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Abstract 

Background  Missing values in datasets present significant challenges for data analysis, particularly in the medical 
field where data accuracy is crucial for patient diagnosis and treatment. Although MissForest (MF) has demonstrated 
efficacy in imputation research and recursive feature elimination (RFE) has proven effective in feature selection, 
the potential for enhancing MF through RFE integration remains unexplored.

Methods  This study introduces a novel imputation method, “recursive feature elimination-MissForest” (RFE-MF), 
designed to enhance imputation quality by reducing the impact of irrelevant features. A comparative analysis 
is conducted between RFE-MF and four classical imputation methods: mean/mode, k-nearest neighbors (kNN), 
multiple imputation by chained equations (MICE), and MF. The comparison is carried out across ten medical datasets 
containing both numerical and mixed data types. Different missing data rates, ranging from 10 to 50%, are evaluated 
under the missing completely at random (MCAR) mechanism. The performance of each method is assessed using two 
evaluation metrics: normalized root mean squared error (NRMSE) and predictive fidelity criterion (PFC). Additionally, 
paired samples t-tests are employed to analyze the statistical significance of differences among the outcomes.

Results  The findings indicate that RFE-MF demonstrates superior performance across the majority of datasets 
when compared to four classical imputation methods (mean/mode, kNN, MICE, and MF). Notably, RFE-MF consistently 
outperforms the original MF, irrespective of variable type (numerical or categorical). Mean/mode imputation exhibits 
consistent performance across various scenarios. Conversely, the efficacy of kNN imputation fluctuates in relation 
to varying missing data rates.

Conclusion  This study demonstrates that RFE-MF holds promise as an effective imputation method for medical data-
sets, providing a novel approach to addressing missing data challenges in medical applications.
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Introduction
Missing values, also known as missing data, are defined 
as data points that are not recorded for a variable in a 
given observation of interest [1]. This pervasive issue 
spans across various domains [2–6], often arising from 
a combination of factors such as human and machine 
errors, data processing difficulties, privacy concerns, or 
situations where relevant information is either unavail-
able or unobserved [7–10]. In medical research, missing 
data presents significant challenges, potentially impairing 
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downstream statistical analyses and predictive models 
[11, 12]. These challenges can have broad implications, 
influencing clinical decision-making processes and ulti-
mately affecting the quality of patient care [10, 13]. The 
severity of these consequences highlights the critical 
need to address the missing data problem in medical 
research.

To mitigate these challenges, researchers have devel-
oped and implemented various missing value imputa-
tion (MVI) techniques, which aim to replace missing 
values with derived estimates, thereby preserving data-
set integrity and utility [14–18]. In the medical domain, 
several traditional imputation methods have been widely 
employed, including mean/mode imputation [19], mul-
tiple imputation by chained equations (MICE) [20], and 
k-nearest neighbor (kNN) imputation [21]. While these 
conventional techniques offer valuable solutions in cer-
tain contexts, they are subject to innate limitations that 
may affect either the accuracy of the imputed data or the 
applicability of the method itself. For instance, mean/
mode imputation, despite its simplicity, replaces miss-
ing values with the mean or mode of the observed data 
for a given variable [22, 23]. However, this approach dis-
regards the inherent uncertainty in such imputations, 
often yielding biased or unrealistic outcomes [24, 25]. 
MICE, renowned for its flexibility, is frequently employed 
as a multiple imputation method [26, 27]. Nevertheless, 
MICE, along with other multiple imputation techniques, 
faces challenges in high-dimensional settings [28], par-
ticularly those involving interactive and nonlinear rela-
tionships among variables [26, 29]. In such scenarios, 
the complexity of specifying conditional models for each 
variable with missing data increases substantially, ren-
dering the imputation process both intricate and com-
putationally demanding, potentially compromising the 
accuracy and efficiency of MICE [4, 30]. Similarly, while 
kNN imputation is widely utilized for its robustness and 
effectiveness [9, 31], its computational complexity and 
sensitivity to parameter settings—such as the number 
of neighbors, choice of distance metrics, and imputation 
order—present notable limitations, constraining its prac-
tical applicability in real-world settings [32, 33].

