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Abstract

Among mutations that occur in SARS-CoV-2, efficient identification of mutations advanta-

geous for viral replication and transmission is important to characterize and defeat this ram-

pant virus. Mutations rapidly expanding frequency in a viral population are candidates for

advantageous mutations, but neutral mutations hitchhiking with advantageous mutations

are also likely to be included. To distinguish these, we focus on mutations that appear to

occur independently in different lineages and expand in frequency in a convergent evolution-

ary manner. Batch-learning SOM (BLSOM) can separate SARS-CoV-2 genome sequences

according by lineage from only providing the oligonucleotide composition. Focusing on

remarkably expanding 20-mers, each of which is only represented by one copy in the viral

genome, allows us to correlate the expanding 20-mers to mutations. Using visualization

functions in BLSOM, we can efficiently identify mutations that have expanded remarkably

both in the Omicron lineage, which is phylogenetically distinct from other lineages, and in

other lineages. Most of these mutations involved changes in amino acids, but there were a

few that did not, such as an intergenic mutation.

Introduction

To confront the global threat of COVID-19 [1–3], a massive number of SARS-CoV-2

genome sequences have been rapidly decoded and promptly released through the GISAID

database [4]. To understand this formidable virus from multiple perspectives, we must

implement diverse research methods such as artificial intelligence (AI) that can efficiently

analyze big data. Actually, AI-based methods have played important roles for analyzing

SARS-CoV-2 genome sequences and mutations; an AI-based study that analyzed muta-

tions on the S protein gene of SARS-CoV-2 showed that natural selection is the mecha-

nism driven virus evolution and infectivity strengthening at the receptor-binding domain

of the S protein is the major reason contributing to observed frequencies in various muta-

tions [5]. The AI-based method has also identified another selection mechanism, vaccine

breakthrough (or antibody resistance) [6]. In addition, by focusing on the amino acid
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sequence of the S protein, various k-mer based AI approaches (e.g., Support Vector

Machine, Naive Bayes and Random Forest) have been reported [7], and the UMAP-assis-

ted K-means clustering with the SNP profiles of SARS-CoV-2 has also been reported [8].

Unsupervised machine learning can provide new information without relying on particu-

lar models or assumptions. We previously established an unsupervised AI, batch-learning

self-organizing map (BLSOM), for oligonucleotide composition, which can reveal various

new characteristics of a wide variety of genomes by analyzing a large number of genome

sequences [9–13].

In viral growth and infection, many host factors (e.g., nucleotide pools, proteins and

RNAs) and antiviral mechanisms (e.g., antibodies, cytotoxic T cells and interferons) are

involved [14–16]. Since human cells may not present ideal growth conditions for zoonotic

viruses that have invaded from nonhuman hosts, efficient growth and transmission should

require changes in the viral genome after invasion into the human population. Mutations

rapidly expanding in frequency in a viral population are candidates for advantageous

mutations. A large number of rapidly expanding mutations have been particularly concen-

trated in the S gene encoding the S glycoprotein, which plays essential roles in viral attach-

ment, fusion and entry into host cells; additionally, its surface location renders it a direct

target for host immune responses, making it the main target of neutralizing antibodies

[5,6,17]. Of course, there are mutations outside the S gene that expand rapidly, including

those that do not involve amino acid changes [2,3,18]. Advantageous mutations without

amino acid changes have been discussed from multiple perspectives, including interac-

tions with host factors such as RNA-binding proteins [19] and miRNAs [20,21], as well as

the higher-order structure of viral RNA [22]. It is thus important to compile examples of

remarkably expanded mutations, even outside the S gene, for the development of antiviral

drugs, e.g., oligonucleotide drugs.

