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Abstract: Infection with the Hepatitis B Virus (HBV) is one of the strongest risk-factors for liver
cancer (hepatocellular carcinoma, HCC). One of the reported drivers of HCC is the integration of
HBV DNA into the host cell genome, which may induce pro-carcinogenic pathways. These reported
pathways include: induction of chromosomal instability; generation of insertional mutagenesis in
key cancer-associated genes; transcription of downstream cancer-associated cellular genes; and/or
formation of a persistent source of viral protein expression (particularly HBV surface and X proteins).
The contribution of each of these specific mechanisms towards carcinogenesis is currently unclear.
Here, we review the current knowledge of specific sites of HBV DNA integration into the host
genome, which sheds light on these mechanisms. We give an overview of previously-used methods
to detect HBV DNA integration and the enrichment of integration events in specific functional and
structural cellular genomic sites. Finally, we posit a theoretical model of HBV DNA integration
during disease progression and highlight open questions in the field.

Keywords: Hepatitis B Virus; hepatocellular carcinoma (HCC); next generation sequencing; inverse
nested PCR; chromosomal instability; insertional mutagenesis; non-homologous end joining; cancer
evolution; clonal expansion; viral persistence

1. Introduction

Chronic infection by Hepatitis B Virus (HBV) is one of the major causes of liver cirrhosis and
hepatocellular carcinoma (HCC) worldwide. Although there is a prophylactic vaccine to prevent
virus infection, HBV currently infects ~290 million people [1], for whom there is no cure. People with
chronic HBV infections are five to 100 times more likely to develop HCC compared to the general
uninfected population [2,3]. This amounts to ~337,000 annual deaths from liver cancer secondary to
HBV [4]. Moreover, while current treatments for chronic HBV (generally in the form of nucleotide
analogues) reduce the development of cancer [5], HCC risk remains above normal during the first
five years of therapy [6,7], particularly in patients with advanced liver disease. Surprisingly, the
risk of HBV-associated HCC (though highly associated with chronic antiviral inflammation [8,9]) can
persist after functional clearance of the virus infection [10], suggesting that other factors can drive
hepatocarcinogenesis. These include chromosomal instability from past genotoxic injury, residual
expression of oncogenic viral proteins, or the presence of pre-neoplastic genetic changes, all of which
may be driven by integrated HBV DNA.
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2. Hepatitis B Virus DNA Integration

Though sharing the same entry pathways as a productive HBV infection, the intracellular pathway
that generates HBV DNA integration cannot produce new infectious virions (Figure 1). HBV virions
exist as DNA-containing nucleocapsids enveloped by host-derived membranes that contain the HBV
surface proteins. The intra-capsid double-stranded DNA genome can exist as one of two forms: one is
a relaxed circular DNA (rcDNA) form; and the other (less frequent at 3–35% of virus particles [11])
is a double-stranded linear DNA (dslDNA) form. Both particles enter hepatocytes via attachment to
heparan sulphate proteoglycans and subsequent interaction between the HBV large (L)-surface protein
and the cellular sodium taurocholate co-transporting polypeptide (NTCP), a hepatocyte-specific bile
acid transporter and cellular receptor for HBV [12,13]. Following membrane fusion (by an as-yet
unknown mechanism), the nucleocapsid containing HBV DNA enters the cytoplasm and is transported
to the nucleus [14].

Here the dsl- and the rcDNA forms can diverge. Both dslDNA and rcDNA can be converted by
cellular enzymes into covalently closed circular DNA (cccDNA), which serves as the transcriptional
template for all HBV messenger RNAs (mRNAs) and leads to virus amplification [15]. Sub-genomic
viral mRNAs include those that give rise to the HBV X-protein (HBx) that acts as a transcriptional
regulator and the HBV surface antigens (HBsAg) that can self-assemble into empty subviral particles.
Pre-genomic RNA (pgRNA) is also transcribed from cccDNA and serves as the template for intra-capsid
reverse transcription by the viral polymerase to result in rcDNA or dslDNA genomes. These
nucleocapsids can be then enveloped and secreted as virions [14]. Alternatively, incoming intra-nuclear
HBV dslDNA can integrate into the host cell genome [16] at the site of cellular double-stranded DNA
breaks by non-homologous end joining (NHEJ) [17]. Next generation sequencing studies imply that
HBV dslDNA represents the majority of the substrates for HBV DNA integration, though the junction
sequence of a minority of integrations do not match up with the termini of the dslDNA form and
suggest that other (unknown) HBV DNA forms may also be involved [18–23].

