
C
V
O

Jo
M
K
M

*D
U

www.neoplasia.com

Volume 21 Number 6 June 2019 pp. 615–626 615

Address all cor
E-mail: mcsk
1Conflicts of
Received 14 F
ellular Metabolic Heterogeneity In
ivo Is Recapitulated in Tumor
rganoids1
TN
O
W
M
La
M
C
53
B
40
37
U
In
N
U
B
W

respondence to:Melissa C. Skala, 330N.Orchard St.,Madison,WI 53715.
ala@wisc.edu
interest: The authors declare no potential conflicts of interest.
ebruary 2019; Revised 9 April 2019; Accepted 10 April 2019

©
acc
14
ht
e T. Sharick*,†, Justin J. Jeffery‡,
ohammad R. Karim†, Christine M. Walsh†,
arla Esbona§, Rebecca S. Cook*, ¶,#, ** and
elissa C. Skala†,††

epartment of Biomedical Engineering, Vanderbilt
niversity, PMB 351631, 2301 Vanderbilt Place, Nashville,
, 37235, USA; †Morgridge Institute for Research, 330 N.

rchard Street, Madison, WI, 53715, USA; ‡University of
isconsin Carbone Cancer Center, 600 Highland Avenue,
adison, WI, 53792, USA; §Department of Pathology and
boratory Medicine, University of Wisconsin School of
edicine and Public Health, 3170 UW Medical Foundation
entennial Building, 1685 Highland Avenue, Madison, WI,
705, USA; ¶Department of Cell and Developmental
iology, Vanderbilt University School of Medicine, PMB
7935 U-3218, Medical Research Building III, Nashville, TN,
240, USA;; #Department of Cancer Biology, Vanderbilt
niversity School of Medicine, Nashville, TN; **Vanderbilt
gram Cancer Center, Vanderbilt University Medical Center,
ashville, TN; ††Department of Biomedical Engineering,
niversity of Wisconsin-Madison, Engineering Centers
uilding, 1550 Engineering Drive Room #2130, Madison,
I, 53706
Abstract
Heterogeneous populationswithin a tumor have varyingmetabolic profiles, which canmuddle the interpretation of
bulk tumor imaging studies of treatment response. Although methods to study tumor metabolism at the cellular
level are emerging, these methods provide a single time point “snapshot” of tumor metabolism and require a
significant time and animal burden while failing to capture the longitudinal metabolic response of a single tumor to
treatment. Here, we investigated a novel method for longitudinal, single-cell tracking of metabolism across
heterogeneous tumor cell populations using optical metabolic imaging (OMI), which measures autofluorescence
of metabolic coenzymes as a report of metabolic activity. We also investigated whether in vivo cellular metabolic
heterogeneity can be accurately captured using tumor-derived three-dimensional organoids in a genetically
engineered mouse model of breast cancer. OMI measurements of response to paclitaxel and the
phosphatidylinositol-3-kinase inhibitor XL147 in tumors and organoids taken at single cell resolution revealed
parallel shifts in metaboltruic heterogeneity. Interestingly, these previously unappreciated heterogeneous
metabolic responses in tumors and organoids could not be attributed to tumor cell fate or varying leukocyte
content within the microenvironment, suggesting that heightened metabolic heterogeneity upon treatment is
largely due to heterogeneousmetabolic shifts within tumor cells. Together, these studies show that OMI revealed
remarkable heterogeneity in response to treatment, which could provide a novel approach to predict the presence
2019 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open
essarticleunder theCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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of potentially unresponsive tumor cell subpopulations lurking within a largely responsive bulk tumor population,
which might otherwise be overlooked by traditional measurements.

Neoplasia (2019) 21, 615–626
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here is accumulating evidence that tumor cell populations are
terogeneous, enabling heterogeneous responses to treatments that
ay either enhance or inhibit treatment sensitivity [1–4]. Minority
pulations of tumor cells with innate treatment resistance have been
entified, such as CD24+ breast cancer cells, which exhibit resistance
certain chemotherapies [5,6]. The presence of minority tumor cell
bpopulations with innate resistance to treatment can ultimately
sult in tumor recurrence, even under circumstances when the
iginal tumor, comprised mainly of treatment sensitive cells,
sponds to treatment. Clinicians lack the tools necessary to assess
is heterogeneity and to recommend optimal treatment plans for
ch individual patient. It is also difficult to study the process by
hich tumors evolve to obtain variability in cellular treatment
nsitivity. Current techniques to perform high-throughput in vivo
ug screens and assess heterogeneity are destructive to the cells and
quire enormous animal burden. These limitations not only hinder
r understanding of the mechanisms behind tumor heterogeneity
d recurrence, but also obstruct the discovery of novel drugs and
ug combinations that combat the emergence of therapy-resistant
bpopulations of cells. To address these problems, a platform is
eded that faithfully recapitulates and quantifies in vivo cellular
terogeneity in vitro.
Next-generation single-cell sequencing can be used to characterize
netic diversity by identifying mutant subclones [7–11], and the
mber of subclonal driver mutations has predictive value for a
tient's overall survival [12]. However, the predictive ability of single
ll sequencing in the clinical setting relies on genetic mutations that
e already known. Therefore, the remarkable advances provided by
ngle-cell sequencing still cannot provide a true predictive analysis of
eatment-resistance tumor cell subpopulations that may lurk within a
rger tumor cell population. Further, the sensitivity of a cell to a
ecific drug is a complex combination of both genetic and
ngenetic factors, including cellular metabolism [13,14]. To fuel
errant proliferation rates, cancer cells reprogram their metabolic
achinery to incorporate nutrients into required pathways even in
e absence of growth factor signals [15,16]. However, not all cells in
tumor alter their metabolism in the same manner. In response to
ique levels of oxygen, glucose, pH, cytokines, and extracellular
atrix proteins in their microenvironment, individual cells adapt
propriately to maximize their survival [14,17]. These mechanisms
adaptation also affect cell resistance to cytotoxic drugs and
munotherapies [18,19], resulting in subpopulations of tumor cells
ith differing sensitivities to treatment. This highlights the need for a
nctional readout of heterogeneity that is based on cell metabolism.
Given the limitations of genetic testing on predicting treatment
sponse, alternative approaches which directly measure drug response in
mor cells are under investigation. For example, testing treatment
sponse in mouse patient-derived xenograft models captures in vivo
netic heterogeneity and can be used to predict patient response tomany
erapies [20]. However, patient-derived xenografts require enormous
mbers of animals for high-throughput drug screening and cannot be
rformed in a clinically beneficial time frame. Alternatively, in vitro
ncer organoids can be used to screen drugs directly on patient cells,
leviating the burdens of time, animals, and cost [21]. Organoids
aintain the genetic, histopathological, and 3-dimensional characteris-
s, along with the functional surface markers of the original tumor for a
riety of cancer types [22–25]. Additionally, organoids contain stromal
lls that can facilitate therapeutic resistance [26].Many organoids can be
ltured from a single patient biopsy, supporting the feasibility of
reening patient-derived tumor organoids for sensitivity to a variety of
eatments.
Optical metabolic imaging (OMI) is a label-free two-photon
icroscopy technique that quantifies single-cell metabolic changes
ith treatment both in tumors in vivo [27] and in tumor-derived
ganoids [28]. OMI uses the endogenous fluorescent properties of
etabolic coenzymes NAD(P)H and FAD. The optical redox ratio,
the ratio of the fluorescence intensity of NAD(P)H to that of FAD,
flects the redox state of the cell [29–31]. The fluorescence lifetimes
NAD(P)H and FAD are distinct for the free and protein-bound
nformations of both molecules and thus reflect enzyme binding
2–34]. These OMI variables, integrated to form a composite OMI
dex, reflect early metabolic shifts and thus can evaluate drug
sponse prior to changes in cell viability or tumor size [21,35,36].
he nondestructive nature of this technique allows heterogeneity to
tracked in organoids over time to analyze the potential for drug