By analyzing oligonucleotide composition to study the viral adaptation, we previously

found time-series directional changes (i.e., monotonic increases or decreases) in mono- and

oligonucleotide composition of four zoonotic RNA viruses (influenza virus [23–26], Zaire ebo-

lavirus [25,26], MERS coronavirus [25] and SARS-CoV-2 [27–30], which were detectable even

on a monthly basis. In the present study, we used a similar approach to analyze the recently

prevalent Omicron subvariants and compare them with previously prevalent lineages. The

Omicron lineage is derived from the G clade, but the accumulated mutations are very different

from those in other G-derived lineages, indicating that separation from the other clades

occurred fairly early in the COVID-19 pandemic [31,32]; it has even been predicted that a cer-

tain G-derived virus once spread to a nonhuman animal and then reinvaded the human popu-

lation [33–35]. If a mutation that occurs independently in different lineages remarkably

increases its population frequency commonly in distantly related lineages, convergent evolu-

tionary increase is highly likely due to the increase in fitness caused by the mutation, and

therefore, Omicron is believed to be especially well suited for searching for and studying con-

vergently expanding, advantageous mutations that have rapidly spread in the human popula-

tion [36].

We previously analyzed time-series changes in composition of short and long oligo-

nucleotides from SARS-CoV-2 strains isolated mainly in the first year of the pandemic

and found many long oligonucleotides (e.g., 20-mers) that had expanded remarkably

in the viral population, which allowed us to predict candidates of advantageous muta-

tions that had spread among humans [13,27,28]. In the present study, we analyzed

20-mer frequencies to search for mutations that expanded markedly in the Omicron

population.
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Materials and methods

Human SARS-CoV-2 genome sequences

SARS-CoV-2 genome sequences of 12 G-derived lineages other than Omicron (Alpha, Beta,

Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda and Mu) and of 3 other non-G

lineages (L, S and V clades) were obtained from the GISAID database (https://www.gisaid.org/

epiflu-applications/next-hcov-19-app/) [4]; sequences that were complete, high coverage and

from humans were downloaded on 29 November 2021. In the case of GISAID clades, the total

number of sequences per clade varies widely, with a relatively small number of sequences of

the clades that were prevalent for only a few or several months and were quickly replaced by a

more prevalent clade. In other words, clades that have had a longer prevalence period tend to

contain a massive number of sequences. If the number of data differs too much among the tar-

get groups, the characteristics of a group with only a small amount of data may not be accu-

rately captured. To properly detect the characteristics of a clade even with a small number of

sequences, we have to eliminate the excessively large difference in the number of data between

clades. As a data set that is considered to reflect the characteristics of each clade well, we used

the sequence data from the month in which the largest number of sequences were collected in

each clade. In more detail, the number of isolates per month was first counted for each lineage,

and the genomes isolated in the month with the highest number were selected. Even after this

selection, the differences in numbers of viral strains among lineages is extremely large. This

makes it difficult to properly understand the characteristics of each lineage in the BLSOM

analysis, so for lineages with over 10000 genomes, 10000 were randomly selected; the

sequences thus selected were used for a BLSOM analysis after removing their poly(A)-tails.

In the case of Omicron, the pandemic is still ongoing during the course of this study and

preparation of this paper, and a large number of genome sequences have been released by

GISAID. This appears to make research difficult but offers a distinct advantage in that the

results obtained at an early stage of the study can be verified in the same publication with new

sequences obtained later, increasing the reliability of the analysis. We adopted this strategy in

the case of Omicron. On 19 January 2022, we first downloaded the complete and high-cover-

age category sequences by month of virus isolation, as done for other lineages. For the isolates

for Dec. 2021 and Jan. 2022, 3191 and 3701 sequences were obtained, respectively, while for

Nov. 2021, only 17 sequences were obtained most likely due to difficulties in sequencing of

genomes that were very different from known sequences in the early stages. Information at the

beginning of the Omicron pandemic was thought to be important, but 17 sequences were too

few to adequately know their features. For the low-coverage category, the 2299 sequences,

which included BA.3 sequences, were obtained. Thus, in the BLSOM analysis, which was

intended to provide an overall picture of the Omicron lineage, the 2299 sequence was used for

the Nov. 2021 isolates. The sequences downloaded on 29 January 2022 were used to verify the

degree of separation between BA.1 and BA.2 on BLSOM, and finally, the sequences down-

loaded on 3 March 2022 were used for verification of the peculiarity of the 1169 20-mers of

interest in the Omicron lineage.