Figure 1. Replication cycle of Hepatitis B Virus (HBV) and its integration into the host genome. The
nucleocapsid containing the relaxed circular DNA (rcDNA) (top half) or double-stranded linear DNA
(dslDNA) (bottom half) HBV genome enters the cytoplasm via the sodium taurocholate co-transporting
polypeptide (NTCP). In the nucleus, both forms can be converted into covalently closed circular
DNA (cccDNA) which serves as the transcriptional template for all viral RNAs (vRNAs), including
pre-genomic (pg)RNA. The pgRNA serves as the template for reverse transcription, which occurs
within the nucleocapsid and results in rcDNA or dslDNA. The nucleocapsids can be then enveloped
and secreted as virions. The intra-nuclear dslDNA HBV can integrate into the host cell genome at
the site of double-stranded DNA breaks by non-homologous end joining (NHEJ). We have recently
found that the reimport of dslDNA-containing nucleocapsids does not play a major role and that input
HBV DNA is the main contributor of HBV DNA integration in in vitro models [16]. Figure adapted
from [24].
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While the integrated form cannot generate new virions (as it cannot code for full-length pgRNA),
the HBsAg open reading frame remains intact and can be actively expressed from the integrated
form [25]. HBx with C-terminal truncations can also be theoretically produced from integrated HBV
DNA, though the functionality of these proteins remains completely unknown.

3. Possible Functions of Hepatitis B Virus DNA Integration

Hepatitis B virus DNA integration is observed in all known hepadnaviruses, including the woodchuck
and duck models of HBV infection [26–28], as well as chimpanzees [29,30] and humans [31–33] chronically
infected with HBV. Despite this broad conservation, the functional consequences of integrated HBV
DNA remain poorly understood.

Hepatitis B virus integration is associated with liver cancer development; 85–90% of HBV-related
HCCs contain HBV DNA integrations [34], while they are less frequently detected in the non-tumour
tissue (this is dependent on detection methods, as mentioned below). HBV integration has been
reported (though not conclusively shown) to play an active role in hepatocarcinogenesis via multiple
mechanisms, including: induction of chromosomal instability; disruption of cancer-associated genes
by cis-mediated insertional mutagenesis; and formation of persistent templates for HBV gene
expression (of either mutant or wild-type viral proteins). Hepatocellular carcinomas present with
a high frequency of host genomic changes such as chromosomal rearrangements and copy number
variations [18,21]. This higher genomic instability is reportedly induced by viral integration (e.g., by
integrating into and disrupting the scaffold matrix associated regions used for cellular DNA-nuclear
membrane interactions). Further, HBV integration adjacent to oncogenes or tumour suppressor
genes (e.g., hTERT) has been observed, potentially altering gene function and their regulation
by acting as a cis promoter/enhancer. Hepatitis B virus proteins (including PreS2 and HBx) can
remain intact in the integrated form and can be expressed [35], and may act as transactivators in
hepatocarcinogenesis. However, HBV DNA integration occurs early in the course of HBV infection,
preceding the development of HCC by decades [36]. In vitro infection models have shown that HBV
integration events can be found even <3 days post infection [16]. Thus, the true role of viral DNA
integration in HBV-induced HCC remains unclear.

Another possible function of integrated HBV DNA is in inducing viral persistence by providing a
stable reservoir for the transcription of the immunomodulatory HBsAg. A study in HBV chronically
infected chimpanzees revealed that the majority of HBsAg transcripts are derived not from the cccDNA
but from integrated HBV DNA [30]. Further, only a small reduction in HBsAg levels in HBeAg-negative
animals was observed [30], consistent with human studies [37,38].

In conclusion, the functional impact of the HBV integration on the host genome is only partially
understood and is a topic of growing importance. A major technical issue limiting the field is the
detection of HBV DNA integrations, as an unbiased and highly-sensitive method for quantification of
virus integration sites is still lacking.

4. Detection of Hepatitis B Virus Integration

Over the past decades, multiple methods have been used to detect virus integration into the host
cell genome. Each of these methods has its distinct advantages and limitations (summarised in Table 1).
While beginning with classical techniques such as Southern Blot hybridisation, recent development of
high-throughput sequencing technologies (such as whole genome sequencing and RNA-Seq) has had
a massive impact on the generation of large datasets, allowing for finer interrogation of the integration
process and its implications.
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Southern blot hybridisation using probes specific for HBV DNA was the initial method used to
characterise integrated HBV DNA in HBV-related HCC and adjacent HBV-infected liver tissue [39–43].
Later, this analysis was extended to both HCC-derived cell lines [44] and liver tissue from HBV-positive
cirrhotic patients without HCC [45]. However, the sensitivity of the method is very low, with a
detection limit of 103–105 copies of the 3.2 kb HBV genome. Due to this, small clones (composed of
<103 cells) cannot be detected, causing a bias towards hepatocyte clones that have undergone extensive
positive selection. Further, their copy number can only be quantified with poor precision through
densitometry measurements.
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Table 1. Summary of Hepatitis B Virus (HBV) DNA integration site detection methods.