In response to these challenges, tree-based imputation 
methods have emerged as promising alternatives [34]. 
Notably, MissForest (MF), an iterative imputation algo-
rithm based on random forests (RF), distinguishes itself 
from traditional imputation methods by neither assum-
ing normality nor requiring parameter specifications for 
modeling [35, 36]. Furthermore, its capacity to effectively 
handle mixed data types renders it particularly adept in 
heterogeneous data contexts [37, 38]. Consequently, MF 
has garnered increasing attention in the field of MVI 
research, attributed to its favorable performance relative 

to traditional imputation methods [35, 36]. Moreover, 
several studies have demonstrated MF’s promising effi-
cacy within the medical domain [37, 39]. However, while 
effective at imputing missing data, MF lacks inherent fea-
ture selection, which is critical for reducing dimensional-
ity and improving model interpretability, particularly in 
high-dimensional medical datasets.

Feature selection reduces model complexity by identi-
fying relevant features and removing irrelevant or redun-
dant ones [40, 41]. Recursive feature elimination (RFE), a 
wrapper method, is particularly effective among feature 
selection strategies [42, 43] and has gained considerable 
acclaim within the biomedical domain for its efficacy 
across numerous studies [44, 45]. It iteratively removes 
the least important features based on their impact on 
model performance, aiming to optimize the feature sub-
set for better classification accuracy [46, 47]. Recently, 
numerous studies have shown that conducting feature 
selection on observed data to filter out unrepresentative 
features can significantly enhance the efficiency of the 
imputation process, as certain missing features deemed 
unrepresentative may not be essential for effective impu-
tation [48–51].

While MF has gained widespread recognition in MVI 
research, demonstrating its efficacy across various appli-
cations [35–37, 39], efforts to further optimize and fully 
explore its potential remain limited. Concurrently, RFE 
is a well-established feature selection method known for 
reducing dimensionality and improving computational 
efficiency [44, 45, 48]. However, its use has primarily been 
limited to a preprocessing role, aimed at enhancing pre-
dictive models rather than directly improving imputation 
methods. A significant research gap exists in integrating 
RFE feature selection and MF imputation techniques to 
improve both tasks simultaneously.

To address this, we propose RFE-MF, a novel approach 
that combines MF with RFE to mitigate the influence of 
irrelevant features and enhance imputation quality. This 
study introduces RFE-MF and demonstrates its effective-
ness using medical datasets. We perform a comparative 
analysis to evaluate the performance of our proposed 
RFE-MF method against four conventional imputa-
tion approaches—mean/mode imputation, MICE, kNN, 
MF—using ten medical datasets. Furthermore, we evalu-
ate their performance on both numerical and mixed data 
types, with simulated missing rates ranging from 10 to 
50%, addressing key practical challenges in the medical 
field.

The rest of this paper is organized as follows. Sec-
tion  2 reviews the related literature, covering missing 
data mechanisms, imputation techniques, and the RFE 
feature selection method. In Sect. 3, we describe the pro-
posed RFE-MF algorithm. Sections  4 and 5 present the 
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experimental evaluation and the results, respectively. 
Finally, conclusions are drawn in Sect.  6.

Literature review
Missing data mechanisms
According to [52], there are three mechanisms for miss-
ing data: missing completely at random (MCAR), missing 
at random (MAR), and not missing at random (NMAR). 
These classifications are based on the relationship 
between the missingness of the data and the observed or 
unobserved values in the dataset [53].