BLSOM

The self-organizing map (SOM) developed by Kohonen [37,38] is an unsupervised neural net-

work algorithm that implements characteristic nonlinear projection from the high-dimen-

sional space of input data onto a two-dimensional array of weight vectors. Kanaya et al. [9]

modified the conventional SOM for genome informatics on the basis of batch learning

(BLSOM), aiming to make the learning process and the resulting map independent of the
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order of data input. In the original SOM, the initial vectorial data were set by random values,

but in the BLSOM, the initial vectors were set based on the widest scale of sequence distribu-

tion in the oligonucleotide frequency space with PCA (principal component analysis). In the

oligonucleotide BLSOM in the present study, the number of nodes (lattice points) was set to

1% of the total number of sequences used. The weight vectors (wij) were arranged in a two-

dimensional lattice denoted by i (= 0, 1,. . ., I-1) and j (= 0, 1,. . ., J-1). Weights in the first

dimension (I) were arranged into lattices corresponding to a width of five times the standard

deviation (5σ1) of the first principal component, and the second dimension (J) was defined by

the nearest integer greater than σ2/σ1 × I; σ1 and σ2 were the standard deviations of the first

and second principal components, respectively. Weight vectors were updated as described pre-

viously [11]. A BLSOM program is available on our website (http://bioinfo.ie.niigata-u.ac.jp/?

BLSOM). The BLSOM and oligonucleotide-count program is also available from a GitHub

repository (https://github.com/yukakokatsura/BLSOM).

Results and discussion

Histogram analysis of markedly expanded 20-mers in the Omicron lineage

Omicron variants first appeared in Nov. 2021 and have since caused a global pandemic [31–

34]. In the early stages of the Omicron pandemic in 2021, BA.1 sublineage was prevalent, but

the BA.2 sublineage began to dominate worldwide in 2022 [39,40] and https://covariants.org/

[41]. In this study, we first analyzed the Omicron genome sequences downloaded on 19 Janu-

ary 2022. To obtain up-to-date information on both BA.1 and BA.2, we first focused on 3701

strains that were isolated in Jan. 2022 and belonged to the complete and high-coverage cate-

gory in GISAID; for details, refer to Materials and methods. In the viral genome, there was one

copy of each 20-mer excluding the poly(A)-tail, which was removed before the analysis. Thus,

analysis of 20-mers that remarkably increased in frequency in the Omicron population after

onset of the SARS-CoV-2 pandemic can provide information on mutations whose population

frequencies have increased markedly.

After calculating the frequency of each 20-mer in the Jan. 2022 population (3701 strains),

we calculated the difference from the corresponding frequency in the viral population in the

first month of the pandemic, which was presented by 22 strains isolated in Dec. 2019. Then,

we focused on 20-mers that had increased in frequency in the Jan. 2022 population compared

to the Dec. 2019 population. The level of increase was calculated for each 20-mer, and the

20-mers were divided into 0.05 increments of proportion by increase level; the number of

20-mers in each division is displayed as a histogram in Fig 1A.

Fig 1. Histogram analysis of 20-mers. (A) Histogram of the level of increase of each 20-mer frequency in the Jan. 2022 population compared to that in the

Dec. 19 population. The horizontal axis is divided by the increase level by 0.05. The vertical axis shows normal numbers (i) or logarithms (Log) (ii). Here,

nonexistence in the logarithmic display is shown expediently as 0. (B) The level of increase of each 20-mer frequency in the Feb. 2022 population compared to

that in the Dec. 19 population is displayed as described in A.

https://doi.org/10.1371/journal.pone.0273860.g001
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In Fig 1Ai, the horizontal axis is divided by 0.05 increments in proportional representation

of each level of increase, and the vertical axis shows the number of 20-mers belonging to each

division. The highest peak near 0 on the horizontal axis show that most of new 20-mers gener-

ated by mutations have not significantly expanded in frequency. However, a very low vertical

bar can be seen near the horizontal axis of 1, and the logarithmic display is shown in Fig 1Aii.