Technique Biases Drawbacks Advantages Suitable Uses Ref.

Southern blot
• Dependent on restriction

enzyme sites to resolve
different integration events

• Time consuming
• Technically demanding
• Low sensitivity (>103 copies)
• No sequence information

• Low cost
• Classical robust technique
• Absolute quantification

possible (low precision)

Detecting presence of
integrated HBV DNA in
highly clonal samples

[39,40,42–46]

Direct cloning and
Sanger sequencing

• Dependent on restriction
enzyme sites for cloning

• Technically demanding
• Low-throughput

• Complete integrated
genome sequenced

Determining structure of
integrated HBV genome in
highly clonal samples

[45,47]

Alu PCR • Dependent on Alu sequences
• Biased towards larger clones

• Multiple copies required
for detection

• Alu-Alu products in low
clonal samples

• No absolute quantification

• Inexpensive
• Relatively simple

Detecting and sequencing
integrated HBV DNA in
clonal samples

[48–50]

invPCR

• Dependent on restriction
enzyme sites for detection

• Biased towards larger clones
(as based on limiting dilution)

• Time-consuming
• Technically demanding
• Only finds DNA sequence

immediately adjacent
to junctions

• Absolute quantification
• High sensitivity (single copy)
• High specificity (detection of

1 in 106 cells)
• Biases can be controlled for by

in silico models

Detecting and quantifying
rare HBV DNA integrations [16,26,28,29,31–33]

WGS
• Biased away from poorly

mappable (e.g., transposon
sequences) regions

• Low-depth
• Cost
• No absolute quantification

• Full genome coverage
Integration site detection in
highly clonal samples [18–23]

WES • Dependent on being in (or
close to) coding regions

• Coverage only of
coding regions

• No absolute quantification
• Greater depth than WGS

Integration site detection in
coding regions [51,52]

RNA-Seq • Biased towards more highly
expressed genes

• Coverage of expressed coding
regions only

• No absolute quantification

• Greater depth than WGS
• Data on transcriptional activity

Virus-fusion transcripts [19,22,53–55]

invPCR, inverse-nested PCR; WGS, Whole Genome Sequencing; WES, Whole Exome Sequencing; RNA-Seq, RNA Sequencing.
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The integrations of some highly-clonal samples were then painstakingly characterised by further
cloning and direct sequencing. Targeting specific integration junctions in these samples (by cloning into
plasmid vectors) allowed full analysis of the integrated HBV DNA fragment, in some cases showing
complex rearrangements of the HBV genome and duplications in the cellular genome [45,47]. Though
such approaches can provide detailed sequence information, they are not suitable for screening for a
large range of unknown virus-cell junctions that exist in low copy numbers. More sensitive PCR-based
methods have been developed to circumvent this limitation.

Alu PCR assays that use primers specific for HBV and Alu repetitive elements to amplify virus-cell
DNA junctions have been used to detect HBV DNA integration in both HCC and non-tumour tissue of
patients with HBV infection [48–50]. Alu sequences accounts for more than 10% of the human genome
and are the most abundant repetitive elements [56]. Although the method is robust and requires
small amounts of tissue, uneven distribution of Alu elements can prevent the amplification of the
viral-human sequence as they might not be in the vicinity of Alu-repeats. Conversely, due to higher
Alu density in some genomic regions, findings may be biased towards integrations located in specific
functional regions (described below). In our experience [57], this technique has low specificity and
sensitivity, with high amounts of Alu-Alu products being amplified in samples with low clonality
(clones of <103 cells). This technique also does not allow quantification of the integration junctions.

Inverse-nested PCR (invPCR) assays have been used to detect Duck Hepatitis B Virus (DHBV)
DNA integrations from DHBV-infected duck liver [28], integrated Woodchuck Hepatitis B Virus
(WHV) DNA in wild-infected woodchucks [26], HBV-infected chimpanzees [29], HBV integrations
from human liver [31–33], and HBV-infected cell lines [16]. The major advantage of the method is
high sensitivity, enabling detection of single copy virus-cell junctions [16,58]. Moreover, its selectivity
and specificity allow identification of the exact virus-cell junction sequence and quantification of their
absolute number. However, as this quantification occurs via end-point dilution, the assay is biased
towards only detecting the virus-cell junctions in the largest cellular clones in the sample (though
we recently showed that these do not appear to change during disease progression [59]). In addition,
virus-cell DNA junctions are detected by use of restriction enzymes, which limits the detection of many
(~90%) of integration junctions, though this can be accounted for using in silico analysis [16]. Finally,
PCR amplification competition between products formed by HBV integration and products formed
by defective HBV DNA may prevent reliable detection in some cell types (including primary human
hepatocytes infected in vitro).

