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Abstract

The sensory signals that drive movement planning arrive in a variety of “reference frames”, so 

integrating or comparing them requires sensory transformations. We propose a model where the 

statistical properties of sensory signals and their transformations determine how these signals are 

used. This model captures the patterns of gaze-dependent errors found in our human 

psychophysics experiment when the sensory signals available for reach planning are varied. These 

results challenge two widely held ideas: error patterns directly reflect the reference frame of the 

underlying neural representation, and it is preferable to use a single common reference frame for 

movement planning. We show that gaze-dependent error patterns, often cited as evidence for 

retinotopic reach planning, can be explained by a transformation bias and are not exclusively 

linked to retinotopic representations. Further, the presence of multiple reference frames allows for 

optimal use of available sensory information and explains task-dependent reweighting of sensory 

signals.

Humans use various sensory signals when interacting with the environment. We can reach to 

pick up a coin we see in front of us or transfer the coin from one hand to another without 

looking. Using multiple sensory modalities for planning similar movements is potentially 

problematic, since different sensory signals arrive in different “reference frames”. 

Specifically, early visual pathways represent stimulus location relative to current gaze 

location – a retinotopic representation, while proprioceptive signals represent hand location 

relative to the shoulder or trunk – a body-centered representation. In order to utilize such 

signals, some must be transformed between reference frames. While sensory 

transformations may appear mathematically simple, here we show that transformations can 

incur a cost by adding bias and variability1, 2 into the transformed signal. Thus, sensory 

transformations likely influence the flow of information in motor planning circuits.

It has been argued that transforming sensory signals into a common representation would 

simplify reach planning3-7, and many researchers have attempted to characterize this 

representation. Many psychophysical studies focus on the patterns of reach error, under the 

assumption that the reference frame for movement planning directly determines the spatial 

pattern of errors. Such studies argue for both retinotopic5, 8-11 and hand- or body-

centered12, 13 planning. Studies of primate physiology and human fMRI also find evidence 

for a range of neural representations for movement planning14-23. These disparate results 

suggest that a single common representation for reach planning is unlikely22-26. We argue 
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that the presence of noisy sensory transformations makes it advantageous to represent 

movement plans simultaneously in multiple reference frames.

Our experiment examined how the representations of movement plan depend on the 

available sensory inputs, focusing on the effects of gaze location. A well studied gaze-

dependent error is the retinal eccentricity effect, where subjects overestimate the distance 

between the gaze location and a visually peripheral target when pointing to the target27. 

Since these errors are most parsimoniously described as an overshoot in a retinotopic 

reference frame, they are cited as evidence for retinotopic reach planning8-10. We found 

that the magnitude and direction of gaze-dependent errors depends heavily on the available 

sensory information. These results were interpreted using a model of movement planning 

where sensory signals are combined in a statistically principled manner in two separate 

reference frames. The model provides a novel explanation for these gaze-dependent reach 

errors: they arise when sensory information about target location is transformed between 

representations using an internal estimate of gaze direction that is biased toward the target. 

We thus demonstrate that spatial patterns of reach errors need not directly reflect the 

reference frame of the underlying neural representation.

Results

Measuring gaze-dependent reach errors

We first examined how the pattern of reach errors depends on the sensory signals available 

during the planning and execution of a movement. Specifically, we manipulated information 

about target location and initial hand position, the two variables needed to compute a 

movement vector. Target information was varied by having subjects reach either to visual 

targets (VIS), proprioceptive targets (the left index finger, PROP), or targets consisting of 

simultaneous visual and proprioceptive signals (left index finger with visual feedback, VIS

+PROP). Information about initial hand position was varied by having subjects reach either 

with (FB), or without (NoFB) visual feedback of the right (reaching) hand before movement 

onset, although feedback was never available during the movement. For each of the six 

resulting trial types, we measured movement errors as subjects reached to nine different 

target locations with gaze held on one of two fixation points (Supplemental Fig. S1, online).