Distinct peaks of 20-mers are observed in the high abscissa region; the 20-mers in the peaks

near 1 correspond to those present in most strains in the Jan. 2022 population. Interestingly,

there is no peak between 0.3 and 0.65 on the horizontal axis, showing that the distribution is

completely separated. It should be noted that in this display log 0 is set to 0 for convenience.

Since there is no division having a value of 1, there is no confusion, and there are no 20-mers

between 0.3 and 0.65.

The 20-mers in the higher-frequency side in Fig 1Aii, which are the 1169 20-mers held in

67% or more of the Omicron strains, are considered to be the remarkably expanded 20-mers

in the Omicron lineage. Since these 20-mers were absent at the beginning of the epidemic,

they emerged by mutations and spread markedly. These are noted “1169 Omicron 20-mers”

and used in the subsequent analysis. The results presented in Fig 1B will be explained in the

last part of this paper in connection with the distinctive features of the 1169 20-mers in the

Omicron lineage.

BLSOM analysis with 1169 Omicron 20-mers

We next performed a BLSOM analysis to examine whether the 1169 Omicron 20-mers also

expanded in other 15 lineages and, if so, to what extent; details of genome sequences used for

the 15 lineages are explained in Materials and methods. For each genome in each of 16 line-

ages, including Omicron, we first calculated the frequency of occurrence of the 1169 Omicron

20-mers and constructed a BLSOM using the frequencies of genomes of the 16 lineages as vec-

torial data (Fig 2A). The number of genomes for each lineage used in BLSOM is given in the

Fig 2 legend. The total number of nodes (i.e., grid points) was set to approximately 1/100 of

the total number of viral genomes (81,229). Importantly, no information other than the

Fig 2. BLSOM for 1169 Omicron 20-mers. (A) The total number of nodes (grid points) was set to approximately 1/100 of the total number of genomes: 817

nodes. Nodes that included sequences from more than one lineage are indicated in black, and those containing sequences from a single lineage are shown in

the following lineage-specific color with the number of genomes in parentheses: Omicron (■, 9191), Alpha (■, 10,000), Beta (■, 8978), Delta (■, 10,000),

Epsilon (■, 10,000), Eta (■, 2304), Gamma (■, 10,000), Iota (■, 10,000), Kappa (■, 2924), L (■, 125), Lambda (■, 1942), Mu (■, 3889), S (■, 271), Theta (■, 155),

V (■, 28) and Zeta(■, 1422). Nodes that included no sequences were left in blank (white). (B) Mapping of newly downloaded BA.1 and BA.2 sequences on the

BLSOM presented in A. (C) U-matrix. BA.1, BA.2, Alpha and Iota territories, which are visually separated by black lines of the U-matrix, are specified. (D)

Heatmaps for five 20-mers. Those for all 1169 20-mers are presented in S1 Fig.

https://doi.org/10.1371/journal.pone.0273860.g002
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20-mer occurrence frequency was provided during the machine learning step: unsupervised

AI. After the machine learning, to determine whether the clustering (self-organization)

achieved by the BLSOM corresponded to the known lineages, nodes containing genomes of a

single lineage were colored to indicate each lineage, and those containing genomes of multiple

lineages were displayed in black. It should be noted that when nodes that have sequences with

distinctly different frequencies are located nearby, empty nodes, to which no sequences are

attributed after the learning, often appear between them, and these nodes are left blank (no

color) on the BLSOM [12,13]. As in our previous BLSOM analysis of SARS-CoV-2 strains

[13,29,30], which were mainly isolated within the first year of the pandemic, good clustering

by lineage was obtained, and Omicron strains formed their own territory (red) on the right

side of the map (Fig 2A).