sistance evolution in the original tumor. This is not possible with
her methods for measuring heterogeneity (e.g., flow cytometry,
ngle-cell sequencing, or immunolabeling) because these standard
ethods are destructive.
OMI of cancer organoids has been validated as an accurate
edictor of in vivo drug response in xenograft models generated from
man breast cancer and head and neck cancer cell lines [21,35] and a
ouse model of pancreatic cancer [36], but it is unclear whether the
terogeneity measured in organoids also accurately mirrors the
iginal tumor. Here, we investigate whether in vivo heterogeneity is
flected in vitro in organoids using OMI measurements in vivo and
organoids derived from the polyomavirus middle T (PyVmT)
ouse model. The PyVmT model closely mimics the stages and
ogression of human breast cancer, exhibits more heterogeneity than
man cell line xenografts, and can develop in a fully immunocom-
tent mouse [37]. This study demonstrates that OMI of in vitro
mor organoids accurately captures in vivo heterogeneous response
treatment at the single-cell level in a relevant breast cancer model.

aterials and Methods

rthotopic PyVmT Tumors

Animal research was approved by the Institutional Animal Care
d Use Committees at Vanderbilt University and the University of
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isconsin-Madison. Orthotopic tumors were initially generated by
jecting 106 PyVmT cells suspended in 100 μl of a chilled 1:1
ixture of DMEM (Gibco #11965) and Matrigel (Corning
54234) into the fourth inguinal mammary fat pads of 6-week-
d FVB female mice (The Jackson Laboratory #001800) using a 26-
uge needle. The PyVmT cell line was derived from tumors isolated
om transgenic FVBMMTV-PyVmTmice (The Jackson Laboratory
02374). Tumors were passaged by mechanically dissociating an
isting tumor, passing the tumor cell suspension through a 70 μm
rainer, and injecting the cells into a new 6-week-old FVB mouse.

DG-PET/CT Imaging
Mice were randomized and imaged prior to treatment (when
mors grew to N200 mm3) and then imaged weekly over a 14-day
me course at the University of Wisconsin Small Animal Imaging and
adiotherapy Facility by trained staff (J.J.J., J.T.S.). 10 mg/kg
clitaxel (Vanderbilt University pharmacy/University of Wisconsin
armacy) was diluted in 150 μl PBS and injected intraperitoneally
ice weekly. 50 mg/kg XL147 (Selleckchem) was suspended in
0 μl 1% DMSO and delivered by oral gavage daily. Control mice
ceived 100 μl 1% DMSO by oral gavage daily and 150 μl PBS by
traperitoneal injection twice weekly. Prior to PET/CT imaging,
ice were fasted for 12 hours. One hour prior to imaging,
.25 MBq of [18F]FDG was delivered by tail vein injection, and
ice were immediately anesthetized under 4% isoflurane, maintained
1.5%, and warmed with a heated bed until the end of the imaging
ocedure. The mice were scanned using an Inveon microPET/CT
iemens Medical Solutions, Knoxville, TN) in the prone position.
rty-million counts per mouse were collected for the PET scan to
tain adequate signal-to-noise. PET data were histogrammed into
e static frame and subsequently reconstructed using ordered-subset
pectation maximization of three dimensions followed by the
aximum a posteriori algorithm, and CT attenuation and scatter
rrection were applied based on the NEMA NU 4 image-quality
rameters [38]. Inveon Research Workplace software (Siemens
edical Solution, Knoxville, TN) was used to measure tumor volume
d glucose uptake. PET and CT images were co-registered, and
anual regions of interest (ROIs) were drawn around each tumor.
G uptake was measured as the decay-corrected percent injected
se normalized by the mass of the tissue (%ID/gtissue) assuming the
nsity of the ROI tissue is equal to water. Five tumors from five mice
ere imaged per treatment group.

luorescence Lifetime Imaging
A custom multiphoton fluorescence lifetime system (Bruker
uorescence Microscopy) was used to acquire fluorescence images.
titanium:sapphire laser (Chameleon Ultra II, Coherent) was used
r excitation, while GaAsP photomultiplier tubes (H7422P-40,
amamatsu) were used to detect emission photons. A 40x water
mersion objective (Nikon, 1.15 NA) was used with an inverted
icroscope (Nikon, TiE). Two-photon excitation of NAD(P)H and
D was performed with 750 nm and 890 nm light, respectively. A
0/80 nm filter was used to isolate NAD(P)H fluorescence
ission, and a 550/100 nm filter was used for FAD fluorescence
ission. 256×256 pixel images were acquired using a pixel dwell

me of 4.8 microseconds and a 60-second collection time. Time-
rrelated single photon counting electronics (SPC-150, Becker &
ickl) were used to acquire fluorescence lifetime data with 256 time
ns. A single Fluoresbrite YG microsphere (Polysciences) was imaged
ch day as a fluorescence lifetime standard. The measured lifetime
.15 ± 0.08 ns, n = 7) was stable and consistent with previously
blished values [27,33,35,39,40]. For each field of view, an NAD
)H image was acquired first followed immediately by an FAD
age.

travital OMI
Treatment was initiated when tumors reached N200 mm3. Forty-
ght hours after initial treatment, and 1 hour following final
eatment, mice were anesthetized using isoflurane, and a small
rtion of skin was removed to expose the underlying tumor. OMI
as performed on at least four fields of view and at least 450 total cells
r tumor. Following imaging, mice were euthanized while under
esthesia, and tumors were extracted and fixed. Five tumors from
e different mice were imaged per treatment group.

issue Processing and Organoid Culture
Excised tumors were rinsed in PBS and thoroughly minced in
MEM with dissecting scissors. The resulting cell macrosuspension
as chilled on ice and mixed with Matrigel at a 1:2 ratio, and 100 μl
the resulting mixture was pipetted into 35 mm glass-bottom dishes
P35G-1.5-14-C, MatTek). Gels were allowed to solidify slowly at
om temperature for 30 minutes and then placed in a 37°C, 5%
O2 incubator for 1 hour before being overlaid with DMEM
pplemented with 10% FBS and 1% penicillin-streptomycin
ibco).

rganoid Imaging
Twenty-four hours prior to imaging, organoid media was replaced
ith fresh media containing 500 nM paclitaxel, 25 nM XL147, or
1% DMSO vehicle. These doses were chosen to replicate in vivo
ses [21]. Organoids were imaged after 24, 48, and 72 hours of
eatment. At least six organoids from each treatment group were
aged at each time point, containing at least 290 cells in total for
ch treatment group. The length of the longest dimension in each
ganoid was quantified using ImageJ [41].