MCAR occurs when the probability of missingness is 
independent of both observed and unobserved variables 
[54]. An illustrative example is a heart rate monitoring 
study where data points are missing due to equipment 
malfunction, such as battery failure. In this scenario, the 
missing data are unrelated to participants’ heart rates or 
any other measured variables, thus satisfying the MCAR 
criteria. MAR is characterized by missingness that is con-
tingent upon observed variables but remains independ-
ent of unobserved data [54]. Consider a large-scale health 
survey where participants periodically report on their 
health status. If older individuals are more likely than 
younger participants to omit questions related to dietary 
habits, the missingness is associated with the observed 
variable (age) but not with the unobserved dietary infor-
mation. Once age is controlled for, the missingness can 
be treated as random, thereby fulfilling the MAR condi-
tion. MNAR, the most complex mechanism, occurs when 
missingness is directly related to unobserved data, such 
as the value of the missing variable itself [55]. This is 
exemplified in longitudinal studies of depression, where 
participants experiencing more severe symptoms may be 
less inclined to complete follow-up assessments. In this 
instance, the likelihood of missing data correlates with 
the unobserved severity of depression, as those with the 
most pronounced symptoms are the ones most likely to 
be absent. This represents a case of MNAR, where the 
missing data are systematically linked to unobserved 
characteristics.

Imputation methods are predicated on specific miss-
ingness mechanisms, and deviations from these under-
lying assumptions may introduce bias into subsequent 
analyses [53]. When data adhere to the MCAR condition, 
results derived from various imputation techniques main-
tain their validity, and complete case analysis does not 
introduce systematic bias [56]. To evaluate the efficacy of 
our proposed imputation method relative to established 
classical techniques, we conducted a comparative analy-
sis under the MCAR mechanism. The selection of MCAR 
as a fundamental basis for this comparative analysis is 
supported by its relatively straightforward assumptions, 
which provide a well-defined benchmark for assessing 

imputation performance. Furthermore, previous studies 
[14, 15] have revealed that MCAR is the most commonly 
used missingness mechanism in simulation studies, due 
to its simplicity and ease of implementation, making it an 
ideal starting point for evaluating imputation methods.

Missing value imputation
Current MVI strategies can be broadly classified into four 
main categories: single imputation, multiple imputation, 
machine/deep learning, and tree-based imputation [34, 
50, 57, 58]. The first category comprises single imputa-
tion methods, including mean/mode imputation [19], 
regression imputation [59], and expectation–maximiza-
tion [60]. Among these methods, mean/mode imputation 
replaces missing numerical values with the mean and 
categorical values with the most frequent value (mode), 
effectively using central tendencies to fill in the gaps for 
the corresponding variables [22, 23]. It is often favored 
for its simplicity and serves as a common reference tech-
nique [61]. However, despite its ease of use, these meth-
ods tend to underestimate the variance of estimates and 
overlook the correlations between variables, potentially 
resulting in biased or unrealistic outcomes [24, 25].

The second category, multiple imputation, was pro-
posed by Rubin [62, 63], who developed a method for 
averaging outcomes across multiple imputed datasets. 
This approach diverges from single imputation meth-
ods by substituting each missing observation with mul-
tiple plausible values, thereby more accurately reflecting 
the inherent uncertainty associated with the imputation 
process [64, 65]. Among the various multiple imputa-
tion methods, MICE exhibits flexibility and robustness in 
managing mixed data structures by offering a full range of 
conditional distributions and regression-based methods 
[20, 29]. Its unique design, based on chained equations, 
enables the estimation of each variable using the model 
best suited to its specific distribution characteristics [66, 
67]. However, MICE is not without limitations. While 
it imputes missing data through a series of conditional 
distributions, there is no guarantee that these align with 
the appropriate joint distribution, potentially compro-
mising the validity and reliability of the imputed results 
[26]. This issue is particularly pronounced in massive, 
multivariable datasets, where the complexity of specify-
ing appropriate models is exacerbated by nonlinear and 
interactive relationships between variables [26, 29].

The third category encompasses machine learning and/
or deep learning methods such as kNN [21], support vec-
tor machine [68], clustering [69], and multi-layer per-
ceptron [70], etc. The kNN imputation method has been 
widely studied for its efficacy in addressing missing data 
[9, 65]. It works by classifying the nearest neighbors of 
missing values and use those neighbors for imputation 
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using a distance measure between instances [71]. Con-
figuring kNN typically requires selecting an appropriate 
distance metric—such as Hamming, Euclidean, or Man-
hattan distance—and determining the optimal number 
of neighbors, k, to predict each missing value [9]. How-
ever, the efficacy of kNN imputation is not only critically 
dependent on several key parameters (i.e., the number of 
neighbors, and choice of distance metrics)—factors for 
which standardized determination methods are currently 
lacking [9, 72]—but it also faces a substantial limitation 
due to its computational complexity, particularly in high-
dimensional datasets [32].