Recently, integration sites and the impact of HBV integration into the host cell genome have been
explored using next-generation sequencing (NGS). The main advantages of NGS technology over
other methods is the ability to sequence millions of reads in a single run and does not require prior
information regarding the HBV or cellular sequences. Whole genome sequencing (WGS) gives the full
coverage of the host genome and can be used to identify viral sequence aberrations such as mutations
or structural rearrangements, which have been reported to accompany HBV DNA integration [60].
However, the cost of sequencing runs have necessitated limiting sequencing depths to at most 100×,
which may result in a large number of HBV integration sites not detected, especially in normal tissue
where there are smaller clones. While increased depth can be achieved with whole-exome sequencing
(WES), this is accompanied by a corresponding loss of sequence coverage, as only coding regions of
the human DNA genome and their flanking sequences are captured. With the cost of NGS continually
falling, this is likely to change in the future, when the limiting factor will become the availability of
computing power to analyse large datasets.

Whereas WES and WGS only give data on the DNA integration sites, RNA-seq can explore
actively transcribed genes and allows for more sensitive prediction of sub-clonal HBV integration
than WGS as it generates more reads covering the integration events. However, robust detection
by RNA-seq is limited to HBV DNA integrations that have occurred in highly-expressed genes, are
transcriptionally active themselves (driving high levels of transcription of HBx-cellular fusion genes
from the HBx promoter), or have occurred in large cellular clones.
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An additional weakness for NGS methods in general is using the appropriate computational
tools, stringent controls, and ideal parameters and criteria to confidently identify an integration event.
Due to the rarity of HBV DNA integrations (in terms of both number of copies per unique integration
and the underlying integration rate), calling these events with certainty against the background of
false positives (e.g., generated by PCR chimeras during library preparation) can be challenging. These
potential artefacts should be ruled out with suitable experimental controls (e.g., spiking HBV DNA
sequences into a non-infected control).

Finally, in the majority of all previous studies, the underlying biases of the detection method used
(Table 1) are not taken into account during the interpretation of results. For example, if a tissue has more
clonal heterogeneity (as is the case in non-tumour tissue when comparing to a HCC tumour [18,20])
fewer HBV integrations may be detected, simply due to the sensitivity of a particular technique for low
copy number integration events. Moreover, if the method used has a bias (say, to detect integrations
close to coding regions) a false enrichment for integrations in tumour tissues will be observed. Thus, it
is important for researchers to be aware of or (more preferably) control for these detection biases in
HBV DNA integration studies.

5. Site Specificity of Hepatitis B Virus Integrations

Using these molecular methods, HBV DNA integration has been observed throughout the genome.
Recent studies have shown preferential integration in some genomic loci (outlined below). However,
the mechanism underlying the selection of integration sites remains largely unknown. In general
(Table 2), greater enrichment of integration into specific genes or features is seen in HCC tissue
compared to non-tumour tissues (in which mostly random integration occurs).

Table 2. Enrichment of HBV DNA integrations into specific cellular regions and features.

Feature in Which Integration Occurs Enrichment in HCC Enrichment in Non-Tumour Tissue

Specific HCC driver genes Yes, but minority of HCCs (TERT, MLL4) FN1
Telomeres Yes No

CpG islands Yes Slight (~2-fold greater than expected)
Repetitive regions (e.g., LINEs and SINEs) No, except one report [54] No

Transcriptionally-active sites Yes No
Exons and Introns Yes Slight

Fragile sites Yes No
Promoter regions Yes Slight

HCC, Hepatocellular Carcinoma; LINEs, Long Interspersed Nuclear Elements; SINEs, Short Interspersed
Nuclear Elements.

5.1. Recurrent Genes

Hepatitis B virus DNA integrations in HBV-related HCC have been characterised for recurrent
integration sites or preferential target genes. In general, more integration events have been observed in
HBV-associated tumours compared to matched non-tumour tissue (86.4% vs. 30.7% [18] and 76.9% vs.
37.6% [20] in two separate studies), with only a small number of integrations shared by the tumour and
non-tumour tissue in the same patient [18,20]. However, in a massive anchored parallel sequencing
(MAPS) approach [61] significantly higher HBV insertional frequency was observed in adjacent
non-tumour tissue compared to HCC tumour tissue (with 86% and 14% of the total integrations
detected in non-tumour vs. tumour tissue, respectively), a difference which may be due to the different
sensitivities of the corresponding methods. Additionally, more HBV integration sites in non-tumour
liver tissues compared to tumour tissue were observed in RNA-seq studies [55].