MI Endpoint Images
The optical redox ratio was computed from NAD(P)H and FAD
etime images. First, the fluorescence intensities of NAD(P)H and
D are determined by the total number of photons detected over
e collection time. Then, the intensity of NAD(P)H is divided by
e intensity of FAD in each pixel. SPCImage software was used to
alyze fluorescence lifetime images (Becker & Hickl) [42]. First,
orescence decay curves for NAD(P)H and FAD are generated for
ch pixel by assigning all photon events into 256 temporal bins.
etected photons from the eight neighboring pixels are also included
each curve to increase photon counts. This decay curve is
convolved with the measured instrument response function and fit
ith a two-component exponential decay Eq. (1).

I tð Þ ¼ α1 exp−t=τ1 þ α2 exp−t=τ2 þ C ð1Þ
t) represents the fluorescence intensity measured at time t following
laser pulse; α1 and α2 represent the percentage of the overall signal
ade up by the short and long lifetime components, respectively; τ1
d τ2 are the short and long lifetime components, respectively; and
represents background light. The use of a two-component fit was
osen in order to differentiate the free (τ1) and bound (τ2) states of
AD(P)H and the free (τ2) and bound (τ1) states of FAD [32,43].
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he mean lifetime (τm) of NAD(P)H and FAD for each pixel is the
eighted average of the free and bound lifetimes Eq. (2).

τm ¼ α1 � τ1 þ α2 � τ2 ð2Þ
A CellProfiler routine was written to automatically distinguish
tween individual cell cytoplasms and the nuclei they encircle
4,45]. For each cytoplasm detected, values for the redox ratio and
l NAD(P)H and FAD lifetime variables were calculated by averaging
e incorporated pixels within the cytoplasm.

MI Index
The redox ratio, NAD(P)H τm, and FAD τm were normalized to
erage values in control cells for the OMI index calculation. In vivo,
lues are normalized to averages of all cells imaged in all control mice
the same day. In vitro, values are normalized to averages of all cells

om all control organoids imaged on the same day. In both cases, the
MI index is calculated for each cell using a linear combination of the
ntrol-normalized redox ratio, NAD(P)H τm, and FAD τm with
efficients of (1, 1, −1), respectively. A decrease in OMI index
rrelates with drug sensitivity [21].

eterogeneity Analysis
Histograms were generated for all cells within a group using
dividual cell OMI indices. The histogram is fit to Gaussian mixture
stribution models containing one, two, or three components using
iterative expectation maximization algorithm. Each component

presents a distinct subpopulation of cells. Goodness of fit for each
odel was evaluated using the Akaike information criterion [46], and
ly the model with best fit was implemented. For each group, this
ocess is repeated 1000 times. For visual comparison, example
stributions are normalized to have equal areas under the curve.
milar numbers of cells were imaged in each tumor and in each
ganoid treatment group to provide similar power to identify
bpopulations in each distribution [47]. The heterogeneity index is a
lidated metric for quantifying heterogeneity in a population
7,48]. Here we present a modified version, the weighted
terogeneity index (wH-index), which also takes into account the
andard deviations of all subpopulations.

wH‐index ¼
X

1−pi ln pi þ 1ð Þð Þ � σ i þ diÞð ð3Þ

Here, i represents each subpopulation, d represents the distance
tween the median of each subpopulation and the median of the
tire distribution, p represents the proportion of all cells belonging
that subpopulation, and σ is the standard deviation.

istological Analysis
Immediately following in vivo tumor imaging at 48 hours of
eatment, tumors were collected and fixed in 10% neutral buffered
rmalin for 48 hours. Tumors were oriented and paraffin embedded
ch that 5 μm slices were taken from the imaged portion of the
mor. Also immediately following imaging at 72 hours of treatment,
atrigel droplets containing organoids were detached from glass
verslips and encased in agarose. These agarose gels were placed in
% neutral buffered formalin for 48 hours, paraffin embedded, and
iced into 5 μm sections starting from the center. Organoid histology
periments were duplicated and results were combined. Tumors and
ganoid sections were stained using immunohistochemistry (IHC)
r CD45 (ab10558, Abcam, 32 minutes), vimentin (ab92547,
bcam, 32 minutes), alpha smooth muscle actin (αSMA) (ab5694,
bcam, 32 minutes), wide-spectrum cytokeratin (ab9377, Abcam,
minutes), polyoma virus middle T antigen (sc-53,481, SantaCruz,
minutes), Ki67 (ab15580, Abcam, 28 minutes), cleaved caspase 3

661, Cell Signaling, 28 minutes), phospho-histone H3 (9701, Cell
gnaling, 16 minutes), and phospho-PRAS40 (2997, Cell Signaling,
minutes). Positive staining was visualized with diaminobenzidine
AB) and counterstained with hematoxylin.

istology Imaging and Quantification
Multispectral image cubes were acquired using a Nuance
ultispectral imaging microscope and software (Perkin Elmer)
9]. Images of transmitted light were taken from 420 nm to
0 nm with 20-nm steps and converted to optical densities using a
ank reference image. Image cubes were unmixed using a spectral
rary to isolate individual stains and exclude background signals.
dividual cells (stained with DAB and counterstained with
matoxylin) in tumor and organoid images were automatically
gmented using inForm Cell Analysis software (Perkin Elmer). In
ganoid images, machine learning was used to train a feature-
cognition algorithm to automatically recognize and distinguish
tween individual cellular organoids, extracellular matrix, and
ckground regions. For each stain, a random selection of 10% of
l images was used as a training set. Organoid, background, and
tracellular matrix regions were manually defined in this set, which
as then used to train a segmentation algorithm until it had N92%
curacy. Finally, this algorithm was used to segment all images. For
mors, algorithms were similarly trained to distinguish between
mor and stromal compartments. Next, individual cells were
tomatically segmented by thresholding the intensity of the nuclear
ematoxylin counterstain. Only cells in tumor or organoid
mpartments were quantified. Individual cells were scored as
sitive or negative for a particular target antibody by thresholding
r the mean pixel intensity of DAB within each cell. At least four
ndom fields of view were acquired per stain per tumor, for a total of
least 23 images per stain per treatment group. Organoids
ntaining less than five cells were rejected from analysis, and at
ast 35 organoids were quantified per stain per treatment group.