As mentioned above, the subdivision of Omicron strains into BA.1 and BA.2, the latter of

which has become prevalent in 2022, and BA.3, which caused a small outbreak in 2021, is

noted in GISAID; for sequences of the sublineage strains, refer to Materials and methods. The

BLSOM in Fig 2A included all Omicron strains isolated from Nov. 2021 to Jan. 2022, so we

can examine territories of these three sublineages on the BLSOM by mapping the strains in the

three sublineages separately onto the BLSOM (Fig 2B). In more detail, using the vectorial data

of the occurrence frequency in each genome, we searched for the node with the closest Euclid-

ean distance, attributed each genome to that node and colored the node for each sublineage, as

described previously [11–13]. Separation between BA.1 (reddish brown) and BA.2 (pink) was

clear, and BA.3 (violet), which remained in a small population, was in the middle of the former

two sublineages (Fig 2B). It is also clear that no Omicron strain was located in any other line-

age territories.

The Euclidean distance between representative vectors of neighboring nodes can be visual-

ized by the degree of blackness with the U-matrix [42]. Fig 2C shows the U-matrix pattern of

the BLSOM in Fig 2A, with a greater Euclidean distance reflected by a higher degree of black-

ness. Notably, the boundary between Omicron and other lineages and that between BA.1 and

BA.2 are represented by dark black lines (Fig 2C), showing that the oligonucleotide frequencies

are very different between these; territories of BA.1 and BA.2 are illustrated in the U-matrix.

Two G-derived groups, Lambda and Iota, are adjacent to the Omicron territory, and these are

also illustrated.

20-mers that contributed to clustering by lineage

BLSOM can explain diagnostic oligonucleotides responsible for lineage-dependent clustering

with the following heatmaps. The representative vector for each node of the BLSOM presented

in Fig 2A is composed of 1169 variables, and the contribution level of each variable at each

node can be visualized by the heatmap [10]: high (red), moderate (white) and low (blue). In

this red/blue heatmap, empty nodes, which had no sequence in the BLSOM, are indicated in

gray. All 1169 heatmaps are presented in S1 Fig along with 20-mer sequences, and typical

examples are shown in Fig 2D.

Fig 2Di shows an example of heatmaps where only the entire region of the Omicron terri-

tory is red: a 20-mer retained in almost all Omicron genomes. Fig 2Dii shows a heatmap

where only the entire region of BA.2 is red: a 20-mer retained in almost all BA.2 genomes. Fig

2Diii shows a heatmap where only a part of BA.2 is red: a 20-mer retained in a portion of BA.2

genomes. Fig 2Div and 2Dv shows an example of 20-mers retained by the majority of Omicron

and BA.2 plus non-Omicron lineages, respectively, which are candidates for mutations that

have increased convergently in both Omicron and non-Omicron lineages and thus form the

main focus of this study. Notably, as is clear from S1 Fig, there are a wide variety of patterns,
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and efficient data mining from many images with various patterns requires a systematic

approach. We next introduce an AI method to search for patterns of interest and classify them.

Clustering of heatmap patterns by BLSOM

AI is widely used for image classification, and we previously developed a BLSOM for clustering

a large number of heatmaps derived from the oligonucleotide BLSOM [13]. Here, we applied

the BLSOM to 1169 heatmaps presented in S1 Fig. As a typical instance of AI image process-

ing, the 2D heatmap pattern for each 20-mer was converted to one-dimensional vector data;

the number of variables in each vector is the number of nodes containing genome sequences

in the BLSOM illustrated in Fig 2A. In more details, we focus on 471 variables, each of which

represents the contribution level of each 20-mer in the node.