A comparison of reach endpoints for an example subject at the midline target illustrates how 

reach errors depend on the available sensory signals (Fig. 1). The mean error changed 

markedly as a function of gaze location, and these gaze-dependent effects differed across 

trial types. During VIS and VIS+PROP trials (Fig. 1a–d), reach endpoints were biased away 

from the gaze location (the retinal eccentricity effect), and the magnitude of the effect 

decreased with increasing sensory information (Fig. 1a vs. 1b–d). In PROP trials, a small 

bias toward gaze location was observed instead (Fig. 1e,f). These patterns were consistent 

across targets (Supplemental Section 1.1 and Fig. S2, online). In addition to these gaze-

dependent effects, there was a gaze-independent bias in reaching that could differ across 

targets and trial types. While there was a trend toward overshooting the target, the pattern of 

this bias, measured across targets and trial types in a separate gaze-free trial condition, was 

idiosyncratic from subject to subject (Supplemental Section 1.2 and Fig. S3, online), making 
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these patterns difficult to interpret. We therefore focused on the consistent gaze-dependent 

effects.

In order to isolate the gaze-dependent effects, we analyzed reach errors in polar coordinates 

about the midpoint of the eyes and subtracted the gaze-free errors (Methods, Supplemental 

Section 1.2 and Fig. S4, online). In examining radial (depth) reach errors we found a 

tendency to overshoot the target; however these errors did not differ between the two gaze 

locations (Supplemental Section 1.3 and Fig. S5, online). In examining angular reach errors 

(Fig. 2) we observed both a general leftward bias (see Supplemental Section 1.2, online) and 

significant differences as a function of gaze location. Gaze-dependent effects were thus 

confined to the angular reach errors.

We next examined how these gaze-dependent effects varied with trial type (Fig. 2a–f). The 

retinal eccentricity effect was observed in VIS/NoFB trials (Fig. 2a): subjects made 

rightward (positive) reach errors when fixating to the left of the target and leftward 

(negative) reach errors when fixating to the right of the target. A similar pattern was 

observed in VIS/FB trials, but with smaller magnitude (Fig. 2b, and see reference8). In 

contrast, during PROP trials the reach endpoint was closer to the fixation point, so that 

leftward errors were made when fixating to the left of the target (Fig. 2e,f). The gaze-

dependent error patterns in the VIS+PROP trial types appear to be a combination of those 

observed in VIS and PROP trials (Fig. 2c,d). For all trial types, the errors for the two gaze-

locations align qualitatively when angular error is plotted in a retinotopic reference frame, 

i.e. as a function of target relative to gaze (Fig. 2, insets). This alignment might appear to 

support a retinotopic representation for reach planning8-10. However, since these patterns 

differ markedly across trial types they cannot be readily explained in terms of a fixed 

retinotopic bias, suggesting the need for a different explanation of these error patterns.

A Planning Model: Integration Across Reference Frames

We developed a model of reach planning that accounts for the pattern of gaze-dependent 

errors observed in our data. The model has two key features: the presence of multiple 

representations for movement planning and a bias in the transformation between those 

representations.

The model begins with sensory inputs signaling target location, initial hand position, and 

gaze location. As sensory signals are inherently variable, we modeled them as Gaussian 

likelihoods of true location given the sensory input, with likelihood variance reflecting the 

reliability of the sensory modality28. Visual signals arrive in a retinotopic representation and 

proprioceptive signals arrive in a body-centered representation. Each available signal is then 

transformed into the “non-native” reference frame (Fig 3a). Subjects' head positions were 

fixed during the experiment, so this complex nonlinear transformation29 can be 

approximated simply by adding or subtracting the gaze location, i.e. by convolving their 

distributions (Fig. 3a, Methods and1). However, since the internal estimate of gaze location 

is also uncertain, this transformation adds variability to the signals. When both sensory 

modalities are available, the “native” and transformed signals are integrated in both 

reference frame representations (VIS+PROP target condition, Fig. 3a). Movement vectors 

are then computed within each representation, by convolving the target and initial hand 
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distributions (subtraction). Note that because the sensory transformation adds variability, 

each spatial variable is more reliably represented in one or the other of these representations, 

depending on the availability and reliability of the relevant visual and proprioceptive signals 

(Supplementary Section 2.1, online).

The sensory transformations in our model also introduce a bias into the estimates of 

transformed variables. In particular, we posit that the internal estimate of gaze direction used 

to transform target location is biased toward the target. We discuss possible origins for this 

bias below. The bias was modeled as a Bayesian prior on gaze location centered on the 

target. Since the transformation consists of adding or subtracting gaze location, depending 

on the direction of the transformation, the prior effectively biases the transformed target 

estimate either away from or towards the direction of gaze (Fig. 3a). “Native” 

(untransformed) target representations remain unbiased. Since the gaze prior is centered on 

the estimated target location, the variance of the prior (Fig. 3b,c), and hence the magnitude 

of the bias (Fig. 3d), was assumed to scale with the uncertainty of the internal target 

estimate. Thus, the gaze-dependent errors in the model depend on the relative weighting of 

the various sensory signals, depending on both the availability and reliability of sensory 

inputs and on the method of reading out the final movement vector.