tatistical Analysis
Normalized tumor volumes and glucose uptake values were
mpared using a Student t‐test with Bonferroni correction for
ultiple comparisons. Significant differences in OMI variables, wH-
dices, IHC percentages, and organoid longest dimensions between
eatment groups were tested using a Wilcoxon rank-sum test.
reatment effect size was calculated with Glass's Δ [50], with
rectionality determined by the response of HER2+ cell line
nografts to trastuzumab [21]. Preliminary data from our group
ow that an OMI index treatment effect size threshold of 0.75 in
mor-derived organoids accurately classified pancreatic cancer
tients based on their recurrence-free survival time during adjuvant
erapy [51]. This is similar to a previously suggested cutoff of 0.8 for
rge effect sizes [52].

esults

ET/CT of In Vivo Treatment Response
Response to treatment with paclitaxel and XL147 was measured in
thotopic PyVmT allograft tumors and tumor organoids. Paclitaxel
an FDA-approved chemotherapy for breast cancer that has been
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own to reduce tumor growth rates in orthotopic PyVmT tumors
3]. XL147, an inhibitor of the phosphatidylinositol-3 kinase family
I3K), was also chosen due to the dependence of the PyVmT model
PI3K activity [54–56] and for its use in clinical trials for breast

ncer. To verify response to treatment, FDG-PET measurements
ere taken of tumors treated with paclitaxel, XL147, and
mbination (P + X) over 14 days (Figure 1). Subsequent CT
easurements were also taken in order to better visualize the tumor in
e mammary fat pad and distinguish tumor-associated signal from
ckground (Figure 1A). While XL147 alone and paclitaxel alone did
t affect tumor growth after 2 weeks, the combination of both drugs
gnificantly decreased tumor growth vs. vehicle (P b .05, Figure 1B).
o differences in FDG uptake were observed with treatment (Figure
-2
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). A reduction in pPRAS40 staining in XL147-treated tumors and
ganoids confirms successful PI3K inhibition (Supplementary
gure S1).

MI of Cellular Metabolic Heterogeneity In Vivo
Intravital OMI was performed to determine how treatment affects
mor metabolic heterogeneity in vivo at a cellular level. Represen-
tive images demonstrate that OMI can visualize single-cell
etabolic properties in these tumors (Figure 2A). Response was
antified using the OMI index after 48 hours of treatment with
ther vehicle or P + X in five mice per group (Figure 2B). Across all
lls from all tumors, P + X treated cells had a significantly lower
MI index compared with vehicle controls (P b .0001, Figure 2C).
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istograms of cell OMI indices were fit to Gaussian mixture
stribution models (Figure 2D, plotted separately in Supplementary
igure S2). Vehicle-treated tumors exhibited higher degrees of
riance in their single-cell OMI index distributions compared to
+ X treated tumors. The smallest subpopulation detected in tumors
presented 29.0% of the overall population (vehicle). The degree of
terogeneity in each tumor is quantified using a modified form of
e heterogeneity index [27,48] with an additional term added for the
andard deviation of each individual subpopulation (wH-index).
+ X treatment was found to significantly decrease the in vivo wH-
dex vs. vehicle (P b .05, Figure 2E).
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Next, responses to the same therapies were measured in PyVmT
mor-derived organoids to determine if organoid heterogeneity is similar
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e mitochondria and cytoplasm. Thus, FAD intensity values for
dividual cells can vary depending on how many mitochondria are
esent in the focal plane. This supports the complimentary use of FAD
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omparison of Drug Treatment Effect Sizes on OMI Variables
The effect size of drug treatment on individual OMI variables was
lculated for all cells in tumors and organoids using Glass's Δ [50]
igure 4). P + X treatment had large effects (Δ N 0.75) on the redox
tio and OMI index at 24, 48, and 72 hours in organoids (Figure 4,
-C) and in tumors at 48 hours (Figure 4D). P + X did not have a
rge effect on individual lifetime variables, except at 48 hours in
mor-derived organoids. XL147 alone also had a large effect on the
MI index and redox ratio at all time points in organoids. Paclitaxel
one had a large effect on the redox ratio at only 24 hours in
ganoids, and did not have a large effect on OMI index at any time
int. The correlation between Glass's Δ values with P + X treatment
vivo at 48 hours versus organoids at 24, 48, and 72 hours was

gnificant at all time points (P b .05, Pearson's correlation),
dicating that changes in OMI variables with P + X treatment in
ganoids faithfully mirror in vivo changes.

haracterization of Cell Types in PyVmT Tumors and
rganoids
Histology of PyVmT tumors and organoids was performed to
termine if the distinct cell subpopulations measured in Figures 2
d 3 were comprised of different cell types, cells undergoing
optosis or proliferation, or cells simply employing unique metabolic
rategies. Expression of vimentin and αSMA and loss of wide
ectrum cytokeratin expression in all tumors and organoids indicate
at cells had undergone epithelial to mesenchymal transition prior to
aging (Figure 5). Expression of PyVmT antigen in both tumors
d organoids (Figure 5) confirms that cells matched the tumors of
igin.
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sitive staining of all markers across all fields of view (FOVs) and
ganoids was not affected by treatment. Overall, these cell fates and
ll types are unlikely to be responsible for the decrease in OMI index
d its heterogeneity with P + X treatment because none of the
sitive percentages of these markers significantly changed with
eatment in both tumors and organoids.