In this BLSOM for heatmaps, the number of nodes was set to 24 (approximately 50 heatmap

patterns per node). Here, nodes having multiple 20-mer patterns are shown in black, while

nodes with no pattern are left blank (Fig 3A). The number of patterns that were attributed to

each node is shown by the height of a colored column in a 3D display (Fig 3B), and for each

column, a representative example of heatmaps attributed to the corresponding node is pre-

sented. First, the green column on the rightmost will be described. The heatmap attributed to

Fig 3. BLSOM for heatmap patterns. (A) BLSOM of 1169 heatmaps from the BLSOM presented in Fig 2A. Nodes including more than one heatmap are

indicated in black, and those that include no patterns were left in blank (white). The 2D patten is deliberately tilted to show the relationship with the following

3D display in an easy-to-understand manner. (B) 3D display of the BLSOM presented in A. The number of patterns belonging to each node is indicated by the

height of the colored column, and for each column, a representative example of heatmaps attributed to the corresponding node is shown.

https://doi.org/10.1371/journal.pone.0273860.g003
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this column is red for all G-derived lineages including Omicron, but blue for all non-G clades

(L, S and V), showing that the original G strain, from which Omicron was derived, already had

the corresponding 20-mers. It should be noted here that eighty similar heatmaps belonged to

this column, and the corresponding eighty 20-mers could be classified into four groups of

20-mers as described later.

We next describe the highest green column, which is at the left end of the far side and con-

sists of approximately 200 heatmaps. In these heatmaps, the whole area of Omicron (BA.1

+BA.2) is red, and thus, the highest column is composed of the 20-mers present in almost all

Omicron strains; columns with similar patterns are located near it. The second highest, brown

column locating on the near side is composed of 20-mers present in almost all BA.2 strains. As

mentioned when explaining the histogram analysis illustrated in Fig 1, we are focusing on

1169 different 20-mers with frequencies at least 67% in the Jan. 2022 population, and the

20-mers with relatively low frequencies show various patterns of absence in the BA.2 territory

and form multiple columns located mainly on the near side.

In this study, we are particularly interested in patterns in which regions other than the Omi-

cron territory also show red color, such as those presented in Fig 2Div and 2Dv. Patterns in which

red color is observed in the BA.1 and non-Omicron territories are located at the front, and those

in which red color is observed in the BA.1+BA.2 and non-Omicron territories are located at the

back. The heights of the columns with these patterns were relatively low, with most having

approximately 20 patterns or integer multiples of that. Importantly, 20-mers attributed to each

column were found to consist of sequences that were shifted by one base, as described below.

Association of focal 20-mers with mutations

It should be mentioned again that 1169 Omicron 20-mers were not present at the epidemic start

(Dec. 2019) and thus were caused by mutations. To relate the focal 20-mers to mutations, we first

selected one genome sequence each from BA.1 and BA.2 that was particularly long and had few

unknown nucleotides (Ns): GISAID Accession numbers EPI_ISL_7336152 for BA.1 and

EPI_ISL_8465178 for BA.2. Using these sequences as a template, we performed a BLASTn search

of the 20-mers that belonged to columns with red regions in territories of both Omicron and

other lineages. We first explain the results obtained by taking as an example the eighty 20-mers

belonging to the green column on the rightmost side in Fig 3B. The BLASTn search divided the

eighty 20-mers into four groups, with each group consisting of twenty 20-mers that were shifted

by one base. In other words, these eighty 20-mers were found to be components of four 39-mers.

In the case of long sequences such as 39-mers, a BLASTn search against a standard genome

sequence of a SARS-CoV-2 strain isolated in Dec. 2019 (NC_045512 in GenBank) [43,44] allowed

alignment even when there were multiple mutations in close proximity including indels; the pres-

ence of these complex mutations yielded the assembled sequence other than the 39-mer. The

mutations found in this BLASTn search against the standard sequence were consistent with

known mutations in Omicron (https://covariants.org/) [41]. In the case of the eighty 20-mers

attributed to the rightmost green column, all four 39-mers had a single nucleotide mutation in

the center, and these were the diagnostic mutations that characterized all G lineages, including

Omicron: C241T in 5’ UTR, C3037T and C14408T in ORF1ab and A23403G in the S gene [18,

27]. However, the main focus of this study is on mutations that occurred after Omicron and

other G-derived lineages diverged, i.e., that Omicron shares with some of other lineages.

