT shows and how AVpeak can further enhance
pediatric surgery fluid optimization and postoperative
outcomes.

GOAL-DIRECTED FLUID THERAPY
MONITORING SYSTEMS

Currently, there are many methods to monitor fluid
responsiveness dynamic parameters in the perioperative
setting [51]. Traditionally, the Swan—Ganz catheter has
been used to measure CO, a fluid responsiveness static
parameter, despite multiple studies showing Swan—Ganz
catheters do not improve clinical outcomes [64]. More-
over, it is invasive and can lead to numerous compli-
cations such as thrombosis, pulmonary artery rupture,
infection, and arrhythmia on insertion [51]. Therefore,
other minimal or noninvasive hemodynamic monitoring
systems have been developed [65,66]. In the section be-
low, we will focus on common and popular monitoring
systems which have been verified and used preoperative-
ly for GDFT. A summary of the monitoring systems is
shown in Table 2.

Flotrac™ for Goal-Directed Fluid Therapy

Flotrac™ (Edwards Lifesciences, Irvine, CA, USA)
was first introduced in 2005 to be used with the EV1000
monitor or Vigileo monitor [67]. It uses a blood flow sen-
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sor that is attached to an arterial catheter. Hemodynamic
parameters such as CO, SV, SVV, and systemic vascular
resistance (SVR) are calculated every 20 seconds with a
proprietary algorithm using pulse contour analysis. SV
is derived from the equation: K x Pulsatility (standard
deviation of the arterial pressure wave over 20 seconds),
where K is a constant. K is derived from the sex, age,
height and weight according to methods described by
Langewouters et al. [68] and the skewness and kurtosis
of the individual arterial waveform. K is recalculated au-
tomatically every minute based on the patient’s specific
vascular compliance. Then, the CO is calculated by mul-
tiplying SV with pulse rate [69].

Flotrac™ does not need to be calibrated for use
[67]. However, because the hemodynamic parameter cal-
culations are heavily dependent on the constant, K, the
software needs to recognize changes in vasodilation or
vasoplegia to calculate an accurate CO.

Some studies have found that Flotrac™ is compara-
ble to other hemodynamic monitoring systems. For ex-
ample, Mclean et al. found that Flotrac/Vigileo™ is com-
parable to transthoracic doppler echocardiography when
measuring CO [70]. Also, Cannesson et al. showed that
in patients undergoing coronary artery bypass grafting,
the CO estimated by Flotrac™ is comparable with PAC
thermodilution [71]. However, many studies questioned
its accuracy, even when it was updated to its newest soft-
ware version: the fourth generation. While Flotrac™ is
reasonably accurate in stable patients, in patients with
low SVR, Flotrac™ does not provide accurate CO mea-
surement when compared to invasive CO monitoring
[67]. For instance, Murata et al. showed that in end-stage
liver failure patients, fourth-generation Flotrac™ and
PAC readings had poor agreement with each other during
liver transplantation [72]. Moreover, Lin et al. found that
fourth-generation Flotrac™ had a 61.82% and 51.80%
error in estimating the CO before and after cardiopulmo-
nary bypass, respectively. Therefore, found it unsuitable
to be used during or after cardiopulmonary bypass [73].

Nonetheless, Flotrac™ remains popular and has
been used in multiple RCTs to guide GDFT with good
clinical outcomes [53,74]. For example, Yu et al. demon-
strated that in major gynecologic oncology surgery pa-
tients, Flotrac™-guided GDFT decreased postoperative
complications risk significantly (OR = 0.572), especially
in surgical site infection risk (OR = 0.127). Furthermore,
GDFT patients received significantly less fluid infusion
than the control group [74].

While Flotrac™ is easy and convenient to use,
many questions remain of its use in high-risk patients,
especially in patients suffering from vasoplegia. In the
future, newer software updates from the manufacturer
may resolve such issues and allow it to better estimate
hemodynamic parameters.
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LidCO™ for Goal-Directed Fluid Therapy

LiDCO™plus (Masimo, Irvine, CA, US) must be
calibrated by lithium dilution before being used. This cal-
ibration method boluses 0.5 to 1.0 ml of lithium chloride
(0.15 mmol ml"') through a central or peripheral venous
line. Then, blood is aspirated through an arterial catheter
at a constant rate of 4 ml min! with a disposable electrode
selective for lithium. The change in electrode voltage is
converted to plasma lithium concentration, and a lithium
concentration vs time curve is plotted to calculate plasma
flow. Blood flow is calculated with plasma flow divided
by 1 — packed cell volume [51].