iscussion
o optimize a treatment plan for an individual cancer patient, a
inician must understand how various drug options will affect all the
lls in a patient's uniquely heterogeneous tumor. While recent
chnological advances have improved our fundamental understand-
g of intratumoral heterogeneity, we still lack tools for cancer
eatment planning that incorporate distinct metabolic subpopula-
ons. Cancer organoids allow for rapid, high-throughput drug
reening directly on tumor cells in a relevant three-dimensional
icroenvironment [21,23,35,36,58]. Current methods for evaluating
ug response in organoids either damage the sample, overlook
llular heterogeneity, or do not directly screen drugs on patient-
rived cells. To address these limitations, we have developed OMI to
ninvasively quantify metabolic heterogeneity within living orga-
ids using the fluorescent properties of metabolic coenzymes NAD
)H and FAD [21,35]. OMI detects minority metabolic subpop-
ations of drug-resistant cells within organoids, and this information
n predict long-term tumor drug response. These capabilities have
en confirmed in breast [21,47] and head and neck [35] cell line
nografts and in a pancreatic cancer mouse model [36]. However,
ll line tumors in immunocompromised mice do not capture the
llular heterogeneity of primary human tumors, and it remains
clear whether metabolic heterogeneity in primary tumor-derived
ganoids mirrors the heterogeneity of the original tumor. In this
udy, OMI was used to compare subpopulations of cell metabolism
tumors and tumor-derived organoids of the immunocompetent
VmT breast cancer model. We confirm that organoids accurately
pture in vivo metabolic heterogeneity, demonstrating the feasibility
using organoids to study tumor response to treatment.
CT images confirmed that P + X treatment reduced PyVmT
mor volume in vivo over 14 days in immunocompetent allografts
igure 1). Tumor volume did not change over the first week of
eatment, and FDG uptake did not change with therapy over 2
eeks. However, OMI was sensitive to metabolic treatment response
only 48 hours (Figure 2). This highlights the enhanced sensitivity
OMI to early metabolic changes compared to traditional methods
measuring treatment response, in agreement with previous reports
immunocompromised xenografts [27].
Intravital OMI was performed in mice treated with vehicle or
+ X for 48 hours (Figure 2). Variation in mean OMI index
tween P + X treated tumors may be due to slight variations in
mor sizes and vascularization, and/or variations in drug absorption,
pecially for the final dose that was given 1 hour prior to imaging.
he degree of heterogeneity within each tumor was characterized by
e wH-index. P + X treated tumors exhibited a significantly lower
gree of heterogeneity compared to control tumors (P b .05),
rther suggesting that this treatment combination could be
neficial. OMI was also used to measure response to P + X in
VmT tumor-derived organoids (Figure 3). Paclitaxel and XL147
ngle therapies were also screened with low additional effort and cost,
derlining the high-throughput nature of organoid versus animal
ug screens. Additionally, due to the noninvasive nature of OMI,
easurement of response was performed at 24, 48, and 72 hours in
e same set of organoids.
OMI measurements at 72 hours in organoids, of all the time points
quired, most accurately replicated in vivo heterogeneity. This agrees
ith previous reports that early metabolic drug response at 72 hours
organoids predicts long-term in vivo tumor drug response [21].

he wH-index is low for control organoids at 24 and 48 hours and
+ X treated organoids at 72 hours because the populations of cells
these time points were best fit by only one Gaussian component,
ving d = 0 in Eq. (3). The wH-index gives significant weight to
terogeneous distributions that are best fit by multiple Gaussians,
d thus, these single-component populations have low wH-indices.
potential explanation for the increase in heterogeneity in vehicle-
eated organoids from 48 to 72 hours is a significant increase in
ganoid size between time points (Supplementary Figure S7). These
rger organoids may have developed metabolic heterogeneity due to
adients of drug delivery, fuel sources, and metabolic waste. The
gher degree of heterogeneity in organoids at 72 hours posttreat-
ent for single-agent treatments compared to P + X treatment
igure 3) may explain why single therapies alone did not reduce
erall tumor growth (Figure 1) despite a decrease in mean OMI
dex. It is possible that only a subpopulation of the cells was
nsitive, which led to disease progression. In contrast, P + X treated
ganoids exhibited a lower wH-index at 72 hours compared to
ntrols and single therapies (Figure 3D), which suggests that this
ug combination worked synergistically to overcome the resistance
single-agent treatments. The higher fold change in wH-index with
+ X treatment in organoids compared to in vivo tumors may be due
differences in efficiency of drug delivery. While drug gradients
used by drug diffusion do exist in large organoids, this may not
mpletely capture the irregularity of drug diffusion throughout solid
mors. Additionally, while drug doses in vivo and in vitro were
osen to be as analogous as possible, differences in effective dose may
so explain why the decrease in weighted heterogeneity in organoids
72 hours of treatment required less time to occur in tumors
8 hours).
Evaluating the degree of drug response heterogeneity in organoids
ing the wH-index was a better predictor of long-term tumor growth
an the average response across all cells. P + X treatment also had
milar effects on individual OMI variables in tumors and organoids,
cluding a large effect on the optical redox ratio, and small effects on
D lifetime variables (Figure 4). These parallels suggest that cellular-

vel drug response in tumor-derived organoids can be used to analyze
terogeneous responses to treatment in the tumor of origin.
We next assessed potential sources of the shifts in heterogeneity
und in tumors after 48 hours of treatment and in organoids after
hours of treatment using IHC (Figure 5). These results indicate

at PyVmT tumors in this study progressed to a mesenchymal
enotype at the time of imaging, closely resembling basal-like
man breast cancer [59]. Organoid cultures successfully captured
ese mesenchymal properties of the original tumor (Figure 5).
Traditional IHC measures of therapeutic response (CC3, Ki67,
H3) were also evaluated as potential sources of metabolic
terogeneity (Figure 6) because metabolic activities are linked to
optosis and proliferation [60,61]. PyVmT tumor allografts
corporate the host's acquired immune system, which is an
vantage over cell line xenografts grown in athymic nude mice.
mune cells and tumor cells have distinct metabolic properties
9,62] and thus could also contribute to OMI heterogeneity. A small
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bset of CD45+ leukocytes was found in both tumors and organoids
ing IHC, and P + X treatment significantly reduced the percentage
leukocytes in organoids but not in vivo. This may be because
ganoid culture conditions were not optimized to maintain mouse
ukocytes. Finally, mesenchymal transition can also affect cellular
ug response and metabolism [63], but our IHC results indicate that
is mesenchymal phenotype is nearly homogenous and consistent
ith treatment, and thus not the cause of OMI index heterogeneity.
None of the markers tested changed significantly in both tumors
d organoids, indicating that apoptosis, proliferation, and the
esence of immune cells and αSMA+ cells are unlikely to be
sponsible for the decreases in OMI index and its heterogeneity with
+ X treatment. These markers are likely not associated with the
gh OMI index subpopulations in control organoids at 72 hours and
ntrol tumors, which were affected by P + X treatment. Overall, we
d not identify a marker of cell type or cell fate that accounted for the
etabolic heterogeneity detected with OMI. These results suggest
at the subpopulations identified with OMI are likely due to
etabolic differences between cells. Future studies could confirm this
nding using emerging single-cell mass spectrometry on dissociated
mors and organoids, but these techniques are still in development
4,65]. Single-cell RNA analysis of dissociated tumors and organoids
uld also support our findings but does not offer a comparable
easure to the more downstream metabolic activity of cells that OMI
ovides. Similarly, fluorescent reporters can quantify metabolic
operties within single live cells that are correlated with the optical
etabolic variables reported here (e.g., glucose uptake [66], pH [67],
embrane potential [68], hypoxia [69], NADH/NAD+ redox state
0]). Overall, comparison of OMI with IHC highlights that OMI
ovides an early measure of tumor response compared to traditional
arkers, consistent with previous results [35].
This study validates OMI of primary tumor-derived organoids as a
ique, powerful tool to study in vivo tumor metabolic heterogeneity.
his tool could also improve clinical treatment decisions because
inority subpopulations of treatment-resistant cells within an
herwise responsive tumor can initiate patient recurrence [2,3,21].
hese results are the first to show that in vitro organoids capture the
rly metabolic changes in heterogeneity that occur in vivo with
eatment in an immunocompetent tumor. OMI of organoids
antifies single-cell response to many drugs in a relevant three-
mensional microenvironment, using a single tissue sample, and can
performed longitudinally to track the evolution of heterogeneity
er time. This technology could provide a personalized medicine
atform to perform high-throughput screening of drugs directly on
tient cells, and detect metabolic heterogeneity. This would allow
inicians to quickly analyze cellular heterogeneity in response to
merous treatment options for an individual patient to more
bustly inform on treatment decisions. Additionally, this technique
uld reduce the animals and time required to develop new
erapeutic strategies that overcome tumor heterogeneity and achieve
tter outcomes in patients.

