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ABSTRACT

Unlike their natural counterparts, synthetic genetic
circuits are usually fragile in the face of environmen-
tal perturbations and genetic mutations. Several the-
oretical robust genetic circuits have been designed,
but their performance under real-world conditions
has not yet been carefully evaluated. Here, we de-
signed and synthesized a new robust perfect adapta-
tion circuit composed of two-node negative feedback
coupling with linear positive feedback on the buffer
node. As a key feature, the linear positive feedback
was fine-tuned to evaluate its necessity. We found
that the desired function was robustly achieved when
genetic parameters were varied by systematically
perturbing all interacting parts within the topology,
and the necessity of the completeness of the topo-
logical structures was evaluated by destroying key
circuit features. Furthermore, different environmen-
tal perturbances were imposed onto the circuit by
changing growth rates, carbon metabolic strategies
and even chassis cells, and the designed perfect
adaptation function was still achieved under all con-
ditions. The successful design of a robust perfect
adaptation circuit indicated that the top-down design

strategy is capable of predictably guiding bottom-up
engineering for robust genetic circuits. This robust
adaptation circuit could be integrated as a motif into
more complex circuits to robustly implement more
sophisticated and critical biological functions.

INTRODUCTION

Biological systems are constantly subjected to genetic vari-
ations and environmental fluctuations (1,2). They employ
a number of strategies to increase robustness to cope with
internal and external disturbances, including gene redun-
dancy, network topology design, and distributed regula-
tory networks (3–6). Several regulatory motifs were iden-
tified from complex genetic circuits by systematic theoret-
ical analysis to execute robust biological functions, such
as adaptation (7,8), fold-change detection (9), symmetry
breaking (10) and switch-like behaviors (11). Discovering
and analyzing the functions and behaviors of such mo-
tifs has become an important part of the development
of systems and synthetic biology in the last two decades
(12–15).

Biologically, perfect adaptation, in some cases known as
homeostasis, is an important cellular function for main-
taining the ability to respond to changing external stimula-
tion while subsequently returning to an almost unperturbed
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level of internal components (Figure 1C) (16,17); several
adaptation circuit motifs have been identified. Synthetic
robust perfect adaptation (RPA), as a high-performance
adaptation function, is in high demand in synthetic biol-
ogy (18,19). Unfortunately, previous synthetic genetic cir-
cuits are notoriously fragile when exposed to internal and
external environmental disturbances, and they can easily
lose functioning when transferring from the laboratory to
real-world medical or industrial situations (20–25). Numer-
ous theoretical robust circuits have been designed, but few
of them have experimentally evaluated robustness when fac-
ing perturbations (9,11,26–29). In the field of cybernetics
and robotization, a common strategy is to embed a feed-
back controller module, such as a PID Controller, to set the
output of interest to a target point, thus increasing the ro-
bustness of the system function when facing environmen-
tal fluctuations (30–32). Several recent works have imple-
mented these feedback control strategies in synthetic bio-
logical system design and successfully realized a series of
robust homeostasis functions (33–37).

Here, we report the experimental design and construction
of an RPA circuit that incorporates 2-node negative feed-
back coupling with linear positive feedback on the buffer
node. Our previous work showed that a negative feedback
circuit for transcriptional regulation must incorporate ad-
ditional positive feedback on the buffer node to achieve a
perfect adaptation function. More intriguingly, the linear-
ity of the positive feedback could endow the circuit with the
ability to robustly withstand environmental and genetic per-
turbations (8). In this work, we first re-evaluated the linear
activation ability of an activator part (38) and then incor-
porated negative feedback with weak linear positive feed-
back to create a combined RPA circuit (Figure 1A). The
robustness of the circuit was measured by changing specific
genetic parts and deleting each feedback interaction. Fur-
thermore, several strategies involving global-parameter per-
turbations were tested, and perfect adaptations were suc-
cessfully achieved. Our results highlighted a novel topology
and the importance of linear positive feedback in achieving
perfect adaptation robustly. The principles used here to de-
sign and test robust circuits could facilitate the transition
of proof-of-concept circuits to real-world biocybernetic ap-
plications, especially when dealing with uncertain or fluctu-
ating environmental conditions, thus releasing the tremen-
dous power of both modern control theory and molecular
genetic biology.