Recurrent integration events have been frequently observed in the genes encoding human
telomerase reverse transcriptase (hTERT), mixed-lineage leukaemia 4 (MLL4), and cyclin e1
(CCNE1) [18,20,22,23,62]. Interestingly, higher number of integrations in the hTERT gene is associated
with a lower rate of hTERT promoter mutations, suggesting that they are mutually exclusive
mutations [22,63].
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Hepatitis B virus integration might have a direct effect on the expression of the host cell gene
adjacent to the integrated HBV sequence and cause transcriptomic alterations such as HBV-human
fusion transcripts. Although, the molecular mechanisms are unclear, they might be related to the
effects on host cell promoters. Indeed, recurrent integrations are most frequently found in the promoter
region of human hTERT gene [18,63–65], but have also been observed in MLL4, CCNE1, and ALB
genes, in tumour samples but not in the matched non-tumour samples [18,66,67]. Many of these
integrations have been shown to be associated with increased gene expression of the proximal cellular
gene, presumably driven by viral elements.

Several HBV-human fusion transcripts generated as a consequence of HBV integration may
result in chimeric protein expression with a potential oncogenic effect. Integration in the SERCA1
gene in HCC tissue resulting in a HBx/SERCA1 fusion protein was reported to drive oncogenesis
by inducing apoptosis [68]. Also, HBx/MLL4 fusion transcripts have been observed in HCC patients
and can be translated into short fusion proteins that suppress the expression of 11 cellular (potentially
HCC-associated) genes in HepG2 cells [69]. Interestingly, HBV integration in the FN1 gene seems to
be specific to adjacent non-tumour liver tissue [18,55,61,70] and results in recurrent HBV-FN1 fusion
transcripts [70]. The purpose and effect of these fusion transcripts in non-tumour remains unknown.

The Sleeping Beauty (SB) transposon mutagenesis system has been used in mice for the discovery
of key genes and pathways dysregulated in HCC by identifying common insertion sites. SB integrations
are generally randomly distributed across the mouse genome in sense or antisense orientations [71].
Although the majority of SB insertions were unique, common insertion sites were present in multiple
tumours from the same mouse (n = 14) [72]. Most of these genes have a predicted role as oncogenes
or tumour suppressors and were significantly associated with Wnt/β-catenin and PKA/cAMP
signalling pathways [72]. Moreover, high enrichment for genes that are implicated in metabolic
processes were identified [73]. However, the SB transposon mutagenesis system generates many
more integrations than HBV infection (~350 SB integrations compared to 1–10 HBV integrations per
tumour) and the SB system requires additional stimuli for carcinogenesis (e.g., administration of
di-ethyl nitrosamine, HBsAg overexpression), suggesting that these pathways may not reflect those
driven by HBV DNA integration.

5.2. Recurrent Structures

5.2.1. Telomeres

Telomeres, repetitive DNA regions (TTAGGG) at the ends of chromosomes, maintain genomic
stability of the chromosomes and protect them from degradation and fusion events. Chronic liver
injury, characterised by high liver cell turnover, accelerates telomere shortening, resulting in cell
senescence or apoptosis, and chromosomal instability (CIS) that drives hepatocarcinogenesis [74,75].
Further, telomere length shows a gradual shortening during the multistep hepatocarcinogenesis in
HBV-related disease [76]. HBV integration events have been reported to be significantly enriched
in the proximity of telomeres in HCC DNA compared to paired non-tumour tissue [20]. Moreover,
several novel HBV integration sites were identified in the DNA sequences of long noncoding RNAs
related to telomere maintenance [61]. These all could potentially lead to telomere dysfunction, but the
actual effect on hepatocarcinogenesis is not known.

5.2.2. CpG Islands

Recent studies have shown significant enrichment of HBV integrations within CpG islands in
tumours compared with non-tumour samples, with decreased frequency in genomic loci moving away
from CpG islands [20]. However, the frequency of integration in these areas was not greater than
expected by chance in RNA-seq datasets [55]. In our recent study, we found a slight (~2-fold) but
significant enrichment within 10 kb of CpG islands in tissues from HBV-infected patients compared
to a control in silico dataset [59]. However, we found no increased enrichment with liver disease
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progression, suggesting that HBV DNA integration near CpG islands may be an intrinsic feature of the
integration process.