After calibration, it uses a propriety PulseCO™ al-
gorithm, a pulse power algorithm, to calculate the CO.
The algorithm uses the conservation of mass, rather than
pulse contour, and assumes the net power change in a
heartbeat between the input of a mass (SV) of blood mi-
nus the blood mass lost to the periphery during the beat
has a linear relationship with net flow [75]. By doing so,
LiDCO™ can also calculate the SV, SVR, SVV, oxygen
delivery, and PPV.

LiDCO™plus has been validated and compared
against other hemodynamic monitoring systems. For
example, Mora et al. showed that LIDCO™plus is com-
parable to PAC thermodilution in patients with impaired
LV SV after cardiac surgery [76]. The newer models of
LiDCO™, such as the LiDCO™rapid and LiDCO™
LXi, are noninvasive and require no calibration. Instead,
they use a two-finger cuff applied to the patient’s hand
to measure the parameters. These newer models still use
the same algorithm and have shown benefits in multiple
RCTs [77,78]. More importantly, the OPTIMIZE trial
used LiDCO™rapid-guided GDFT, which showed post-
operative clinical benefits.

However, like Flotrac™, some studies have ques-
tioned LiDCO™rapid’s accuracy. For example, Asmao-
to et al. examined Flotrac™ and LiDCO™rapid across
a broad range of cardiac indexes (CI). Both monitors
tended to underestimate CIs when the PAC measured Cls
were relatively high [79]. LIDCO™rapid is a convenient
and noninvasive option to guide fluid therapy, though
there are unanswered questions about its utility in differ-
ent physiological states. More studies on different types
of surgery may help address some of these issues.

Masimo Radical 7 Pulse CO-Oximeter™ for Goal-
Directed Fluid Therapy

Masimo Radical 7 Monitor (Masimo, Irvine, CA,
US) can measure the PVi using a Masimo pulse oximeter,
which can be attached to the ear, digits, or forehead [80].
This monitor does not need to be calibrated and is nonin-
vasive. It is also the only commercially available monitor
to measure PVi.
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Multiple studies used Masimo pulse oximetry for
GDFT to achieve improved postoperative outcomes. For
instance, Saugel et al. showed that PVi-guided GDFT re-
duced ileus significantly and decreased fluid administrat-
ed in colorectal surgical patients [81]. Also, Collange et
al. found that a PVi >9% before renal artery unclamping
is an individual risk for delayed graft function in renal
transplant patients [82]. However, the Optimization using
the Pleth Variability Index (OPVI) trial, in which 447
ASA T and ASA 1I patients were randomized, showed
that forehead measured Pvi-guided GDFT did not shorten
hospital stay, or reduce postoperative complications such
as AKI. This study, however, attributed these results to
patients being of lower acuity [27].

Compared to other dynamic parameters, PVi is
equivalent. For example, Coeckelenbergh et al. showed
that in low- to intermediate-risk abdominal surgeries, pa-
tients who underwent PVi-guided GDFT or PPV-guided
GDFT had no significant differences in hospital length
of stay, postoperative outcomes, and amount of fluids
administered [83]. In another study, Pigkin et al. showed
that PVi and inferior vena cava distensibility index could
predict fluid responsiveness comparably in intensive care
patients [84].

However, PVi may be inaccurate in specific patient
populations. Konur et al. found that in liver transplant
patients, PVi cannot distinguish fluid responders from
non-responders. PVi value was similar at baseline be-
tween responders and non-responders in the dissection
and anhepatic phase. Only SVV measured by the PiC-
CO™ monitoring system was reliable [85]. Likewise,
Le Guen et al. showed that PVi does not respond to fluid
challenges and had poor agreement with esophageal dop-
pler measurements in renal transplant patients [86].