cknowledgements
he authors thank the UW Translational Research Initiatives in
athology laboratory and UW Small Animal Imaging and Radio-
erapy Facility (both supported by the UWCCC grant P30
A014520) for use of their facilities and services. Thank you to
phie Mancha for assistance with organoid culture. Thank you to
r. Dustin Deming and Dr. Suzanne Ponik for helpful conversa-
ons about organoids and cancer cell heterogeneity. The Skala
boratory is supported by an NSF Graduate Research Fellowship
GE-1445197; J.T.S.), and grants from the NSF (CBET-
42287), Stand Up to Cancer, United States (SU2C-AACR-IG-
-16, SU2C-AACR-PS-18), and the NIH (R01 CA185747, R01
A205101, R01 CA211082, R21 CA224280, U01 TR002383).

ppendix A. Supplementary Data
Supplementary data to this article can be found online at https://
i.org/10.1016/j.neo.2019.04.004.

eferences

1] Greaves M (2015). Evolutionary determinants of cancer. Cancer Discov 5(8),
806–820.

2] Marusyk A and Polyak K (2010). Tumor heterogeneity: causes and
consequences. Biochim Biophys Acta 1805(1), 105–117.

3] Fisher R, Pusztai L, and Swanton C (2013). Cancer heterogeneity: implications
for targeted therapeutics. Br J Cancer 108(3), 479–485.

4] Gerlinger M and Swanton C (2010). How Darwinian models inform therapeutic
failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer 103(8),
1139–1143.

5] Almendro V, Cheng YK, Randles A, Itzkovitz S, Marusyk A, Ametller E,
Gonzalez-Farre X, Munoz M, Russnes HG, and Helland A, et al (2014).
Inference of tumor evolution during chemotherapy by computational modeling
and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep 6(3),
514–527.

6] Deng X, Apple S, Zhao H, Song J, Lee M, Luo W, Wu X, Chung D, Pietras RJ,
and Chang HR (2017). CD24 Expression and differential resistance to
chemotherapy in triple-negative breast cancer. Oncotarget 8(24), 38294–38308.

7] Suzuki Y, Ng SB, Chua C, LeowWQ, Chng J, Liu SY, Ramnarayanan K, Gan A,
Ho DL, and Ten R, et al (2017). Multiregion ultra-deep sequencing reveals early
intermixing and variable levels of intratumoral heterogeneity in colorectal cancer.
Mol Oncol 11(2), 124–139.

8] Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S,
Mitchell TJ, Grossmann S, Lightfoot H, and Egan DA, et al (2018). Intra-
tumour diversification in colorectal cancer at the single-cell level. Nature 556
(7702), 457–462.

9] Sievers CK, Zou LS, Pickhardt PJ, Matkowskyj KA, Albrecht DM, Clipson L,
Bacher JW, Pooler BD, Moawad FJ, and Cash BD, et al (2017). Subclonal
diversity arises early even in small colorectal tumours and contributes to
differential growth fates. Gut 66(12), 2132–2140.

0] Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K,
Stepansky A, Levy D, and Esposito D, et al (2011). Tumour evolution inferred
by single-cell sequencing. Nature 472(7341), 90–94.

1] Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, Crosetto N, Foukakis
T, and Navin NE (2018). Chemoresistance Evolution in Triple-Negative Breast
Cancer Delineated by Single-Cell Sequencing. Cell 173(4), 879–893 (e813).

2] Kleppe M and Levine RL (2014). Tumor heterogeneity confounds and
illuminates: assessing the implications. Nat Med 20(4), 342–344.

3] Caiado F, Silva-Santos B, and Norell H (2016). Intra-tumour heterogeneity -
going beyond genetics. FEBS J 283(12), 2245–2258.

4] Cantor JR and Sabatini DM (2012). Cancer cell metabolism: one hallmark,
many faces. Cancer Discov 2(10), 881–898.

5] Vander Heiden MG, Cantley LC, and Thompson CB (2009). Understanding
the Warburg effect: the metabolic requirements of cell proliferation. Science 324
(5930), 1029–1033.

6] Hanahan D and Weinberg RA (2011). Hallmarks of cancer: the next generation.
Cell 144(5), 646–674.

7] Vander Heiden MG (2011). Targeting cancer metabolism: a therapeutic window
opens. Nat Rev Drug Discov 10(9), 671–684.

8] Morandi A and Indraccolo S (2017). Linking metabolic reprogramming to
therapy resistance in cancer. Biochim Biophys Acta Rev Cancer 1868(1), 1–6.

9] Renner K, Singer K, Koehl GE, Geissler EK, Peter K, Siska PJ, and Kreutz M
(2017). Metabolic Hallmarks of Tumor and Immune Cells in the Tumor
Microenvironment. Front Immunol 8, 248.

https://doi.org/10.1016/j.neo.2019.04.004
https://doi.org/10.1016/j.neo.2019.04.004
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0005
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0005
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0010
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0010
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0015
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0015
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0020
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0020
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0020
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0025
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0025
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0025
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0025
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0025
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0030
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0030
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0030
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0035
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0035
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0035
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0035
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0040
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0040
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0040
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0040
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0045
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0045
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0045
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0045
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0050
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0050
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0050
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0055
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0055
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0055
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0060
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0060
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0065
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0065
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0070
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0070
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0075
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0075
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0075
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0080
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0080
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0085
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0085
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0090
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0090
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0095
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0095
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0095


[2

[2

[2

[2

[2

[2

[2

[2

[2

[2

[3

[3

[3

[3

[3

[3

[3

[3

[3

[3

[4

[4

[4

[4

[4

[4

[4

[4

[4

[4

[5

[5

[5

[5

[5

[5

[5

[5

[5

[5

[6

[6

[6

[6

Neoplasia Vol. 21, No. 6, 2019 Cellular Metabolic Heterogeneity in Tumor Organoids Sharick et al. 625
0] Bruna A, Rueda OM, Greenwood W, Batra AS, Callari M, Batra RN,
Pogrebniak K, Sandoval J, Cassidy JW, and Tufegdzic-Vidakovic A, et al (2016).
A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity
to Screen Anticancer Compounds. Cell 167(1), 260–274 (e222).