5.2.3. Repetitive Regions (LINEs and SINEs)

Hepatitis B virus integration events have been observed within human repetitive regions, such
as long interspersed nuclear elements (LINE), short interspersed nuclear elements (SINE) (including
Alu repeats) and simple repeats (microsatellites) [61,66]. Furthermore, transcriptome sequencing
of HBV-positive cell lines revealed HBV integration into LINE1 [54] and resultant expression of
chimeric HBx-LINE1 RNA transcripts in ~23% of HBV-related HCCs, correlating with shorter survival
time [54]. Further, HBx-LINE1 was shown to deplete cellular miR-122 and promote β-catenin signalling
activation, E-cadherin reduction and cell migration [77]. However, the effect of HBx-LINE1 transcripts
remains controversial after other authors failed to find this correlation in other cohorts [78].

5.2.4. Transcriptionally Active Sites

Enrichment of HBV DNA integration into exons and promoters of coding genes has been
observed in tumours compared with matched non-tumour tissue harbouring more integrations in
introns [18,20,79]. However, there was no apparent prevalence of integrations in transcription factor
binding sites or transcriptional start sites [20]. Our recent study showed no apparent prevalence in
integration events into expressed genes, suggesting no preferential integration into transcriptionally
active regions [20,59].

5.3. Recurrent Motifs

5.3.1. Homology between Hepatitis B Virus and Cellular Sequences

Hepatitis B virus integrations occur at host DNA double-stranded breaks through both NHEJ
and microhomology mediated end-joining (MMEJ; referred also as alternative NHEJ). Studies in the
DHBV model [17] show that the majority of virus-cell junctions have little or no sequence homology
shared with cellular DNA, therefore they probably follow the classical NHEJ pathway. Later, this was
confirmed in both in vitro HBV infection models and ex vivo tissues from HBV-infected patients [16].
However, in about a third of integration junctions, short sequence homology (microhomology) between
integrated HBV and cellular DNA at the site of the virus-cell junction has been observed [16,20,54,55,59],
suggesting MMEJ as a potential repair mechanism in these cases.

5.3.2. GC-Rich Regions

Hepatitis B virus DNA integrations have been found to integrated into the GC-rich regions of the
host genome in PLC/PRF/5, a HBV-associated HCC-derived cell line [80]. It is important to note that
SINE repeats (including Alu) accumulate over time in GC-reach genomic regions, and CpG islands
have 60–70% GC content [81]. Further, two thirds of the protein-coding genes are concentrated in
the GC-rich regions [82] and telomeric region of the chromosomes are GC-rich [83]. Thus, previously
reported virus integration into repetitive regions, CpG islands, oncogenes, and telomeres suggests
preferential integration proximal to cellular regions with high GC content. However, this hypothesis
remains to be formally tested.

6. Current Model of Hepatitis B Virus DNA Integration during Disease Progression

Together, the data suggests that HBV DNA integration into the host genome is random at the start
of infection and in non-tumour tissue, but integration events into specific regulatory regions may be
positively selected only during progression of HCC (Figure 2). In vitro [16] and animal models [28,84]
show an integration rate of 1 in ~103 cells within days of the initial HBV infection. During the disease
progression of chronic HBV infection (particularly during HBeAg-seroconversion), hepatocytes with
integrated HBV DNA undergo extensive selective clonal expansion (>10,000 cells). These selective
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advantages may play a role in the initiation of HCC [31–33] and could include DNA mutations or
epigenetic changes that drive: hypersensitivity to growth factors; escape from immune recognition; or
resistance to pro-apoptotic or -senescence signals.

1 
 

 

Figure 2. Model of HBV DNA integration during disease progression. Hepatitis B virus DNA
integration into the host genome is random at the start of infection with tumour-associated specific
enrichment of HBV integrations into regulatory regions (promoters) and HCC-associated genes (e.g.,
hTERT, MLL4) after the HCC initiation. Hepatocytes with random integrations clonally expand during
the chronic antiviral inflammatory response. Over time, hepatocytes with some pre-neoplastic changes
may be selected for and give a rise to HCC-initiating cells. Specific HBV DNA integrations are only
selected for in late stages of HCC progression. Figure adapted from [9].

Hepatitis B virus DNA integration itself, however, is not a likely initiator of HCC. We and others
have shown that the majority of HBV integration sites in non-tumour tissue are indistinguishable
from random integration [18,20] and are not significantly enriched in any specific functional genomic
regions during these clonal expansion phases [59]. This suggests that the majority of HBV integration
events act as passenger mutations and do not play a role in HCC initiation (at least by cis-mediated
mechanisms).