The fourth category, tree-based imputation, includes 
decision tree [73], RF [36], and MF [38]. Among these 
methods, MF employs the RF algorithm for missing data 
imputation, efficiently managing multivariate datasets 
that include both numerical and categorical variables 
[37, 38]. Additionally, MF requires no parameter tuning 
and imposes no assumptions about the underlying dis-
tribution of the data [35, 36], demonstrating its effective-
ness in managing missing data, particularly in medical 
research [74, 75]. Despite its efficacy, MF exhibits limita-
tions, particularly in handling high-dimensional datasets 
where the computational burden of iterative imputation 
presents a significant challenge [37, 76, 77].

RFE feature selection
Feature selection in machine learning is essential for 
reducing data dimensionality and constructing mod-
els that are both simplified and interpretable [40, 41]. 
This process identifies relevant features while elimi-
nating irrelevant or redundant ones through various 
approaches, including filter, wrapper, or embedded meth-
ods [78, 79].

Among these, RFE, a wrapper selection method, has 
gained prominence for its ability to identify optimal fea-
ture subsets based on model performance and classifi-
cation accuracy [42, 46]. RFE’s operational mechanism 
involves iteratively eliminating features, generating a 
ranking of features and candidate subsets, along with a 
list of accuracy values corresponding to each subset [47, 
80]. This approach allows for a comprehensive evaluation 
of feature importance and their impact on model per-
formance. Notably, RFE is frequently employed in con-
junction with various classification algorithms, such as 
support vector machines [42] and RF [44], to construct 
more efficient classifiers. This synergistic combination 
enhances the overall model efficacy by focusing on the 
most informative features, thereby potentially improv-
ing both accuracy and interpretability in complex classi-
fication tasks while simultaneously reducing storage and 
computational costs [81, 82].

Proposed RFE‑MF algorithm
This study integrates RFE into MF, aiming to lever-
age MF’s inherent capability to handle mixed data types 
while enhancing its utility in real-world clinical settings. 
By incorporating RF-RFE, the extended MF method per-
forms both missing data imputation and feature selec-
tion, yielding more efficient and interpretable models. 
The details of the RF-RFE mechanism and how it com-
plements MF in achieving both imputation and feature 
selection are as follows.

Suppose we have a data matrix X = X1,X2, . . . ,Xp  , 
where n denotes the number of observations and p the 
number of predictors, of size n× p . For an arbitrary 
variable Xs ( s = 1, . . . , p ) with missing values at certain 
entries, the RFE-MF algorithm divides the dataset into 
four distinct parts [38]:

(1)	 Observed values of Xs : These are the entries in Xs 
that are not missing, denoted by y(s)obs.

(2)	 Missing values of Xs : These are the variables other 
than Xs for which the corresponding observations 
in Xs are not missing, denoted by y(s)mis.

(3)	 Other variables with complete observations: These 
are the variables other than Xs with observations, 
denoted by x(s)obs.

(4)	 Other variables with missing observations: These 
represent the variables other than Xs , correspond-
ing to the rows has missing values. These variables 
with observations are denoted as x(s)mis.

Figure  1 presents the pseudo-code of the proposed 
RFE-MF algorithm, which consists of six steps: (1) initial 
imputation, (2) iterative imputation, (3) feature selection, 
(4) model fitting, (5) convergence, and (6) outputting the 
final imputed dataset.