We considered three possible output schemes for reading the planned movement vector from 

the model (Supplemental Fig. S6, online). Either the retinotopic (RET) or body-centered 

(BODY) representations can each be read out directly. Alternatively, the two movement 

vector estimates can themselves be combined to form an integrated readout (INTEG). The 

contributions of the two representations to the INTEG readout depend on their relative 

reliability. Note that these calculations use the simplifying assumption that the signals being 

combined are independent (see Supplemental Section 2.2, online for discussion).

Each of the three potential readouts provided a quantitative prediction of reach errors as a 

function of hand, target, and gaze locations. The only free parameters in the model were the 

variances of individual sensory inputs and the gaze priors (Methods). The values of the 

proprioceptive variances were based on previously reported values30. Four parameters 

remained: visual variance, gaze variance, and two scaling factors relating the variance of the 

gaze prior to the variance in visual and proprioceptive target signals. We fit these parameters 

to the gaze-dependent errors shown in Figure 2 after mean correction (see Methods), using 

least-squares regression (see Supplemental Section 2.3, Table-S1, and Fig. S7 online, for fit 

values).

Model Fits of Constant and Variable Reach Errors

We first consider how well the three output models fit the observed patterns of gaze-

dependent errors (Fig. 4a–f). When the model was fit with a single-representation readout, 

RET or BODY, it failed to predict errors for all trial types. This is because only transformed 

target signals contain a gaze-dependent error, so when the readout was in the “native” 

reference frame of a unimodal target, no error was predicted (Fig. 4a,b,e,f). While both 

readouts had errors for bimodal targets (VIS+PROP, Fig. 4c,d), errors in the RET readout 

are due to the transformed proprioceptive signal, and would thus be in the wrong direction 

(Fig 3a). Thus, for the RET readout the fitting procedure nullified the effect of the 
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transformed proprioceptive signal by forcing the model to rely only on vision, i.e. by driving 

the visual variance parameter toward zero (Supplemental Table S1, online). In contrast, 

when the movement vector representations were combined in the INTEG readout, the model 

performed well across all trial types. This readout captured both changes in the magnitude of 

gaze-dependent errors (VIS vs. VIS+PROP, and FB vs. NoFB) and the sign reversal 

observed with PROP targets. It accomplished this by differentially weighting the two 

reference frames across trial conditions, with both representations making substantive 

contributions (Supplemental Section 2.4 and Fig. S8, online). Indeed, a scheme that simply 

switches between the RET and BODY readouts depending on task would not capture the 

data well. First, both the RET and BODY readouts failed to capture the differences in the 

magnitude of gaze-dependent errors that we observed between FB and NoFB conditions. 

Second, in order to predict the observed errors, the switching scheme would need to rely 

predominantly on the more variable “transformed” signals, rather than “native” signals, a 

sub-optimal arrangement.

In addition to fitting the gaze dependent error patterns, the model predicted the differences 

in movement variability across trial types (Fig. 5a). Since computations within the model 

were assumed to be noise-free, model output variability was due entirely to variability in the 

sensory inputs, shaped by the model computations, and did not require any additional 

parameter fitting. The INTEG model fit provided an accurate prediction for the changes in 

output variance across trial types, better than the two single-representation fits. These 

predictions came from separate parameter fits for each readout. However the model 

parameters presumably reflect actual variances in the neuronal representations of sensory 

inputs. Using a single set of variances, e.g. the INTEG fit, we looked at how variability in 

the movement plan depends on readout. We found that the INTEG readout generally yielded 

a lower variance estimate (Fig. 5b), since it made better use of all available sensory signals 

(although the extent of this advantage depended on the statistical properties of the sensory 

transformations; Supplemental Section 2.5 and Fig. S9, online). In contrast to the idea that a 

single coordinate frame should dominate movement planning3-10, 15, 18, this analysis 

illustrates that utilizing multiple representations of a movement plan yields more reliable 

performance across tasks.