Instead, HBV DNA integration could play a role in HCC progression after initiation. Specific
enrichment of HBV integrations into regulatory regions (promoters) and HCC-associated genes (e.g.,
hTERT, MLL4) has been observed in relatively small proportion of HBV-associated HCCs. In these,
several of these reportedly pro-oncogenic integrations induce altered their gene expression in their
downstream cellular genes, likely driven by the HBx promoter of the integrated HBV DNA. Moreover,
HBV integration in tumour tissue tends to occur more frequently in regions with repetitive sequences,
at chromosomal fragile sites, CpG islands, and transcriptional start sites. In summary, liver cancer
development is a multistep process with accumulation of genetic alterations [85] and, given the data
reviewed above, we believe that HBV integration likely plays cis-mediated oncogenic roles only late in
tumour progression.
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7. Open Questions Regarding Hepatitis B Virus Integration

7.1. What Proportion of Integrations Alter Cell Phenotype or Are Truly Pro-Carcinogenic? How and When
during Disease Progression Do They Act?

In late stages of HCC, there is an enrichment of HBV DNA integrations in cancer-associated
regions (e.g., hTERT promoters). However, our recent data shows that the cellular site profile of
integrations is not altered during clonal expansion, suggesting that the majority of integrations do
not contribute to cancer formation (at least by cis-mechanisms). This still leaves the possibility that a
minority of integration events could be involved in hepatocarcinogenesis during early (pre-cancerous)
stages. When detecting HBV DNA integrations in a patient tissue, an experimenter probably uses at
most 100 mg of liver (one 10,000th of the whole liver) and so is unlikely to capture a rare event that
might be the start of liver cancer. The lack of a good experimental system for HBV-associated HCC
means that the field still remains unable to approach (in a physiologically-accurate manner) questions
such as how HBV DNA integration can alter a hepatocyte to a pro-cancerous phenotype, when this
change could occur, and how evolution towards HCC could be stopped. An immunocompetent
small-animal model that supports the entire cycle of HBV replication and leads to human-like
liver pathology (chronic inflammation, fibrosis, cirrhosis, and HCC) would be ideal for pursuing
these questions.

7.2. What Controls the Frequency of Integration? Why Doesn’t Hepatitis B Virus Integration Occur More or
Less Often?

Others groups and we have shown that integration events occur fairly consistently at a frequency
of one per 104 cells in both in vitro and in vivo models [16,28]. What exactly causes this consistent rate
across the hepadnavirus family, why this integration rate seems to be conserved, and how it can be
altered is unknown.

The levels of substrates of HBV DNA integration (cellular double-stranded breaks and HBV
dslDNA in the inoculum) likely play a role in governing integration frequency, though this remains
to be confirmed in human HBV infection models. In a DHBV in vitro infection model, it has been
shown that increasing dslDNA levels in the inoculum increases integration rate. Moreover, in a
HBV-expressing transgenic human cell line, increasing double-stranded breaks via peroxide-driven
oxidative damage induced a 10-fold increase in detectable integrations. This has implications on the site
of HBV integrations; it is possible that cellular regions with greater susceptibility to double-stranded
breaks (e.g., CpG islands [20]) are also more susceptible to HBV integration. This interpretation stands
in contrast to previously suggestions that HBV DNA integration causes genomic instability [61].

7.3. How Does Hepatitis B Virus Integration Occur Multiple Times in the Same Cellular Clone?

Related to the question above, several HCC tumours (and cell lines derived from them) show
multiple integrations occurring within the same hepatocyte clone (e.g., four HBV copies in the
PLC/PRF/5 cell line [86], at least three copies in the Huh-1 cell line [87]). Reconciling this observation
with results seen in cell culture and infection models seems to set up a paradox.

First, we have found that integration rate does not appear to increase in productively infected
cells (at least within a week after infection), but rather the majority of integration events occurs with
the initial input infection [16]. If indeed integration occurs only during the initial infection event and
if all cells are equally as likely to have an integration event, then with the relatively low integration
rate of 10−4 integrations per cell (as described above), the probability of more than one integration
event taking place in the same cell is highly improbable. Finally, super-infection exclusion (mediated
by the virus L surface protein) prevents new NTCP-mediated infection of already-infected hepatocytes
and has been observed in both DHBV [88] and HBV (Ni and Urban et al., manuscript in preparation)
infection models. Together, these experimental observations suggest that each cellular clone should
contain only a single HBV integration, despite clear evidence showing that multiple integrations occur.
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There are multiple potential (non-exclusive) explanations of this apparent contradiction that
remain to be experimentally tested. These include:

1. The lack of nuclear import of the de novo-generated mature nucleocapsids or superinfection
exclusion is not absolute, but instead occurs at a slow rate in a chronically-infected hepatocyte.
This allows multiple integrations to eventually accumulate within infected cells. This also predicts
that the number of cccDNA per cell should also increase over long periods of time, which has not
yet been observed. While only weeks-long in vitro models are available, no change in cccDNA
levels has been observed after the initial formation [89]. Moreover, we have found that HBV
mutants incapable of expressing HBcAg show no difference in cccDNA levels compared to
wild-type after six weeks of infection cell [90], showing that nuclear import of nucleocapsids in
infected cells is low in these models.