In Step 1, the variables in X are sorted by the number 
of missing values in each Xs , starting with the variable 
that has the fewest missing values. Initially, all missing 
values in the dataset are imputed using simple strategies: 
the mean for numerical variables and the mode for cat-
egorical variables. In Step 2, the RFE-MF algorithm itera-
tively updates the imputed dataset. Specifically, given a 
previously imputed dataset (denoted as Ximp

old  ) and a stop-
ping criterion γ , Step 2 generates a new imputed dataset 
(denoted as Ximp

new ) until the imputed values stabilize. The 
stopping criterion will be discussed in later paragraphs.

In each iteration, Steps 3–5 are executed. Let k denote 
the vector of sorted indices of variables in X . For each Xs 
in k, Step 3 begins by applying the RF-RFE procedure, 
RF-RFE(y(s)obs ∼ x

(s)
obs ), to perform feature selection using 

the response variable y(s)obs and the predictors x(s)obs , result-
ing in xFS(s)obs  (i.e., the important predictors selected by 
RF-RFE).
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The Procedure RF-RFE ( y(s)obs ∼ x
(s)
obs ) facilitates the 

elimination of irrelevant or redundant features through 
an iterative process to optimize model performance. Ini-
tially, a random forest model is trained using the full set 
of predictors, x(s)obs , to predict the response variable, y(s)obs . 
After the model is trained, the importance of each pre-
dictor is evaluated and ranked based on its contribution 
to the model’s accuracy. In each iteration, the algorithm 
removes a certain number of the least important pre-
dictors and retrains the random forest model with the 
reduced subset. This process is repeated, with the model’s 
performance being evaluated and the remaining predic-
tors ranked after each iteration. The goal is to identify the 
subset of predictors that results in the best model perfor-
mance. Once the optimal set of predictors is determined, 
it is returned as the final list of important features, xFS(s)obs

.
In Step 4, a random forest model is trained using y(s)obs 

and xFS(s)obs  . The missing values y(s)mis
 are then predicted by 

applying the trained RF model to x(s)mis
 in Xs . The imputed 

matrix is continually updated for all variables listed in k, 
ultimately yielding Ximp

new.
In Step 5, convergence is checked by comparing the 

imputed values from the current iteration (i.e., Ximp
new ) with 

those from the previous iteration ( Ximp
old  ). Convergence is 

defined as when the difference between Ximp
new and Ximp

old  
in the current iteration exceeds the difference between 
them in the previous iteration. Once the imputed data 
matrix has converged, the stopping criterion γ is met, 
and the algorithm return Ximp

new from the current iteration 
as the final result (Step 6).

Similar to MF, the proposed RFE-MF method can 
impute values for both numerical and categorical vari-
ables. To assess convergence in RFE-MF, the difference 
for the set of numerical variables N  is defined as:

Similarly, the difference for the set of categorical vari-
ables F  is defined as:

where I(Ximp
new  = X

imp
old ) is an indicator function that equals 

1 when the newly and previously imputed values differ, 

(1)�N =

∑

j∈N

(

X
imp
new − X

imp
old

)2

∑

jǫN

(

X
imp
new

)2

(2)�F =

∑

j∈F

∑n
i=1 I

(

X
imp
new �= X

imp
old

)

#NA

Fig. 1  The proposed RFE-MF algorithm
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and #NA is the number of missing values in the categori-
cal variables.

Experimental evaluation
Dataset source
We assessed RFE-MF on ten medical datasets from the 
UCI repository of machine learning databases [83] and 
Kaggle.1These datasets included numerical and mixed 
data types. See Table 1 for dataset descriptions.

Experimental setup
The experimental process, illustrated in Fig.  2, begins 
with simulating ten complete datasets using the MCAR 
mechanism, across five missing rates: 10%, 20%, 30%, 
40%, and 50%. For each missing rate, the simulation is 
repeated ten times to generate incomplete datasets. Five 
imputation methods, including mean/mode, kNN, MICE, 
MF, and RFE-MF, are then applied to impute the missing 
values. The imputation quality is assessed using two met-
rics: normalized root mean squared error (NRMSE) for 
numerical variables and the proportion of falsely classi-
fied entries (PFC) for categorical variables. To compare 
the performance of each imputation method against 
RFE-MF, paired samples t-tests are conducted, utilizing 
results from ten repetitions of the simulated tests.