1] Walsh AJ, Cook RS, Sanders ME, Aurisicchio L, Ciliberto G, Arteaga CL, and
Skala MC (2014). Quantitative optical imaging of primary tumor organoid
metabolism predicts drug response in breast cancer. Cancer Res 74(18),
5184–5194.

2] Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-
Sarvise M, Tiriac H, and MS Spector, et al (2015). Organoid models of human
and mouse ductal pancreatic cancer. Cell 160(1-2), 324–338.

3] Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV,
Wind K, Gracanin A, and Begthel H, et al (2018). A Living Biobank of Breast
Cancer Organoids Captures Disease Heterogeneity. Cell 172(1-2), 373–386
(e310).

4] van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van
Houdt W, van Gorp J, Taylor-Weiner A, and Kester L, et al (2015). Prospective
derivation of a living organoid biobank of colorectal cancer patients. Cell 161(4),
933–945.

5] Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, Khan K,
Lampis A, Eason K, Huntingford I, and Burke R, et al (2018). Patient-derived
organoids model treatment response of metastatic gastrointestinal cancers. Science
359(6378), 920–926.

6] Majety M, Pradel LP, Gies M, and Ries CH (2015). Fibroblasts Influence
Survival and Therapeutic Response in a 3D Co-Culture Model. PLoS One 10(6)
e0127948.

7] Shah AT, Diggins KE, Walsh AJ, Irish JM, and Skala MC (2015). In Vivo
Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment.
Neoplasia 17(12), 862–870.

8] Walsh AJ, Cook RS, and Skala MC (2017). Functional Optical Imaging of
Primary Human Tumor Organoids: Development of a Personalized Drug
Screen. J Nucl Med 58(9), 1367–1372.

9] Georgakoudi I and Quinn KP (2012). Optical Imaging Using Endogenous
Contrast to Assess Metabolic State. Annu Rev Biomed Eng 14, 351–367.

0] Chance B, Schoener B, Oshino R, Itshak F, and Nakase Y (1979). Oxidation-
reduction ratio studies of mitochondria in freeze-trapped samples. NADH and
flavoprotein fluorescence signals. J Biol Chem 254(11), 4764–4771.

1] Walsh A, Cook RS, Rexer B, Arteaga CL, and Skala MC (2012). Optical imaging
of metabolism in HER2 overexpressing breast cancer cells. Biomed Opt Express 3
(1), 75–85.

2] Lakowicz JR (1999). Principles of Fluorescence Spectroscopy. . 2nd ed.New
York: Kluwer Academic/Plenum; 1999 698 . xxiii.

3] Bird DK, Yan L, Vrotsos KM, Eliceiri KW, Vaughan EM, Keely PJ, White JG,
and Ramanujam N (2005). Metabolic mapping of MCF10A human breast cells
via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer
Res 65(19), 8766–8773.

4] Sharick JT, Favreau PF, Gillette AA, Sdao SM, Merrins MJ, and Skala MC
(2018). Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of
Glucose Carbon. Sci Rep 8(1), 5456.

5] Shah AT, Heaster TM, and Skala MC (2017). Metabolic Imaging of Head and
Neck Cancer Organoids. PLoS One 12(1)e0170415.

6] Walsh AJ, Castellanos JA, Nagathihalli NS, Merchant NB, and Skala MC
(2016). Optical Imaging of Drug-Induced Metabolism Changes in Murine and
Human Pancreatic Cancer Organoids Reveals Heterogeneous Drug Response.
Pancreas 45(6), 863–869.

7] Guy CT, Cardiff RD, and Muller WJ (1992). Induction of mammary tumors by
expression of polyomavirus middle T oncogene: a transgenic mouse model for
metastatic disease. Mol Cell Biol 12(3), 954–961.

8] Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJ,
Gotthardt M, and Visser EP (2010). Image-quality assessment for several
positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon
small-animal PET scanner. J Nucl Med 51(4), 610–617.

9] Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White
JG, and Ramanujam N (2007). In vivo multiphoton microscopy of NADH and
FAD redox states, fluorescence lifetimes, and cellular morphology in
precancerous epithelia. Proc Natl Acad Sci U S A 104(49), 19494–19499.

0] Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A, Arteaga CL, and
Skala MC (2013). Optical metabolic imaging identifies glycolytic levels,
subtypes, and early-treatment response in breast cancer. Cancer Res 73(20),
6164–6174.
1] Schneider CA, Rasband WS, and Eliceiri KW (2012). NIH Image to ImageJ: 25
years of image analysis. Nat Methods 9(7), 671–675.

2] Bergmann A (2003). SPCImage: data analysis software for fluorescence lifetime
imaging microscopy. Becker & Hickl GmbH; 2003 . available on www becker-
hickl com.

3] Nakashima N, Yoshihara K, Tanaka F, and Yagi K (1980). Picosecond
fluorescence lifetime of the coenzyme of D-amino acid oxidase. J Biol Chem 255
(11), 5261–5263.

4] Walsh AJ and Skala MC (2014). An automated image processing routine for
segmentation of cell cytoplasms in high-resolution autofluorescence images. SPIE
Proc 8948.

5] Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O,
Guertin DA, Chang JH, Lindquist RA, and Moffat J, et al (2006). CellProfiler:
image analysis software for identifying and quantifying cell phenotypes. Genome
Biol 7(10), R100.

6] Akaike H (1974). A new look at the statistical model identification. IEEE Trans
Autom Control 19(6), 716–723.

7] Walsh AJ and Skala MC (2015). Optical metabolic imaging quantifies
heterogeneous cell populations. Biomed Opt Express 6(2), 559–573.

8] Almendro V, Kim HJ, Cheng YK, Gonen M, Itzkovitz S, Argani P, van
Oudenaarden A, Sukumar S, Michor F, and Polyak K (2014). Genetic and
phenotypic diversity in breast tumor metastases. Cancer Res 74(5), 1338–1348.

9] Mansfield JR, Hoyt C, and Levenson RM (2008). Visualization of microscopy-
based spectral imaging data from multi-label tissue sections. Curr Protoc Mol Biol
14, 19 Chapter 14. (Unit).

0] Glass GV (1976). Primary, secondary, and meta-analysis of research. Educ Res 5
(10), 3–8.

1] Sharick JT, Walsh CM, Sprackling CM, Pasch CA, Parikh AA, Matkowskyj KA,
Deming DA, and Skala MC (2019). Optical Metabolic Imaging of
Heterogeneous Drug Response in Pancreatic Cancer Patient Organoids. bioRxiv
542167.

2] Sawilowsky SS (2009). New effect size rules of thumb. J Mod Appl Stat Methods 8
(2), 597–599.

3] DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF,
Gallagher WM, Wadhwani N, Keil SD, and Junaid SA, et al (2011). Leukocyte
complexity predicts breast cancer survival and functionally regulates response to
chemotherapy. Cancer Discov 1(1), 54–67.

4] Sai J, Owens P, Novitskiy SV, Hawkins OE, Vilgelm AE, Yang J, Sobolik T,
Lavender N, Johnson AC, and McClain C, et al (2017). PI3K Inhibition
Reduces Mammary Tumor Growth and Facilitates Antitumor Immunity and
Anti-PD1 Responses. Clin Cancer Res 23(13), 3371–3384.

5] Cook RS, Garrett JT, Sanchez V, Stanford JC, Young C, Chakrabarty A,
Rinehart C, Y Zhang Y Wu, and Greenberger L, et al (2011). ErbB3 ablation
impairs PI3K/Akt-dependent mammary tumorigenesis. Cancer Res 71(11),
3941–3951.

6] Webster MA, Hutchinson JN, Rauh MJ, Muthuswamy SK, Anton M, Tortorice
CG, Cardiff RD, Graham FL, Hassell JA, and Muller WJ (1998). Requirement
for both Shc and phosphatidylinositol 3' kinase signaling pathways in
polyomavirus middle T-mediated mammary tumorigenesis. Mol Cell Biol 18
(4), 2344–2359.

7] Lee LH, Yang H, and Bigras G (2014). Current breast cancer proliferative markers
correlate variably based on decoupled duration of cell cycle phases. Sci Rep 4, 5122.

8] Friedman AA, Letai A, Fisher DE, and Flaherty KT (2015). Precision medicine for
cancer with next-generation functional diagnostics.Nat Rev Cancer 15(12), 747–756.

9] Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, and
Palacios J (2008). Epithelial-mesenchymal transition in breast cancer relates to
the basal-like phenotype. Cancer Res 68(4), 989–997.

0] Andersen JL and Kornbluth S (2013). The tangled circuitry of metabolism and
apoptosis. Mol Cell 49(3), 399–410.

1] Vander HeidenMG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR,
Vokes NI, Stephanopoulos G, Cantley LC, and Metallo CM, et al (2011).
Metabolic pathway alterations that support cell proliferation. Cold Spring Harb
Symp Quant Biol 76, 325–334.

2] Gentric G, Mieulet V, and Mechta-Grigoriou F (2017). Heterogeneity in Cancer
Metabolism: New Concepts in an Old Field. Antioxid Redox Signal 26(9),
462–485.

3] Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu
S, and Troeger J, et al (2015). Epithelial-to-mesenchymal transition is not
required for lung metastasis but contributes to chemoresistance. Nature 527
(7579), 472–476.

http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0100
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0100
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0100
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0100
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0105
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0105
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0105
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0105
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0110
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0110
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0110
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0115
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0115
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0115
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0115
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0120
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0120
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0120
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0120
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0125
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0125
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0125
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0125
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0130
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0130
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0130
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0135
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0135
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0135
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0140
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0140
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0140
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0145
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0145
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0150
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0150
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0150
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0155
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0155
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0155
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0160
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0160
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0165
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0165
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0165
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0165
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0170
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0170
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0170
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0175
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0175
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0180
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0180
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0180
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0180
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0185
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0185
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0185
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0190
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0190
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0190
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0190
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0195
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0195
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0195
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0195
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0200
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0200
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0200
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0200
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0205
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0205
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0210
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0210
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0210
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0215
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0215
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0215
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0220
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0220
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0220
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0225
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0225
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0225
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0225
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0230
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0230
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0235
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0235
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0240
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0240
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0240
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0245
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0245
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0245
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0250
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0250
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0255
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0255
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0255
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0255
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0260
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0260
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0265
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0265
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0265
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0265
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0270
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0270
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0270
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0270
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0275
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0275
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0275
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0275
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0280
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0280
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0280
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0280
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0280
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0285
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0285
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0290
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0290
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0295
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0295
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0295
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0300
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0300
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0305
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0305
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0305
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0305
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0310
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0310
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0310
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0315
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0315
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0315
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0315


[6

[6

[6

[6

[6

[6

[7

626 Cellular Metabolic Heterogeneity in Tumor Organoids Sharick et al. Neoplasia Vol. 21, No. 6, 2019
4] Spitzer MH and Nolan GP (2016). Mass Cytometry: Single Cells, Many
Features. Cell 165(4), 780–791.

5] Duncan KD, Fyrestam J, and Lanekoff I (2018). Advances in mass spectrometry
based single-cell metabolomics. Analyst 144(3), 782–793.

6] O'Neil RG, Wu L, and Mullani N (2005). Uptake of a fluorescent deoxyglucose
analog (2-NBDG) in tumor cells. Mol Imaging Biol 7(6), 388–392.

7] Tantama M, Hung YP, and Yellen G (2011). Imaging intracellular pH in live
cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc
133(26), 10034–10037.
8] Poburko D, Santo-Domingo J, and Demaurex N (2011). Dynamic regulation of
the mitochondrial proton gradient during cytosolic calcium elevations. J Biol
Chem 286(13), 11672–11684.

9] Howard SS, Straub A, Horton N, Kobat D, and Xu C (2013). Frequency
Multiplexed In Vivo Multiphoton Phosphorescence Lifetime Microscopy. Nat
Photonics 7(1), 33–37.

0] Hung YP, Albeck JG, Tantama M, and Yellen G (2011). Imaging cytosolic
NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor.
Cell Metab 14(4), 545–554.

http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0320
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0320
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0325
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0325
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0330
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0330
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0335
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0335
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0335
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0340
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0340
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0340
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0345
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0345
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0345
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0350
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0350
http://refhub.elsevier.com/S1476-5586(19)30091-0/rf0350

	Cellular Metabolic Heterogeneity In Vivo Is Recapitulated in Tumor Organoids
	Introduction
	Materials and Methods
	Orthotopic PyVmT Tumors
	FDG-PET/CT Imaging
	Fluorescence Lifetime Imaging
	Intravital OMI
	Tissue Processing and Organoid Culture
	Organoid Imaging
	OMI Endpoint Images
	OMI Index
	Heterogeneity Analysis
	Histological Analysis
	Histology Imaging and Quantification
	Statistical Analysis

	Results
	PET/CT of In Vivo Treatment Response
	OMI of Cellular Metabolic Heterogeneity In Vivo
	OMI of Cellular Metabolic Heterogeneity in Organoids
	Comparison of Drug Treatment Effect Sizes on OMI Variables
	Characterization of Cell Types in PyVmT Tumors and Organoids
	Quantification of Potential Sources of Heterogeneity in PyVmT Tumors and Organoids

	Discussion
	Acknowledgements
	Appendix A. Supplementary Data
	References