Because PVi measurements require adequate per-
fusion, a change in blood flow may affect its reading.
Currently, Masimo Radical 7 Pulse CO-Oximeter™
cannot determine if a decrease in blood flow is due to a
depressed cardiovascular system or impaired blood flow
to the tissue. Additionally, any physiological or patholog-
ical influences on the peripheral vascular flow, such as
in patients with severe Raynaud’s phenomenon or with
peripheral vascular disease, may affect PVi readings [87].
Thus, PVi should be used and interpreted cautiously.

ClearSight™ for Goal-Directed Fluid Therapy

ClearSight™ (Edwards Lifesciences, Irvine, CA,
USA) is a noninvasive monitor which uses a finger cuff to
estimate CO, SV, SVV, SVR, and mean arterial pressure
(MAP). It was introduced in 2007 as Nexfin™. The finger
cuff inflates and deflates to keep the diameter of finger
arteries constant throughout the cardiac cycle. From the
finger pressure waveform, it calculates the brachial pres-
sure waveform using an algorithm. Then, it uses the pulse
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contour method to estimate CO [88].

Conflicting studies have shown that ClearSight™
may or may not be comparable to other invasive or
minimally invasive hemodynamic monitoring systems.
For example, Wang et al. showed that ClearSight™ is
comparable to PAC thermodilution in estimating CO in
cardiac surgery patients [89]. However, while Tanioku
et al. found that ClearSight™ was interchangeable with
arterial catheters in measuring MAP, it had significant
biases when measuring SBP and DBP in cardiovascular
surgeries [90]. Moreover, Kanazawa et al. demonstrat-
ed that ClearSight™ was inaccurate in estimating CI in
patients with reduced cardiac ejection fraction (<55%)
when compared to PAC thermodilution. However, it is
accurate in measuring MAP [91].

Some studies also found that ClearSight™-guided
GDFT has no postoperative benefits. Stens et al. showed
that using ClearSight™ calculated CI, PPV and MAP for
GDFT guidance had no impact on postoperative com-
plications [92]. Furthermore, Fischer et al. found that in
low-risk colorectal patients, using ClearSight™-guided
GDFT does not affect hospital length of stay, postopera-
tive mortality, and the total number of complications [93].
Similarly, Davies et al. found that ClearSight™-guided
GDFT offers no postoperative complication benefits in
high-risk patients undergoing hip fracture repair [94].
Given these questionable study results, this monitoring
system needs to be studied more in multicenter RCTs to
verify its benefit in GDFT.

PiCCO™ for Goal-Directed Fluid Therapy

PiCCO™ (Pulsion Medical System, Munich, Ger-
many) uses the transpulmonary thermodilution technique
for CO estimations. To calibrate the monitor, it requires
a bolus of cold saline in a central venous catheter, then
a thermo-sensor tip arterial catheter senses the decrease
in blood temperature. The difference between this system
and PAC transpulmonary thermodilution is that the cold
solution is bolused into a central vein, not in the right
atria. Therefore, the temperature change detection is
at a peripheral artery rather than the pulmonary artery.
Uniquely, this monitoring system can also measure glob-
al end-diastolic volume [95], global ejection fraction,
intrathoracic blood volume, and extravascular lung water
[96].

Goedje et al. found that PICCO™ had a compara-
ble and robust correlation with PAC thermodilution with
a mean bias of 0.07-liter min' (2 SD 1.4-liter min') in
post-cardiac surgery patients. These patients had vari-
ous CO (ranging from 3.0 to 11.8 liter min') and SVR
(ranging from 252 to 2434 dyn s cm™) [97]. Moreover, it
has been shown to improve postoperative outcome when
used to guide GDFT. For instance, Jing et al. demonstrat-
ed that PICCO™.-guided GDFT decreased volume infu-
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sion, hospital stay length, and time needed for ambulation
[98]. However, in emergency surgeries, PICCO™.-guided
GDFT increased major complications (95% vs 40% in the
control group) and did not decrease in-hospital mortality
[99].

While PiCCO™ offers a less invasive approach than
PAC, it still requires a central venous catheter and arteri-
al catheter, which may be impractical in many surgeries
and can only be used in high-risk patients. Therefore, this
method continues to have many limitations.