Model Predictions for Previously Published Datasets

We tested the model, fit to our own dataset, on an similar, previously published dataset8 

containing visual target trials with an expanded range of movements (i.e., more start, and 

gaze locations). These data exhibit the retinal eccentricity effect, and, as above, the effect 

magnitude is smaller when visual feedback of the hand is available (data reproduced in Fig. 

6a,b). In addition, there is a component of the reach error that correlates with the relative 

positions of the hand and target (data reproduced Fig. 6c,d). Our model captured all of these 

key features in the dataset (Fig. 6e–h).

The model explains another very different empirical result, again without additional 

parameter fitting. Our lab has previously shown that visual information about initial hand 

location is weighted more heavily when reaching to visual targets (as in VIS/FB trials here) 

than when reaching to proprioceptive targets (as in PROP/FB trials here)2. We proposed that 
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this sensory reweighting was due to the cost (e.g. variability) incurred by sensory 

transformations2. The present model makes this cost explicit, with quantitative predictions 

of the angular error that should result from artificial shifts in visual feedback. In both the 

empirical data and the INTEG readout predictions, visual feedback shifts had a weaker 

effect when reaching to proprioceptive targets than when reaching to visual targets (Fig 7a). 

This effect was quantified in terms of overall weighting of visual versus proprioceptive 

feedback (Fig. 7b), which was much greater for VIS targets than for PROP targets. In the 

model, this re-weighting was due to the tradeoff between the retinotopic and body-centered 

representations of the movement plan (Supplemental Fig. S8, online), evidenced by the fact 

that neither the RET nor BODY readout exhibited the effect. This result provides further 

support for the use of multiple representations in movement planning.

Origins of the Gaze Bias

We have shown that a bias in the internal estimate of gaze location can account for the 

complex pattern of gaze-dependent reach errors we observed across trial types. We now 

consider several possible origins of this bias and discuss additional evidence for its presence. 

This bias might arise due to ether a “covert” saccade plan toward the target or a shift of 

attention to the target. We tested these hypotheses by controlling the saccade target or the 

locus of attention independent of the reach target, but these manipulations did not alter the 

reach error pattern (Supplemental Sections 3.1, 3.2 and Fig. S10, online). Alternatively, the 

bias could arise from a prior expectation that reach targets tend to be foveated, reflecting the 

fact that eye and hand movements tend to be tightly linked31. Indeed, the model bias was 

implemented in this manner (see Methods).

While the source of the gaze bias remains undetermined, we were able to corroborate its 

presence using an independent measure. Specifically, we found that a visually peripheral 

reach target biases a subject's estimate of straight ahead, and this bias is consistent with a 

shift in the estimated gaze direction32 towards the target (Supplemental Section 3.3 and Fig. 

S11, online). This perceptual effect, like the errors observed in our reach experiment, is well 

modeled by a Bayesian prior on gaze location centered at the target.

Discussion

This study was aimed at testing two widely held ideas in the field of sensorimotor control: 

that spatial patterns of errors for a given movement reflect the underlying neural 

representation7-13, and a single reference frame should dominate movement planning3-6, 

8-10, 15, 18, 33. We have argued that neither of these ideas is correct. First, we have shown 

that a single, apparently retinotopic, pattern of reach errors can be explained by a model in 

which multiple neural representations are used, e.g. a combination of both retinotopic and 

body-centered reference frames. Second, we have shown that using more than one 

representation confers an advantage in terms of reduced planning variability.

Spatial patterns of reach errors, especially retinotopic or gaze-centered patterns, have been 

cited as evidence that the neural representation for reach planning is in a particular reference 

frame5, 8-13, 33. We observed similar error patterns, but found that their magnitude and 

directionality vary with the sensory signals available for movement planning. This variation 
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was inconsistent with a fixed bias in a single neural representation. We showed that a bias in 

the transformation of target information between representations can lead to gaze-dependent 

error patterns in both retinotopic and body-centered representations. In fact, the retinal 

eccentricity effect for visual targets arose in the model only from the body-centered 

representation, clearly illustrating that the spatial pattern of reach errors need not be a good 

indicator of the underlying neural representation. More generally, we argue that when 

sensory signals are used in a statistically optimal manner28, 34-38, the same information is 

contained in multiple neural representations, and so there is no required relationship between 

the behavioral output and any single representation of the movement plan.