MATERIALS AND METHODS

Strain, media and chemicals

Escherichia coli K-12 sub strain DH10B (F–mcrA
�(mrr-hsdRMS-mcrBC) �80lacZ�M15 �lacX74 recA1
araD139�(ara-leu)7697 galU galK rpsL(StrR) endA1
nupG) was used for all cloning and testing experiments.
For performing cross-species and cross-genus tests, other
E. coli strains, including BW25113 (�(araD-araB)567
�(rhaD-rhaB)568 �lacZ4787 (::rrnB-3) hsdR514 rph-1)
and BL21 (E. coli B F–ompT gal dcm lon hsdSB(rB

– mB
–)

[malB+]K-12(�S)), and an environmentally tolerant strain,
Pseudomonas putida KT2440, were used (39–41). Cells

were grown in either LB medium (10 g/l tryptone, 5 g/l
yeast extract, and 10 g/l NaCl) or M9 medium containing
M9 minimal salts (6.78 g/l Na2HPO4, 3 g/l KH2PO4, 1 g/l
NH4Cl, 0.5 g/l NaCl), 0.4% (m/v) D-glucose or D-fructose,
or a mixed carbon source of 20 mM succinate and 15 mM
pyruvate, 0.2% (m/v) casamino acids (BD Bacto, 223120),
0.34 g/l thiamine hydrochloride, 2 mM MgSO4 and 0.1
mM CaCl2. For the agar plates, 15 g/l agar was added.
Antibiotics used to select and maintain plasmids included
100 �g/ml ampicillin, 50 �g/ml kanamycin, 100 �g/ml
apramycin and 25 �g/ml irgasan. The chemical inducers
were isopropyl �-D-1-thiogalactopyranoside (IPTG) and
4-isopropyl benzoic acid (Cumate). All chemicals used
in the study were purchased from Sigma–Aldrich unless
stated otherwise.

Detailed plasmid specifications

For characterization of transcriptional activation of T7
RNAP, integrated E. coli DH10B strains were used as previ-
ously described (38). An pTac-T7 RNAP (for output test) or
pTac-sfGFP (for input test) cassette was integrated into the
chromosome using pOSIP. For the output test, several dif-
ferent T7 promoter mutants for the reporter cassette were
used; the sequence details are summarized in Supplemen-
tary Table S4.

For construction of the RPA circuit, three plasmids were
used as basic backbones to carry the A node (pAR & pAP)
and B node (pBB). The plasmid details are summarized in
Supplementary Table S1. Among all the circuits tested, we
defined the first mentioned circuit construction as the initial
version (RPA v1.0, Figure2B, C). The circuit construction
details are summarized in Supplementary Table S2.

For characterization of the parameter perturbation be-
haviors, the genetic parts in the RPA v1.0 circuit were re-
placed with other homologous parts. The replacement de-
tails are summarized in Supplementary Table S3. For char-
acterization of the single edges, the subcircuits were recon-
structed from RPA v1.0, and the reconstruction details are
summarized in Supplementary Table S4.

Steady-state and time-course behavior characterization

All incubations were carried out using a Digital Thermo-
static Shaker (AOSHENG) maintained at 37◦C and 1000
rpm using Corning flat-bottom 96-well plates sealed with
sealing film (Corning, BF-400-S), except for the global per-
turbation experiments. A previously developed quantita-
tive method was used to characterize the steady-state be-
haviors of the parts and circuits (e.g. Figures 1D and 2B)
(38,42). Briefly, bacteria harboring the parts or circuits of
interest were first inoculated from single colonies into a 96-
well plate overnight for growth in LB medium, after which
the cell cultures were diluted 196-fold with M9 medium. Af-
ter 3 h of growth, the cultures were further diluted 700-fold
with M9 medium containing specific concentrations of in-
ducers as needed and incubated for another 6 h. Finally,
20 �l samples of each culture were transferred to a new
plate containing 180 �l per well of PBS supplemented with
2 mg/ml kanamycin for cell fixation and prepared for cy-
tometry analysis.
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Figure 1. Scheme of the topology-based design strategy for a robust perfect adaptation (RPA) circuit. (A) Graphic workflow summary of this study.
(B) The chosen topology and key constraint for the robust perfect adaptation circuit. (C) The expected dynamic behavior of an adaptation circuit. (D)
Monomeric transcriptional activator and activation curves with different promoter mutants (red: pT7wt, orange: pT7m1, yellow: pT7m3, green: pT7m4,
blue: pT7m5, gray: pT7m6). The points are the mean values of steady-state input–output data, and the error bar indicates the standard deviation (S.D.) of
three independent replicates (n = 3). The curves are fitting results using the activation Hill function from our previous works (38).