Esophageal Doppler for Goal-Directed Fluid
Therapy

Esophageal Doppler (ED) is an ultrasound-based
technique introduced in the 1970s, which allows aortic
blood flow measurements in the descending thoracic aor-
ta to calculate CO and SV [100]. It is the only minimal-
ly invasive CO monitor evaluated and endorsed by the
United States Agency for Healthcare Research and Qual-
ity and the United Kingdom Centre for evidence-based
purchasing [101].

The ED is a 6-mm probe positioned at the distal
esophagus to measure blood flow velocity in the descend-
ing thoracic aorta. The blood flow velocity waveform also
can be used to measure flow time, which is the time from
the start of the waveform upstroke to return to baseline.
When corrected for HR, flow time is found to be a sen-
sitive measure of LV filling, thus an accurate RV preload
measurement [102].

ED is comparable to PAC thermodilution in mea-
suring intensive care patients’ CO [103]. Studies also
showed that ED produced similar clinical results as
Flotrac™-guided GDFT [104] and NICOM-guided
GDFT [105]. Furthermore, a systemic review by ECRI
Evidence-based Practice Center, an independent federal-
ly certified patient safety organization by the US Depart-
ment of Health and Human Services, has found that there
is high quality evidence that ED reduces postoperative
complications and hospital length of stay [106]. Due to
its accuracy and longevity, ED had become the noninva-
sive fluid status monitor of choice. Both the RELIEF and
FEDORA trials used ED-guided GDFT.

Despite much evidence supporting ED’s use in
GDFT, some limitations exist. First, it requires some
skills; thus, the user must be trained. Secondly, it cannot
be used in esophageal surgeries, patients with esophageal
anatomical anomalies, or with recent esophagus surger-
ies. Thirdly, liver cirrhosis patients may have esophageal
varices and ED can induce bleeding. Finally, the doppler
signal can be poor due to aorta or user issues.

Echocardiogram (ECHO) for Goal-Directed Fluid
Therapy
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Transesophageal (TEE) or Transthoracic Echocar-
diogram (TTE) are frequently used to guide fluid therapy
in high-risk cardiothoracic and liver transplant surgeries.
They are ultrasound imaging techniques that can visual-
ize the heart or the aorta directly [107]. This direct vi-
sualization allows multiple hemodynamic parameters to
be calculated or measured in real-time. For example, the
LV outflow tract velocity time integral (VTI) is a mea-
surement by ECHO of how far blood travels during the
flow period. It is a LV systolic function surrogate, which
can be used to calculate the SV and then the CO, by
multiplying with HR [108]. Moreover, TEE can estimate
the preload using the LV end-diastolic area [109]. These
visualized changes in preload can detect even minor vol-
ume deficits. TEE and TTE can also detect inferior vena
cava diameter variations (AIVCD) during tidal respira-
tion in mechanically ventilated patients, which correlates
with SVV [110]. AIVCD can also be used to calculate the
caval index (Figure 3); a caval index <50% is strongly
associated with a CVP of <€ mmHg [111].

While TEE and TTE are well-established monitors
for fluid resuscitation intraoperatively and has shown
benefits in intensive care patients, it lacks studies on post-
operative outcomes in low- and moderate-risk surgeries.
Furthermore, TEE has limitations. It cannot be used in
patients with previous esophageal surgeries and cannot
be used in esophageal surgeries. Probe insertion can lead
to bleeding in cirrhotic patients with esophageal varices.
Also, both TTE and TEE probes must be positioned by a
trained professional to interpret the images. Finally, the
TEE probe cannot be used in awake patients.

Currently, TEE-guided GDFT is being investigated
in a multicenter RCT for pediatric surgery postoperative
outcomes [112]. It will be interesting to see how it will
impact pediatric resuscitation.

CONCLUSION

In the last 20 years, there has been much advance in
noninvasive detection of fluid status perioperatively, as
an alternative to using PAC thermodilution. Each moni-
toring system uses different physiological principles and
offers various pros and cons. Furthermore, these systems
use different algorithms and methods to calculate dynam-
ic parameters. Because of these different calculations, dif-
ferent monitors can display different values for the same
dynamic parameter. As such, a clinician should consider
the type of surgery being done, and the current evidence
for GDFT-guided by that monitoring system and dynamic
parameter. Moreover, a clinician should understand and
be familiar with how dynamic parameters are calculated,
and how they are derived from the monitoring systems.