We have proposed that a biased transformation can account for gaze-dependent reaching 

errors, focusing on azimuthal (left-right) reach errors and azimuthal gaze shifts. When gaze 

is shifted vertically (up-down) a similar pattern of vertical gaze-dependent errors is 

observed39, qualitatively consistent with our model. We did not observe gaze-dependent 

effects in the radial (depth) reach errors of our subjects (Supplemental Fig. S4, online), 

likely because gaze was not varied in depth. When this manipulation is done, a complex 

pattern of gaze-dependent depth errors emerges33, presumably reflecting the complex 

binocular, three-dimensional geometry of the eyes29. Modeling these patterns will likely 

require significantly more complex model representations and transformations.

While we have focused on gaze-dependent errors, a variety of other error patterns are 

amenable to similar analysis. For instance, several studies exploring the effect of head 

rotations on reach accuracy have found errors in reaching toward the direction in which the 

head is oriented40, 41, a pattern consistent with a bias of the perceived midline of the head 

toward the direction of gaze41. Additionally, the leftward bias in reaching that we observed 

(Fig. 2) can be modeled as a rightward bias in the proprioceptive estimate of the right hand 

(Supplemental Section 1.2, online). The idiosyncratic gaze-independent error patterns 

exhibited by individual subjects (Supplemental Fig. S2, online) can also likely be explained 

by subject-specific biases on sensory variables42. All of these biases could be due to prior 

expectations on sensory variables or their correlations36, although alternate sources of errors 

are plausible, e.g. impoverish neural representations43.

We have argued that the variability of sensory transformations make it advantageous to use 

multiple representations for a movement plan. First, we showed that using multiple 

reference frames, in a weighted fashion, improves movement variability across trials (Fig. 

5b). Next, we showed that only multiple reference frames in the model can account for the 

reweighting of visual feedback of the hand due to target type (Fig. 7)2,. This is because the 

relative variability of the two representations, and hence their contribution to the output, 

depends on the sensory modality of the target. Note however, that the model does not 

account for all of the observed reweighting (Fig. 7). This may be explained by reweighting 

due to a lack of belief by the subject that the visual cursor is at their finger44. Still, our 

results suggest that while a single representation may simplify the flow of information3-6, it 

does not make optimal use of that information in movement planning.

Previous studies have reported patterns of movement errors2, 12, 26 or generalization of 

motor learning45, 46 that cannot be explained succinctly in a single reference frame. Such 
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error patterns often depend on the availability of sensory signals2, 12, and are explained in 

terms of changes in the underlying reference frame44, 46 or an “intermediate” 

representation of movement planning26, 45. Here we provide a different explanation: 

movements are always represented in multiple reference frames, independent of the task, 

and it is the statistical reliability of these representations that determines their relative 

weighting.

This model is consistent with the neurophysiological literature, where a variety of spatial 

representations are observed across the reach planning network24, 47. Reach related areas 

have been found to have retinotopic coding15, 48, head- or body-centered coding19, 49, and 

hand- and shoulder-centered coding16, 21-23, as well as “mixed” representations14, 16-18, 

21-23, 49. The two separate representations of movement plan in our model could be found 

in subsets of these cortical areas. Alternatively, the same computation could be performed 

using a heterogeneous neural population that contains both retinotopic and body-centered 

components, i.e. a “mixed” representation. Indeed, these implementations are at two ends of 

a continuum, and the physiology seems to point to a middle ground, in which all the cortical 

areas for reach planning make use of “mixed” representations, but the parietal cortex has a 

more retinotopic character and the frontal cortex is more hand or body-centered24, 47. As 

this study has shown, however, the ultimate answer is likely to be found not by finer assays 

of neural reference frames, but rather by comparing activity in these areas across tasks with 

different sensory information4, 14, 49.

Materials and Methods

Experimental setup

Subjects were seated in a virtual reality setup (Supplemental Fig. S1). The right arm rested 

on top of a thin (6 mm) and rigid horizontal table. The left arm remained under the table. 

When used as a reach target, the left index finger touched the underside the table with wrist 

supine. Thus, the two hands never came in contact. The location of both index fingers was 

monitored using an infrared tracker (Optotrak 3020, Northern Digitial, Waterloo ON). 