Mutations shared between Omicron and some of other lineages

Table 1 lists the mutations that Omicron shares with some of other lineages along with the ter-

ritories in which the mutated 20-mers were located in the BLSOM in Fig 2A. To distinguish
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qualitatively the range occupied by red in each territory, we used +++ to indicate that red

nodes were found in almost the entire area of a certain lineage territory as for Fig 2Di, the

related mutations are marked with +++ in both BA.1 and BA.2. In a case where a portion of

the red region is clearly missing in a particular territory as for the example numbered 1 in Fig

3B, the corresponding mutation is marked with ++ for the territory. If the red region was

extremely limited as for the example numbered 2 in Fig 3B, the corresponding mutation is

specified with +; even for the + category, a few or several hundreds of genome sequences were

usually found because the condition of BLSOM (Fig 2A) was set so that an average of 100

sequences belonged to each node, indicating that the corresponding mutations expanded to an

unignorable level in the corresponding lineages.

The lineages in Table 1 are ordered in the order of the sum of the qualitative indicators of

+ for each lineage. BA.2 appeared first because it had all mutations that Omicron shared with

others. Concerning lineages other than Omicron, Lambda, which was first isolated in Peru,

was highest and followed by Iota, which was first isolated in North America. The order of 19

mutations was in the order of the sum of + for each mutation. Since 16 of the 19 mutations

involved changes in amino acids, the mutations thus selected are considered to affect viral

functions. Concerning the other three, A28271T is a mutation that does not cause an amino

acid change and is located just before the N gene. Importantly, this intergenic mutation is

found in almost all strains of the Lambda lineage (+++), indicating that the mutation may

have an advantageous effect possibly by regulating the production level of the N protein. The

other two (C12880T and C22792T) are synonymous mutations, C to T, which occur frequently

due to APOBEC5 enzymes [45,46]. Of the vast number of known C to T mutations, these two

remained in the present analysis, making them candidates for advantageous mutations, albeit

with only slight advantage. Although + symbols and their totals are qualitative indicators,

these appear to provide a certain indication of advantageousness.

Table 1. Mutations shared between Omicron and some of other lineages.

Mutation Gene Product A.A change BA.2 BA.1 Lambda Iota Delta Mu Alpha Beta Gamma Epsilon S L

C10029T ORF1ab nsp4 T492I +++ +++ +++ ++ ++

11288_11296del ORF1ab nsp6 SGF3675del +++ +++ +++ +++

C23604A S spike P681H +++ +++ ++ ++ + +

C28311T N nucleocapsid P13L +++ +++ +++ ++ +

G22813T S spike K417N +++ ++ + + ++

G22992A S spike S477N +++ ++ ++ + +

A28271T Intergenic� +++ +++ +++

C23525T S spike H655Y +++ +++ ++

C22995A S spike T478K +++ ++ ++

A23013C S spike E484A +++ ++

A23055G S spike Q498R +++ ++

A23063T S spike N501Y +++ ++

28363_28374del N nucleocapsid ERS31del +++ ++

C17410T ORF1ab nsp13 R5716C +++ + +

C9344T ORF1ab nsp4 L3027F +++ +

C12880T ORF1ab nsp9 +++ +

C21618T S spike T19I +++ +

C22792T S spike +++ +

C26060T ORF3a ORF3a T223V +++ +

�Intergenic between ORF8 and N.

https://doi.org/10.1371/journal.pone.0273860.t001

PLOS ONE Advantageous mutations in SARS-CoV-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0273860 August 31, 2022 9 / 13

https://doi.org/10.1371/journal.pone.0273860.t001
https://doi.org/10.1371/journal.pone.0273860


The following point should be noted here. When we focus on a certain remarkably expand-

ing mutation, there are no 20-mers representative only of the focal mutation if other remark-

ably expanding mutations occur within 10 bases on its either side, but only 20-mers

representative of the pair with the neighboring mutation. Although there may be examples

where it becomes important to treat neighboring mutations as a combination [47], in general

it is appropriate to treat them independently. Shortening 20-mer to 10-mer or even less entails

the complexity of multiple copies in the genome, but to some extent this problem would be

avoided [27]. However, there are obvious limitations for shortening the oligonucleotide. The

present method is suitable for excavating advantageous mutations in regions that have received

less attention, rather than in the S gene region where the concentration of functionally influen-

tial mutations is apparent.