Dynamic parameters are all based on the physiolog-
ical principles of mechanical ventilation, intra-thoracic
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pressure, and LV SV changes. Thus, they have the same
limitations. To ensure accurate measurement, the patient
must be: 1) Mechanically ventilated, 2) Chest must be
closed, 3) In sinus rhythm, and 4) Intra-abdominal pres-
sure must be in the normal range. In addition, low arterial
compliance and respiratory system compliance <30 mL/
cm H,O can decrease the accuracy of parameters [42,43].
However, these factors may be compensated by the mon-
itoring systems’ algorithm.

The selection of dynamic parameters for GDFT
guidance is also affected by the surgery itself. For exam-
ple, PVi has been shown to be unreliable in predicting
fluid responsiveness in cardiac surgery patients when
compared to PPV and SVV [113]. Even if the dynamic
parameter is selected carefully, it has been demonstrated
that few patients fit all the criteria for accurate dynamic
parameter measurements in both perioperative and inten-
sive care settings [40,114]. For example, Maguire et al.
found that only 39% of surgical patients met the criteria
for accurate noninvasive plethysmographic waveform
variations monitoring [40]. Therefore, suggests that many
providers may not be aware of all the requirements and
surgical nuances for using dynamic parameters, leading
to false readings and wrong interpretations.

Currently the American Society of Anesthesiologists
nor other international medical societies endorse the use
of any hemodynamic monitoring systems or dynamic
parameters to guide GDFT. Furthermore, there are no
GDFT clinical guidelines due to ongoing debates of its
uses and benefits. However, there is strong evidence that
esophageal doppler, as endorsed by the United States
Agency for Healthcare Research and Quality and the
United Kingdom Centre for evidence-based purchasing,
can improve postoperative outcomes [101].

OUTLOOK

While GDFT has been more prevalent than in previ-
ous decades, there continues to be slow adaptation of this
fluid regimen, even though multiple studies have reported
that GDFT offers postoperative benefits and is cost-effec-
tive. In a survey of anesthesiologists, only 35% reported
they “always” use GDFT in the United States. Worse yet,
only 15% and 10% of the anesthesiologist in the United
Kingdom and Australia/New Zealand reported they “al-
ways” use GDFT respectively. The most common reason
was the lack of monitoring tools availability, followed by
a lack of experience with instruments [115].

With more RCTs, hopefully, there will be a change
in attitude towards using GDFT and purchasing hemo-
dynamic monitoring systems. It will be exciting to fol-
low the current global multicenter RCT, the OPTIMISE
IT trial, which launched in January 2017. With over 30
participating centers in multiple countries, it has enrolled
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2,502 patients undergoing major elective gastrointestinal
surgery. This study will be the largest GDFT trial to date
and will be using ClearSight™ or Flotract™ as hemo-
dynamic monitors, with SVV as the dynamic parameter.
Primary outcomes will be 180 day mortality, 30-day AKI
rate, and acute cardiac event within 24 hours and 30 days
[116].

As technology advances, perioperative hemodynam-
ic monitors have also become more non-invasive. One
exciting technology is the wireless and wearable doppler
which may be comparable to TEE. For example, Kenny
et al. showed that a wearable wireless carotid doppler at
the common carotid artery is equivalent to TEE during
coronary bypass surgeries; it can accurately detect the
common carotid artery VTI, and significant changes in
SV and aortic VTI after a straight leg raise test [117,118].
Wang et al. also described a wearable and flexible ultra-
sound doppler device similar to an electrocardiogram
lead which can monitoring real time blood flow velocities
in human arteries [119]. These new technologies and de-
vices can circumvent the minimally invasive or invasive
hemodynamic monitor systems’ limitations.

Another exciting progress is the increasing use of
artificial intelligence, machine learning and big data to
solve hemodynamic problems. Hatib et al. described the
hypotension prediction index, which is developed by ma-
chine learning from the arterial waveform of 13,000 past
hypotensive events and 12,000 non-hypotensive events.
HPI can predict hypotension 15 minutes before the actual
event occurs [120]. In the future, a new hemodynamic
algorithm may go beyond PPV or SVV to allow patient
fluid resuscitation before hypotension happens.
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