2. Not all cells are equally likely to contain integrations. In the liver cell population, there may
be hepatocytes that have a susceptibility to HBV DNA integrations (e.g., cells with increased
double-stranded breaks) in which multiple integrations could occur at the time of initial infection.
Such an explanation could be explored using integration detection methods in single cells shortly
after HBV infection.

3. Not all integrations express L-protein (e.g., due to epigenetic silencing, HBV truncations,
mutations or lack of downstream poly-A in the integrated form), allowing re-infection of a
cellular clone if cccDNA is cleared (e.g., through cell mitosis [91]. This mechanism would predict
that only a single integration in a cellular clone (the most recent) would express the L-protein.

Addressing these potential explanations as testable hypotheses would not only help solve some
inconsistencies observed between experimental infection systems and chronically-infected primary
human tissues, but also expand our understanding of the viral-host dynamics of chronic HBV infections.
This could open up new targetable variables to more efficiently disrupt viral persistence.

7.4. How Does the Structure of Integrated Hepatitis B Virus DNA Affect Viral Dynamics and Pathogenesis?

Only comparatively few integrated HBV genomes have been completely sequenced, and only
from highly-clonal samples, such as HCC tissue or surrounding non-tumour tissue in late disease
states. From these studies, the majority of fully-sequenced integrated HBV DNA have no viral genome
rearrangements (including deletions, inversions, or duplications), despite common misconceptions
to the contrary. Cloned HBV sequences from HCC [25,44,45] and surrounding non-tumour tissue, as
well as WGS data [60], show that 80–90% of integrated dslDNA HBV genomes appear not to be highly
rearranged (though contain extensive terminal truncations). The number of integrants with smaller
alterations (e.g., small insertions/deletions) is more difficult to measure, due to the poor resolution
of restriction fragment analysis (for Southern Blot and cloning analyses) and the excess amount of
viral replicative intermediate DNA sequences leading to difficulties in mapping reads (for NGS-based
analyses). The integrated genomes that do contain rearrangements have large deletions, insertions,
duplications, inversions, and other complex structures. Interestingly, the loss of HBsAg PreS regions
seems to be a common feature among these rearrangements [92]. While some rearrangements have
been observed in the surrounding cellular DNA [92], these do not appear to be significantly different
between tumour and non-tumour tissue [60].

Apart from the specific sequence of integrants, many other aspects regarding the structure of the
integrated HBV DNA are still not known, including: (1) when these genomic rearrangements occur
during infection (if the HBV DNA that integrates is already rearranged or if rearrangement takes place
post-integration during clonal evolution); (2) if particular rearrangements are selected for during the
process of clonal expansion or disease progression; (3) if specific cellular sites of HBV integration may
be involved in controlling expression from the integrated form; and (4) if any clinical impact for the
patient can be ascribed to the type of integration or its expression (e.g., involvement in HCC formation
or HBV persistence).
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Extending from the latter points, the clinical consequences of decoupling HBsAg and HBx
expression from cccDNA persistence are of particular interest. HBsAg has known immunosuppressive
functions [93–95] and its expression can be maintained in clonally expanded hepatocytes containing
HBV DNA integrations in the face of antiviral responses targeting productively-infected cells. Thus,
expression from integrated HBV DNA may play an important role in HBV persistence in the
HBeAg-negative phase.

The consequences of persistent HBx expression are even more mysterious. While overexpression
of HBx has been associated with multiple (possibly artefactual) pro-oncogenic pathways [96], its impact
on HBV transcription and potential changes in viral dynamics with its decoupling with cccDNA has
not been well-explored. It may be possible that transcriptionally-silent cccDNA (selected for by the
antiviral immune response) could eventually be reinitiated by the HBx derived from integrated HBV
DNA, thereby representing another persistence mechanism.

8. Summary

In conclusion, the unanswered questions about HBV-associated pathogenesis requires a better
understanding of the virus and its host interactions. Both the understanding and recognition of HBV
DNA integration in the pathogenic process are still poor, though increasing through the development
of new detection techniques. These have revealed that HBV integration sites are mostly random with
respect to the host genome from the beginning of infection until tumour initiation, but HCC progression
is associated with enrichment in specific functional cellular genomic regions. The questions of if and
how HBV DNA integration affects carcinogenesis (or indeed vice-versa) are still unanswered and
require further research. Future studies in this field are therefore likely to lead to greater understanding
and possibly to novel therapeutic targets for viral replication and persistence.
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