The quantitative method was slightly modified for char-
acterization of the time-course behaviors (e.g. Figure 2C–
E). The bacteria were cultured in medium with a certain
concentration of inducer as a preinput signal overnight for
growth and the first 196-fold dilution. After 3 h of growth,
20 �l cultured samples were harvested, and the cell densities
(OD600) were recorded. This moment was set as time zero as
indicated in all adaptation time-course figures, and the cul-
tures were then diluted in a series of different folds (e.g. 20-
fold, 50-fold, 100-fold, 200-fold, 500-fold, 1000-fold) with
fresh M9 medium containing specific concentrations of in-
ducers as needed. All diluted cultures were incubated and
then harvested for cytometry analysis once they reached the
same OD600 value as that at time zero, and the harvest time
points were recorded.

Bacteria incubation in turbidostat

For characterization of the time-course behaviors under
slow growth rate conditions (e.g. Figure 4A), a multichan-
nel parallel turbidostat (Efun Electronic Design company
http://www.efundesign.cn/) was used for cell incubation.
The turbidity of the culture was controlled to keep bacteria
growing at the exponential phase throughout the culture.
Bacteria harboring the circuits of interest were first inoc-
ulated from single colonies into the turbidostat overnight
for growth in M9 medium with initial level Cumate. Then,
the concentration of Cumate was changed, and the incuba-
tion continued. The inducer-changing moment was set as
time zero to remain consistent with previous experimental
settings. Sampling time points were selected appropriately,
and for each time point, 20 �l samples were harvested and

prepared for cytometry following the same procedure de-
scribed above.

Flow cytometry measurement and data processing

The fluorescence distribution of each sample was assayed
using an LSRII flow cytometer (BD Biosciences) with ap-
propriate channels and voltage settings; each distribution
contained >20 000 events. FlowJo (TreeStar, v10.6.2) was
used for processing data and exporting statistical values.

Data analysis and modeling

To calculate the AErr values, the steady-state output signals
for different input conditions were used. For output values
of step-like changed input signals (Output1), the final two
or three unchanged time-course data were selected. For out-
put values of unchanged input signals (Output2), all time-
course data were used. These data were used to obtain aver-
age steady-state values for Output1 and Output2 and then
calculate the AErr value according to the definition in the
manuscript.

All modeling steps were carried out using MATLAB
R2018a. The time-series simulations were obtained by using
the ‘ode45’ function, and the parameters in Eqs (1,2), de-
scribing the dynamic features of the interaction edges, were
obtained by fitting using the ‘fminsearch’ function. The pre-
dictions for the promoter substitutions were obtained using
the same function, except that the parameter values were re-
trieved from either the fitting results of the characterization
data or our previous work. The parameters and units used
are summarized in Supplementary Table S5 (38).
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Figure 2. Genetic circuit construction and characterization. (A) Scheme of the RPA circuit composed of genetic regulatory components according to the
designed topology. Substituted parts for fitting and predicting are indicated in red. (B) The steady-state output of the RPA circuit and the simple input–
output system under different constant concentrations of input inducer. The circuit of the simple input–output system is shown in Supplementary Figure
S2A. The points are the mean of three biological replicates (n = 3), and the error bar indicates the standard deviation (S.D.). (C–E) Time-course curves
for switching into several final input signals for three different positive feedback activities on node B. The step-like switching time point was set as the
initial time. The initial and final signal concentrations and the defined AErr indexes are shown in each subfigure. The colored points are the mean of three
biological replicates (n = 3), and the error bar indicates the S.D.. Curves in (C) are the fitted results for the experimental data, and those in (D) & (E) are
the predictions. Other curves with different final input concentrations are summarized in Supplementary Figure S3. The dark dotted lines are the mean
fluctuating non-switched output signals, and the gray shaded regions are the S.D. of all the recorded data.

RESULTS

Based on the in silico simulation from the transcriptional
regulatory model reported in our previous study (8), our
simulation revealed that positive feedback on the buffer
node was indispensable for a 2-node negative feedback loop
to achieve perfect adaptation (Figure 1B). The importance
of the positive feedback was computationally confirmed by
increasing the sampled parameter cassettes (Supplementary