Since the mutations in Table 1 cover rather randomly a wide range of lineages, most (if not

all) of the mutations are thought to have expanded in a convergent evolutionary way. We will

here discuss a reason that Lambda and Iota were more closely related to Omicron than other

lineages, both in the BLSOM and in Table 1. Mutations presented in Table 1 are thought to

have occurred far prior to the time when the Omicron genome sequence was first reported

(Nov. 2021), because almost all Omicron strains isolated in the Nov. 2021 had these mutations.

In the case of coronaviruses, recombination plays an important role in their evolution, and

therefore, it is difficult to identify the true origin of each mutation in focus. The proximity of

Omicron to Alpha and Iota in the BLSOM and in Table 1 may not reflect their evolutionary

origins.

Analysis of the newly accumulated Omicron genome sequences

One peculiarity of SARS-CoV-2 research is that, regardless of when genome sequences were

obtained for analysis, a large number of new sequences have accumulated during the analysis

and manuscript preparation; in the present study, the accumulation of genome sequences of

Omicron, especially the BA.2 sublineage, was remarkable; an AI-based study predicted that

BA.2 has sufficient advantages over BA.1 both in terms of infectivity and vaccine breakthrough

[48]. This peculiarity of new sequence accumulation appears to make the research difficult but

does provide a distinct advantage in that the results obtained at an early stage of study can be

verified with new sequences obtained later in the same study, increasing the reliability of the

analysis: a cycle of prediction and verification in one evolutionary study. In the final portion of

this paper, we took advantage of this situation and examined the peculiarity of the 1169 Omi-

cron 20-mers on which we have focused. In Fig 1B, a histogram analysis was conducted using

32,482 strains isolated in Feb. 2022, which were ten times more than and totally different from

those used in Fig 1A. Distinct divisions were again seen; there were no 20-mers between 0.25

and 0.71. Importantly, the number of 20-mers above this 0.71 was 1169, as before, and their

sequences were perfectly matched, confirming the peculiarity of the 1169 Omicron 20-mers in

the Omicron lineage.

Next, we explain the contents of the highest peak near abscissa 0 in Fig 1Bi. It consists of

more than 235,000 20-mers, but over half of them have appeared only in 1~2 out of 32,482

strains, and none of them were present at the onset of the pandemic. Although a minor portion

might be caused by misassignments for sequencing, most should be caused by mutations.

Since approximately 90% of 20-mers appear in only 10 strains or less, a major portion of muta-

tions have not spread significantly within the viral population. If one mutation is roughly

assumed to lead to twenty 20-mers, more than 11,000 mutations will be found in the over

32,000 genomes analyzed here, and most of them are considered functionally neutral. Impor-

tantly, only a very small portion of mutations were remarkably expanding within the Omicron
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population, and the expanding set, the 1169 Omicron 20-mers, was the same, even analyzing

totally independent sequences. This proves their evident peculiarity in the Omicron lineage.

Conclusion

In the study of viral evolution, the use of phylogenetic tree construction methods is undoubt-

edly the mainstream of research, but it is also important to develop a variety of other methods,

including AI, to combat the threat of infectious viruses. The BLSOM introduced here is capa-

ble of analyzing large amounts of genome sequences on a personal computer, enabling effi-

cient knowledge discovery that is easy to understand visually. Using visualization functions in

BLSOM, we can efficiently identify mutations that have expanded remarkably in both Omi-

cron and other lineages and thus are candidates of advantageous mutations. Most of the muta-

tions involved changes in amino acids, but there were a few that did not, such as an intergenic

mutation. To further promote the study of viral evolution as an interdisciplinary issue, we

believe that the active introduction of various AI technologies is important.

Supporting information
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