Subjects' view of their arms was blocked by a mirror through which they viewed a rear-

projection screen (Supplemental Fig. S1a, inset). This provided the illusion that visual 

objects appeared to lie in the plane of the table. The rig was enclosed in black felt and the 

room was darkened to minimize additional visual cues. Head movements were lightly 

restrained with a chin rest, and eye movements were monitored with an ISCAN Inc. 

(Burlington, MA) infrared eye tracker.

Task design

Nine potential reach targets were located on the table, on a 35 cm arc centered at the point 

directly below the midpoint of the two eyes (Supplemental Fig. S1). The targets (8 mm 

radius green disks, when visual) were located at ±20°, ±15°, ±6°, ±2°, and 0° relative to 

midline. Two gaze fixation points (5mm radius red disks) were located on this arc at ±10°. 

Visual feedback was given with an 8 mm radius disk centered on the index finger, white for 

the right hand, blue for the left.
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All trials consisted of four steps. 1) Subjects moved their right index finger to a fixed 

starting location. On feedback (FB) trials, the start location was indicated with a 10 mm 

radius green disk, and visual feedback of right hand was illuminated. On no-feedback 

(NoFB) trials, neither feedback nor target were visible, and subjects were guided to the start 

location using the arrow field method, which provides no feedback of absolute hand 

position2. 2) When the right index finger came to rest within 10 mm of the start location, 

one of the fixation points appeared. Subjects were required maintain fixation at the fixation 

point for the remainder of the trial. 3) After fixation, the reach target was specified. For VIS 

and VIS+PROP trials, the target disk appeared. In VIS+PROP trials, feedback of the left 

hand appeared, and subjects moved the left index finger to the target, and the target disk was 

then extinguished leaving the blue feedback disk. For PROP trials an arrow field was used to 

guild the unseen left hand to the unseen target location. 4) After target specification, there 

was a 500ms delay before an audible “go” tone was played and subjects reached to the 

target. On FB trials, both feedback and start disk were extinguished at the “go” tone and 

remained off for the rest of the trial. Finally, subjects were required to hold the final reach 

position for 500 ms. Subjects practiced the various trial types before beginning the 

experiment.

Eight subjects (two female, six male) participated in the experiment. Subjects were right-

handed, had no known neural or motor deficits, had normal or corrected-to-normal vision, 

and gave written informed consent before participation. The experiment was divided into 

two sessions, performed on different days to minimize fatigue. One session contained FB 

trials, one NoFB trials, and session order was randomized across subjects. Each session 

contained six repetitions of each of the 54 conditions (3 target types × 9 targets × 2 fixation 

points), for a total of 324 trials (not including error trials, which were repeated). These trials 

were followed by trials in which gaze location was unconstrained. This set consisted of six 

repetitions of 9 trial conditions (3 target types × 3 targets), bringing the total number of trials 

for each session to 378. The order of presentation across conditions was randomized within 

each repetition.

Data analysis

For each trial, reach endpoint was defined as the position where movement speed first fell to 

5 mm/sec. Reach targets and endpoints were converted into polar coordinates about an 

origin located directly below the midpoint of the two eyes. Angular reach error is the 

angular difference between the endpoint and target, with positive values indicting reach 

endpoints to the right of the target and negative values indicating reach endpoints to the left 

of the target. For the plots, permutation tests, and model fitting, the angular reach errors 

were corrected by subtracting off the linearly interpolated free-gaze errors (separately for 

each subject and trial type) to minimize the effects of idiosyncratic gaze-independent errors 

while preserving the relationship between error, gaze, and target (see Supplemental Figs. S3, 

S4, and S5). The significance of gaze-dependent effects was tested by a paired permutation 

test of main effect of gaze location50.
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Model

Our model of reach planning describes how statistical representations of sensory inputs are 

used to compute a movement vector plan. Five sensory signals are potentially available, 

modeled as independent Gaussian probability distributions centered on the true locations, X, 

i.e. Gaussian likelihoods, N(X,σ2), with an isotropic covariance matrix σ2I:

(1)

Here lower-case variables are sensory signals with subscripts denoting sensory modality: v, 

visual, p, proprioceptive. Upper-case variables are true locations with subscripts denoting 

reference frame: R for the retinotopic location, B for body-centered location. When a signal 

is unavailable in a given trial type (e.g., fv in NoFB trials), the likelihood is the uniform 

distribution. The likelihood represents variability in a sensory signal x given the true 

location X. The computations in the model, however, depend on uncertainty in X given x, i.e. 

on the posterior distributions p(X|x). Bayes' rule relates these two distributions:

(2)

where p(X) represents prior information about the location. We usually assume that the prior 

is flat, so the posterior is proportional to the likelihood (although a non-trivial prior is 

described below).