Figure S1). Further theoretical investigation revealed that
linear weak positive feedback (B � KBB, nBB = 1) was suf-
ficient to provide perfect adaptation for the 2-node negative
feedback circuit based on Eqs (1) and (2) (8). Within the
equations, α is the maximum expression rate, and γ is the
reduction coefficient of each node. We assume that all reg-
ulations can be described using Hill functions and are in-
sulated from each other, combined with AND logic. For
each regulation, Ki j and ni j represent the half-maximal
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Figure 3. Robustness evaluation of the RPA circuit for single parameter perturbations and topological disruptions. (A–C) Schemes and time-course curves
of single parameter perturbations for all three types of regulation in the circuit, including autoactivation on node B (A), activation from node B to node A
(B) and repression from node A to node B (C). (D, E) Schemes and time-course curves for removal of the autoactivation on node B (D) or deletion of the
repression from node A to node B (E). Data Information: Time-course curves of each case are shown in the relevant diagrams. For all characterizations,
the black points are the mean of the output signal value across all the time series with Cumate concentrations from 2 to 300 �M. The error bar indicates
the standard deviation (S.D.) of three independent replicates (n = 3). The gray line indicates the mean output signal value across all the time series with
a constant Cumate concentration of 2 �M (A–D), and the shade error bar indicates the S.D. of all the recorded data. The perturbation conditions or
substitutional genetic parts and the defined AErr index are shown in each subfigure.
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Figure 4. Robustness evaluations of the RPA circuit for global environmental perturbations. (A–C) Schemes and time-course curves of global parameter
perturbations of the circuit, including changing the growth curve (A), perturbing the metabolic strategy (B) and transferring the circuit into another chassis
(C). Data Information: Time-course curves for each case are shown in relevant diagrams. For all characterizations, the black points are the mean of the
output signal value across all the time series with Cumate concentrations from 5 to 300 �M. The error bar indicates the standard deviation (S.D.) of three
independent replicates (n = 3). The gray line indicates the mean output signal value across all the time series with a constant Cumate concentration of 5
�M unchanged, and the shade error bar indicates the S.D. of all the recorded data. The defined AErr index is shown in each subfigure.
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concentration and hill coefficient from component i to com-
ponent j , respectively. The activation from input to node
A was slightly more complex because of nondirect effects,
which are common in biological systems (see Supplemen-
tary materials for more detailed information). For the lin-
ear weak positive feedback and weak leaked expression, this
theoretical result indicated that the circuit would be robust
and insensitive to other parameters except the above two
key parameters and regulatory interactions.
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To identify the correct regulatory parts to achieve linear
weak positive feedback, we chose monomeric T7 RNAP to
activate the T7 promoter and measured the response curves
of six different promoter mutants (with a 150-fold range of
varied activities, Supplementary Figure S2B, Supplemen-
tary Table S4) by varying T7 RNAP expression using a fluo-
rescent reporter gene as an indicator. The experimental data
showed that T7 RNAP activated the T7 promoters with un-
changed Hill coefficients of 1.0–1.3 (Figure 1D, Supplemen-
tary Figure S2A), indicating that T7 RNAP most likely acti-
vates the T7 promoter in a linear manner; thus, a T7 RNAP
gene transcribed by a weak T7 promoter forms a linear weak
positive feedback motif.

We then designed other important regulatory compo-
nents for the negative and positive regulations between
nodes A and B. First, we constructed a hybrid T7-cymO
promoter and examined how it responded to T7 RNAP and
Cumate molecule concentrations. As an AND-logic regu-
latory function, the hybrid promoter was simultaneously
activated by T7 RNAP and derepressed by CymR repres-
sor by binding to the Cumate molecule. Second, repression
from the A-node to the B-node was conducted by a dCpf1-
guide RNA (gRNA) complex that contained a gRNA ar-
ray to target the T7 RNAP coding sequences. The superfold
gfp (sfgfp) gene was chosen to detect the fluorescent output
of the circuit. Combining the T7-cymO promoter, dCpf1-
gRNA array and the linear weak positive feedback motif
together, we created the perfect adaptation circuit (Figure
2A, Supplementary Tables S1 and S2).