In addition to standard mean/mode imputation, kNN 
imputation was applied with k = 5. MICE was used to 
generate five multiple imputed datasets, with a thresh-
old of 1 to address multicollinearity. MF parameters 
were optimized following recommendations from [38], 
employing 10 iterations and 100 forests. The proposed 
RFE-MF used the RF-RFE algorithm with enhanced resa-
mpling over 10 cross-validation iterations. The number 
of forests for predicting missing values matched those in 
MF, though only 3 iterations were found sufficient after 
experimentation. All methods were implemented in R, 
and categorical variables were preprocessed using label 
encoding.

Evaluation metrics
The performance for numerical variables is evaluated 
using NRMSE, as proposed by [84], defined as:

where Ximp is the imputed data matrix and Xture is the 
complete data matrix. "Mean" and "var" are shorthand 

(3)NRMSE =
mean

[

(

Ximp − Xture
)2
]

var
(

Xture
)2

notations for the empirical mean and variance, computed 
over the numerical missing values.

For categorical variables, PFC is used as the evaluation 
metric, defined as:

where Xture
i  is the true value, Ximp

i  is the imputed value, 
and #NA is the number of missing values in the categori-
cal variables. In both cases, better performance results in 
values closer to 0, while poorer performance approaches 
a value of 1.

Experimental results
Results of numerical datasets
The NRMSE results for numerical data and the paired 
t-test for the differences in population means are pre-
sented in Table  2. In the Parkinson Disease Detection 
dataset, at a 10% missing rate, MF performs optimally 
with an NRMSE of 0.342. However, the difference 
between MF (0.342) and our proposed RFE-MF (0.343) 
is negligible. Notably, the discrepancy increases slightly 
at the 20%, 40%, and 50% missing rates. Interestingly, 
at a 30% missing rate, RFE-MF marginally outperforms 
MF (NRMSE = 0.310 vs. 0.312). In the Mehmet Diabe-
tes dataset, RFE-MF achieves the lowest NRMSE (0.627) 
at a 10% missing rate, followed by MF (0.641) and kNN 
(0.694), a trend that persists across all missing rates up to 
50%. In the Prostate Cancer dataset, mean/mode imputa-
tion performs poorly at a 10% missing rate but stabilizes 
as missing rates increase. Conversely, kNN’s performance 
deteriorates as missing rates rise, with MICE exhibiting 
a similar trend but with slightly better performance than 
kNN. MF and RFE-MF alternate as the top-performing 
methods. In the Lower Back Pain Symptoms dataset, 
RFE-MF consistently outperforms all other methods 
across every level of missingness. Similarly, in the Liver 

(4)PFC =

∑n
i=1X

imp
i �= Xture

i

#NA

Table 1  Medical datasets used for experimental analysis

Data type Dataset Year Instances Features

Numerical Parkinson Disease Detection 2020 195 22

Mehmet Diabetes 2020 768 8

Prostate Cancer 2018 100 8

Lower Back Pain Symptoms 2016 310 12

Liver Disorders 1990 345 7

Mixed Pre-processed Stroke 2021 5109 11

Heart Failure Prediction 2020 299 12

Early-Stage Diabetes Risk 
Prediction

2020 520 16

Indian Liver Patient Records 2017 583 10

Contraceptive Method Choice 1997 1473 9

1  https://​www.​kaggle.​com/

https://www.kaggle.com/
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Fig. 2  The experimental process

Table 2  NRMSE and paired t-test results for numerical datasets across five imputation methods

The optimal values across five simulated missing rates and their mean value for the different medical datasets are highlighted in bold

Me/Mo mean/mode imputation, kNN k-nearest neighbor imputation, MICE multiple imputation by chained equations, MF MissForest, RFE-MF recursive feature 
elimination-MissForest. Significant differences at the 99% and 99.9% levels are indicated by ** and ***, respectively