All of the computations in the model make locally optimal use of the signals required for a 

computation, assuming that those signals are independent. Indeed, only two operations are 

performed by the network: signal integration and addition (or subtraction). Integration is the 

process of combining information about variable X from two signals x1 and x2. By Bayes 

rule (Equation 2) and the definition of independence, the integrated posterior is the product 

of the two input distributions:

(3)

The resulting posterior is also Gaussian, with mean and variance:

(4)

In Equation 4 and below, μX|x and σ2
X|x represent the mean and variance of the distribution 

p(X|x), respectively. If either input distribution is uniform, i.e. if a sensory signal is absent, 

the integrated posterior is equal to the other input. Note that the integrated variance is 

smaller than either of the input variances. The second operation, addition, is where the 
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network computes the posterior of a variable Z =X +Y from input signals x and y. In this 

case, the output posterior is given by convolving the inputs:

(5)

The result is also a Gaussian:

(6)

Note that for both integration and addition, the output mean is a weighted sum of the input 

means, with either constant (unity) weights or weights that depend on the input variances.

Given the sensory signals described in Equation 1, the model first builds internal 

representations of fingertip and target locations, in both retinotopic and body-centered 

reference frames. These representations integrate all available sensory signals, requiring the 

transformation of “non-native” signals. In computing the retinotopic representation of target, 

for example, the proprioceptive signal tp must be transformed. Since head position is fixed, 

TR = TB − G, and the transformation follows Equation 5:

(7)

Parallel transformations convert fp into a retinotopic representation and tv and fv into body-

centered representations. This can yield two independent estimates of the same variable, 

which are then integrated according to Equation 3. The retinotopic representation of target, 

for example, has the posterior distribution:

(8)

Of course, in VIS or PROP trials, one of the input distributions is uniform.

The model next computes retinotopic and body-centered representations of the desired 

movement vector. Since the true value of the instructed movement vector is MV = T − F, 

these computations also follow Equation 5:

(9)

Note that both of the inputs to Equation 9 depend on gaze. If the same estimate of gaze is 

used in all transformations, then the inputs are not fully independent, and Equation 6 is only 

an approximate solution (see Supplemental Sections 2.2, 2.5 and Fig. S9, online).

Lastly, the model selects a planned movement vector using one of three readout schemes. 

The RET and BODY readouts are just the mean values of the MVR and MVB posteriors, 

respectively, from Equation 9. For the INTEG readout, the model integrates these two 

posteriors according to Equation 3, as if they were independent:
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(10)

Note that these three readouts are maximum a posteriori (MAP) estimates given the 

respective posteriors. This computation is only correct when the input signals are 

independent (Equations 8,9), which is not always true (see Supplementary Section 2.2, 

online)

The final component of the model is a bias in the transformation of target position between 

reference frames. We model this bias as a systematic misestimation of gaze location due to a 

Bayesian prior. The prior takes the form of a Gaussian distribution, p(G) ∼ N(tprior, σ2
prior). 

The mean of the prior distribution tprior is a Gaussian random variable with mean TB and 

variance proportional to that of the transformed target variable. The variance of the prior, 

σ2
prior, is a product of the variance of the target distribution being transformed and a scaling 

factor that depends on the modality of the transformed signal (see Supplemental Table S1, 

online). This prior only effects the gaze estimate used for transforming target locations; not 

the transformation of finger locations. A discussion of the statistical properties of the 

transformation, and their effects on model predictions, is in the Supplementary Note 

(Section 2.5, online).

Since the model is composed entirely of integration (Equation 3) and addition (Equation 5) 

operations, all expected values, including the movement vector readouts, can be written as 

weighted sums of the means of the initial sensory inputs, with coefficients depending only 

on the variances of those signals (Equations 4,6). The trial-by-trial variances of the readouts, 

shown in Figure 6, can be computed from these coefficients and the input variances in 

Equation 1.