Next, we tested the performance of the circuit by switch-
ing the external input–Cumate molecule concentration. De-
spite a nearly 100-fold variation in the concentration of the
input molecule and a 20-fold change in the input activity of
the PT7mut+cymO promoter, the circuit was able to maintain
a relatively constant steady-state output (Figure 2B). When

facing step-like switching of input signals, the circuit could
generate pulse responses with a similar time scale but dif-
ferent maximal transient expressions according to the input
changing folds (Figure 2C, Supplementary Figure S4A). To
evaluate the adaptation performance quantitatively, we de-
fined an adaptation error (AErr) value (Eq (3)) to quantify
the adaptation performance:

AErr = |Output1 − Output2|
Output1

(3)

where the variables Output1 and Output2 are the steady-
state output before and after changing the input signal con-
centrations, respectively. We observed that the AErr values
were all small for various Cumate concentrations, indicat-
ing that the circuit was robust to perturbations in the in-
put signals. Based on these quantitative measurements, we
obtained the parameters by the fitting response curves and
transition curves of the individual parts (Figure 2C, Supple-
mentary Figure S3, Supplementary Figure S4A). The pre-
dictive ability of the model was evaluated by changing one
key parameter - the promoter strength of the B-node. The
dynamic response curves of both the stronger and weaker
promoters were successfully predicted with the predeter-
mined parameter for promoter activity of the B-node with
the same parameter sets as before (Figure 2D, E, Supple-
mentary Figure S4B, C, Supplementary Table S5) (38).

According to theoretical analyses, except for the linear
property of the buffer node (nBB = 1), perturbation of the
other parameters in the circuit topology should not affect
the perfect adaptation function (8). We thus individually al-
tered each regulatory interaction within the defined topol-
ogy to see how it affected the desired adaptation preci-
sion. We first perturbed the parameters of the B-node self-
activation activity by increasing it up to 2-fold (pT7m22)
or decreasing it 4-fold (pT7m46) by varying the promoter
sequence. The results showed that the adaptation function
was still maintained, with both AErr values lower than 0.20
(Figure 3A). Then, we perturbed the node B to node A acti-
vation parameter by decreasing the activation strength ∼5-
fold (pT7m27) and 25-fold (pT7m45, Supplementary Figure
S5A). Despite the much stronger perturbation of the ac-
tivation strength, the final outputs returned to the initial
levels with AErr values of 0.20 and 0.11, while the max-
imal transient expression increased 2-fold and 6-fold rel-
ative to the original circuit (Figure 3B). The last regula-
tory perturbation was the node A to node B repression pa-
rameter. The perfect adaptation function was evaluated for
the perturbed circuit with different targeted sequences of
the dCpf1-gRNA complex repressor (Supplementary Fig-
ure S5B). The final expression level of the output recov-
ered to the initial level with different maximal transient and
steady-state expression levels (Figure 3C). All the genetic
perturbations are summarized in Supplementary Table S3.
In conclusion, we systematically changed all the designed
interactions in the genetic circuit, and all the tested circuits
successfully achieved the defined perfect adaptation func-
tion.

Because of the insensitivity to interaction intensities, we
next investigated whether it is important to maintain the
complete topological structure for the RPA function. We



2384 Nucleic Acids Research, 2022, Vol. 50, No. 4

damaged the linear positive feedback on node B by intro-
ducing a null positive feedback experiment and a nonlin-
ear positive feedback experiment. To construct null positive
feedback controls, three constitutive promoters with differ-
ent strengths were chosen to replace the T7 promoter on the
B node (Supplementary Table S3). All these circuits gen-
erated imperfect adaptation responses with AErr values of
0.70, 0.94 and 1.3 for these promoters (Figure 3D, Supple-
mentary Figure S7), and a stronger promoter was associ-
ated with a larger AErr value. The AErr was slightly de-
creased when the carbon source switched from glucose to
fructose in their growth medium, but their AErr did not
perform as well as the original RPA circuit (Supplementary
Figure S8). In addition, we utilized nonlinear positive feed-
back (pR73-�R73�, with a Hill coefficient of nBB = 2.3)
to replace the original pT7-T7 RNAP linear positive feed-
back motif. The bacterial cells were measured by using
the mRFP1 fluorescent protein marker, and flow cytome-
try analyses revealed that the bacteria were divided into two
populations, indicating that nonlinear positive feedback re-
sulted in more complicated bistable responses before imple-
menting a perfect adaptation function as one homogeneous
population (Supplementary Figure S9, Supplementary Ta-
ble S4). Therefore, null or nonlinear positive feedback on
node B resulted in imperfect adaptation, supporting the the-
oretical implication that linear positive feedback is required
for RPA function. To destroy the negative feedback, the re-
pression from node A to node B was removed by deleting
the dCpf1 gene (Figure 3E, Supplementary Table S3). As
expected, the fluorescence of the output gene dramatically
increased without any adapted decrease after switching the
Cumate concentration from 2 �M to 1 mM. In conclusion,
the experimental results of the incomplete topology indi-
cated that the negative feedback loop is qualitatively dom-
inant in the adaptation, while the results of the parameter
perturbation indicated that the linear weak positive feed-
back plays a quantitative role for adaptation precision and
robustness.