Dataset Imputation 
method

Missing Rates Mean t p

10% 20% 30% 40% 50%

Parkinson Disease Detection Me/Mo 0.419 0.390 0.387 0.392 0.394 0.396 12.725 < 0.001***

kNN 0.411 0.391 0.402 0.409 0.411 0.405 16.392 < 0.001***

MICE 0.506 0.469 0.485 0.471 0.498 0.485 15.961 < 0.001***

MF 0.342 0.313 0.312 0.338 0.341 0.329 -2.234 0.0301**

RFE-MF 0.343 0.322 0.310 0.342 0.353 0.334

Mehmet Diabetes Me/Mo 0.810 0.841 0.819 0.814 0.815 0.850 12.184 < 0.001***

kNN 0.694 0.732 0.768 0.787 0.796 0.755 9.466 < 0.001***

MICE 0.910 0.897 0.928 0.969 0.989 0.939 16.745 < 0.001***

MF 0.641 0.672 0.713 0.752 0.763 0.708 5.182 < 0.001***

RFE-MF 0.627 0.662 0.698 0.739 0.750 0.695
Prostate Cancer Me/Mo 0.418 0.478 0.433 0.454 0.451 0.447 15.683 < 0.001***

kNN 0.340 0.415 0.408 0.466 0.459 0.418 16.898 < 0.001***

MICE 0.246 0.267 0.351 0.401 0.416 0.336 4.076 < 0.001***

MF 0.191 0.255 0.284 0.351 0.348 0.286 0.611 0.544

RFE-MF 0.180 0.260 0.281 0.341 0.356 0.284
Lower Back Pain Symptoms Me/Mo 0.397 0.473 0.474 0.462 0.438 0.449 27.984 < 0.001***

kNN 0.370 0.453 0.477 0.478 0.462 0.448 33.971 < 0.001***

MICE 0.396 0.477 0.461 0.455 0.469 0.452 18.625 < 0.001***

MF 0.280 0.369 0.384 0.371 0.371 0.355 5.074 < 0.001***

RFE-MF 0.275 0.365 0.381 0.369 0.365 0.351
Liver Disorders Me/Mo 0.579 0.595 0.575 0.579 0.583 0.582 13.906 < 0.001***

kNN 0.521 0.568 0.546 0.542 0.566 0.585 11.781 < 0.001***

MICE 0.648 0.695 0.653 0.677 0.699 0.674 15.501 < 0.001***

MF 0.500 0.542 0.502 0.511 0.546 0.520 4.933 < 0.001***

RFE-MF 0.489 0.529 0.493 0.497 0.529 0.507
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Disorders dataset, RFE-MF consistently delivers the best 
results.

Regarding the paired t-tests results, RFE-MF consist-
ently demonstrates the lowest means values across four 
datasets: Mehmet Diabetes, Prostate Cancer, Lower 
Back Pain Symptoms, and Liver Disorders, with all 
p-values < 0.001*** (except for the difference between 
RFE-MF and MF in the Prostate Cancer dataset, which 
is not statistically significant). Conversely, in the Parkin-
son Disease Detection dataset, MF yields superior results 
compared to RFE-MF, with a p-value of 0.030**, indicat-
ing a statistically significant difference in favor of MF.

Results of mixed datasets
The results of the NRMSE and PFC for both numerical 
and categorical variables, along with the paired t-test 
for the difference in population means, are presented 
in Table 3. In terms of the NRMSE metric, in the Heart 
Failure Prediction dataset, RFE-MF slightly outperforms 
MF, although the mean/mode imputation method exhib-
its the best performance. Similar trends are observed in 
the PFC metric, with RFE-MF closely trailing MF at a 
10% missing rate. To better understand the efficacy of the 
mean/mode imputation method in this dataset, we ana-
lyzed the statistical characteristics of each variable under 
complete conditions and various simulated missing rates. 
The findings suggest that the dataset’s characteristics 
favor the mean/mode imputation method, as the contin-
uous variables closely approximate their complete-condi-
tion mean values, while the mode values for categorical 
variables consistently align with the complete data.