Model fitting

The only model parameters are the sensory variances in Equation 1 and the variance of the 

gaze prior, σ2
prior. The proprioceptive variances were set a priori based on previously 

published estimates30. The variance of visual signals, σ2
v, is assumed to scale linearly with 

the distance of the stimulus from center of gaze, and this scale factor is the first free 

parameter. The variance of the gaze signal, σ2
g is the second. The variance of the gaze prior, 

σ2
prior, is assumed to scale with variance of the target variable being transformed. Two scale 

factors, one for each target modality, make up the remaining free parameters. We fit these 

four free parameters to the average angular movement errors, after mean correction, shown 

in Figure 4. The model generates Cartesian movement vectors, which are then converted 

into polar coordinates to obtain angular errors. The fitting procedure minimized the sum 

square prediction error across trial conditions using the Matlab optimization toolbox 

(function fmincon; Mathworks, MA). Optimization was repeated 100 times with random 

initial parameter values, and the final parameters were largely insensitive to initial values.

Modeling other data sets

The model predictions for previously published dataset (Figs. 6,7) used the model 

parameters fit to our own dataset with the INTEG readout. When modeling the reach errors 

for Buerze et. al.8 (Fig. 7), we translated their target array into our workspace and rescaled 
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the spacing of the targets to maintain the same azimuthal separation. The data for Figure 7 

come from the gaze-fixed trials in Sober and Sabes2, their Supplemental Figure S3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Reach errors at the center target for an example subject for all trial types. Lines indicate 

mean reach error for each gaze-position, ellipses represent standard deviation, + fixation 

points, • reach targets. The origin (not shown) is located directly below midpoint of the eyes.

McGuire and Sabes Page 16

Nat Neurosci. Author manuscript; available in PMC 2010 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Average angular reach error across subjects for each trial condition. Negative values indicate 

reach endpoints to the left of target, positive values indicate reach endpoints to the right of 

target. Before averaging, linearly interpolated gaze-free errors for each trial type were 

subtracted (Supplemental Section 1.2, and Fig. S4, online). Error bars indicate standard 

errors. p-values determined with a paired permutation test50.
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Figure 3. 
The bias and variance injected by sensory transformations in the model. a) Examples of the 

bias and variance that arise during transformation of target information. Circles represent the 

posterior distribution of target location (95%-confidence limits). Transformed signals have 

greater uncertainty and are biased either towards (retinotopic) or away from (body-centered) 

the gaze location. In VIS+PROP trials, the “native” and transformed signals are integrated 

into a combined estimate of location (filled circles). b,c) Posterior variance in estimated gaze 

location (i.e., “transformation variance”, black), gaze likelihood variance (grey), and 

variance of gaze prior (dashed) (see Methods) for b) transformation from retinotopic to 

body-centered space, and c) transformation from body-centered to retinotopic space. d) Bias 

in eye position estimate used in sensory transformations. Values in all panels computed from 

INTEG model fit.
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Figure 4. 
Model fits for gaze-dependent reach errors. Black and gray lines show mean (standard error) 

errors across subjects for each trial condition, after subtracting the overall mean separately 

for each of the six trial types. Colored lines show best-fit model predictions. Solid lines, 

gaze right; dashed lines, gaze left.
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Figure 5. 
Reach variability. a) Trial-type differences in angular reach variance. Black lines represent 

mean (standard error) reach variance across subjects. Values are derived from the average 

variance across subjects and trial conditions within each trial type, with the overall mean 

subtracted. Colored lines represent model predictions with each readouts fit parameters. b) 

Mean variability of each model readout scheme, as a function of trial type, using fixed 

model parameters (INTEG fit).

McGuire and Sabes Page 20

Nat Neurosci. Author manuscript; available in PMC 2010 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Model predictions for data from Beurze et. al.8 a,b,e,f) Gaze dependent pointing error. 

c,d,g,h) Pointing error as a function of initial hand position relative to the target. a–d) 

average pointing error from Beurze et al. e–h) INTEG model predictions of pointing error, 

with parameters fit to our data.
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Figure 7. 
Changes in sensory weighting with target modality. a) Mean angular error induced by 

artificial shifts in the visual feedback of the hand prior to movement onset. Data from Sober 

and Sabes2. Error bars represent standard error. Model predictions use the INTEG readout, 

parameters fit to our data. b) Relative weighting of visual vs. proprioceptive information 

about initial hand position in movement planning for reaches to VIS and PROP targets. 

Error bars represent standard deviation across subjects. Colored lines show model 

predictions for each readout scheme.
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