After elucidating the effects of the single internal inter-
action in the circuit, we were interested in investigating
how well the circuit could maintain its function when fac-
ing far more complex environmental fluctuations. First, we
changed the carbon source of the growth medium from glu-
cose to fructose. The growth curves of the chassis bacteria
in the two media showed significantly different growth rates
(Supplementary Figure S6). Although the steady-state level
of the output in the fructose medium was changed relative
to the glucose medium, the output could also perfectly re-
turn to the initial level with an AErr of 0.19 (Figure 4A).
Moreover, we evaluated the perfect adaptation function in
a complex combined carbon source (succinate and pyru-
vate). It has been reported that when feeding bacteria car-
bon sources with different modes of entry into the central
metabolic pathway, the bacteria change their carbon flux for
more efficient utilization (43,44). Thus, changing the types
of carbon sources could perturb the global metabolic strat-
egy and global parameters. We showed that while the instan-
taneous peak of the response was not as easily observed,
the output could still be perfectly restored to the original
state, with an AErr of 0.061 (Figure 4B). Finally, encour-
aged by the previous results, we expected that the circuit

with the same topology and same sequence could perform
the defined adaptation function in the different strains and
species of E. coli, even in different genera, e.g. Pseudomonas.
We first transferred the same RPA circuit from the original
chassis bacteria E. coli K-12 sub strain DH10B to an in-
dustrial strain, BW25113, and the circuit still achieved the
defined perfect adaptation function with an AErr of 0.30
(Figure 4C). We further transferred the circuit into another
E. coli B sub strain, BL21, and crossed genera into an en-
vironmentally tolerant strain, Pseudomonas putida KT2440,
while keeping all the functional sequences and changing the
plasmid vector properly. In all conditions, perfect adapta-
tion could be achieved, even though an undetectable pulse
appeared within our experimentally temporal solution in
some cases (Supplementary Figure S10). In conclusion, all
these results indicated that the perfect adaptation function
was still well maintained under indirect global parameter
perturbations.

DISCUSSION

Robust perfect adaptation can be found in many natural
biological systems, playing key roles in maintaining the re-
sponse capacity to stimuli and maintaining homeostasis in
the presence of internal and external fluctuations (45–47).
In this work, we constructed new genetic circuits to achieve
perfect adaptation and evaluated their robustness by per-
turbing their genetic and environmental parameters. Per-
fect adaptation functions were achieved not only by single-
parameter perturbed circuits with single mutated regulatory
parts but also by global-parameter perturbed circuits that
changed the cell growth rate, carbon sources in the growth
medium and even chassis cells. We thus successfully devel-
oped a new design strategy for robust genetic circuits by
coupling the top-down and bottom-up approaches, and the
robust genetic circuit could be transferred from one species
or genus to another. As a transient external signal response
module, the adaptation circuit could be easily integrated
into more sophisticated genetic circuits.

To function as perfect adaptation, several topological
genetic circuits were experimentally engineered and esti-
mated their robust capability, including incoherent feedfor-
ward loop circuit with the non-cooperative negative regu-
lation (19), integral feedback loop circuit (33) and the neg-
ative feedback loop circuit shown here. Based on the dif-
ferences of their topology, they could buffer the perturba-
tion from different environmental or genetic resources. For
example, the incoherent feedforward loop circuit with the
non-cooperative negative regulation could stabilize the ex-
pression of the output protein in different genome locations
and different copy number of the plasmids. The integral
feedback loop circuit implemented the perfect adaptation
function with a fast time-scale (much faster than the cell
growth rate) and exhibited as homeostasis, while our circuit
could achieve perfect adaption with a slow time-scale in di-
verse environmental and genetical conditions.

Synthetic genetic circuits have always shown lower
performance than their natural counterparts. Higher-
performance synthetic genetic circuits usually require high
concentrations of regulatory proteins or synchronization
of multiple cells by intercellular signaling systems (48,49),
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while natural regulatory circuits can utilize very low con-
centrations of regulatory proteins to achieve similar high-
performance regulations. For example, E. coli cells only use
approximately 10 copies of LacI tetramers to tightly control
lactose metabolic enzyme expression (50). The high concen-
tration of synthetic parts would grab too many resources
from their host cells and thus induce a growth burden and
physiological toxicity to their host (51). The robust design
strategy developed here has potential in the building of low-
burden and high-performance genetic circuits.
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