In the Pre-processed Stroke dataset, RFE-MF consist-
ently performs best across both the NRMSE and PFC 
metrics, followed by MF, while kNN’s performance 
declines with increasing missing rates. In the Early-Stage 
Diabetes Risk Prediction dataset, MF excels in NRMSE 
at missing rates between 10 and 30%, whereas RFE-MF 
performs slightly better at missing rates between 40 and 
50%. RFE-MF consistently outperforms the PFC metric. 
In the Indian Liver Patient Records dataset, RFE-MF con-
sistently outperforms MF in NRMSE across all missing 
rates. The mean/mode imputation method shows opti-
mal PFC performance, with RFE-MF trailing MF slightly 
only at a 10% missing rate. In the Contraceptive Method 
Choice dataset, RFE-MF exhibits the best NRMSE per-
formance across all missing rates. RFE-MF consistently 
outperforms in PFC, except for being slightly surpassed 
by mean/mode imputation method at a 50% missing rate.

Regarding the paired t-tests for NRMSE, RFE-MF 
performs optimally across four datasets: Pre-processed 
Stroke, Early-Stage Diabetes Risk Prediction, Indian Liver 
Patient Records, and Contraceptive Method Choice, 
with statistically significant results. However, in the 

Early-Stage Diabetes Risk Prediction dataset, the differ-
ence between RFE-MF and MF is not statistically sig-
nificant. In the Heart Failure Prediction dataset, mean/
mode imputation method exhibits the best performance, 
with RFE-MF slightly trailing behind. Similar trends are 
observed in the paired  t-tests for PFC, where RFE-MF 
performs optimally across most datasets. However, in 
the Heart Failure Prediction and the Indian Liver Patient 
Records datasets, the mean/mode imputation method 
outperforms RFE-MF.

In summary, as shown in Table  4, the results high-
light the effectiveness of the proposed RFE-MF method 
in handling missing values across the selected datasets. 
In the experimental evaluation of 10 medical datasets, 
RFE-MF achieved the top rank in seven datasets, while 
securing the second rank in the remaining three. These 
findings confirm that RFE-MF outperforms the other 
four classical imputation methods, demonstrating its 
suitability for medical datasets.

Conclusions
In this study, the proposed RFE-MF exhibits superior 
performance across the majority of medical datasets 
compared to four classical imputation methods (mean/
mode imputation, kNN, MICE, and MF), underscoring 
its efficacy in MVI tasks. Notably, RFE-MF consistently 
outperforms the original MF, regardless of variable type 
(numerical or categorical), indicating the effectiveness of 
our integrated approach in improving imputation qual-
ity for datasets with mixed characteristics. Additionally, 
the results highlight the sensitivity of kNN imputation 
to varying missing rates, whereas mean/mode imputa-
tion maintains consistent performance across all miss-
ing data rates, depending on the dataset’s characteristics. 
Our proposed RFE-MF demonstrates potential for prac-
tical applications, offering a valuable imputation tech-
nique for healthcare data analysis and the development 
of predictive models. Furthermore, this study emphasizes 
the importance of considering data type and missing-
ness rate when selecting imputation techniques, as these 
factors significantly impact the performance of different 
methods.

This study acknowledges several limitations. Firstly, 
certain parameters, such as the k value in kNN impu-
tation method and the number of iterations for MICE, 
were not optimized. Default hyperparameter values 
were employed for MF, indicating a need for further 
investigation into parameter tuning. Secondly, while 
this study focuses on RF-RFE, future research could 
explore the integration of other feature selection meth-
ods with MF, potentially uncovering novel synergies 
and enhancing imputation performance. Neverthe-
less, the current selection of RF-RFE is justified by the 
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limitations of alternative methods. For instance, genetic 
algorithms [85] often face issues of high computational 
cost for fitness calculation [86], especially when dealing 
with high-dimensional datasets prevalent in medical 
research. Finally, it is crucial to note that the analyses 
and conclusions presented in this study are predicated 
on the assumption of MCAR data. Future research 
should explore the performance of these methods 
under different missing data mechanisms, including 
MAR and MNAR, to enhance the generalizability and 
applicability of the findings across various scenarios in 
medical research.
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