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ABSTRACT: A very simple, fast, and efficient approach to analyze and identify respiratory-related virus sequences based on
machine learning is proposed. Such schemes are very important in identifying viruses, especially in view of spreading pandemics. The
method is based on genetic code rules and the open reading frame (ORF). Data from the respiratory-related coronaviruses are
collected and features are extracted based on reoccurring nucleobase 3-tuples in the RNA. Our methodology is simply based on
counting nucleobase triplets, normalizing the count to the length of the sequence, and applying principal component analysis (PCA)
techniques. The triplet counting can be further used for classification purposes. DNA sequences from the herpes virus family can be
considered as the first step towards a complete and accurate classification including more complex factors, such as mutations. The
proposed classification scheme is simply based on “counting” biological information. It can serve as the first fast detection method,
widely accessible and portable to a variety of distinct architectures for fast and on-the-fly detection. We provide an approach that can
be further optimized and combined with supervised techniques to allow for more accurate detection and read out of the exact virus
type or sequence. We discuss the relevance of this scheme in identifying differences in similar viruses and their impact on
biochemical analysis.

■ INTRODUCTION

The recently discovered coronavirus SARS-CoV-2 is spreading
over the globe with increasing attempts to isolate and stop the
spreading.1−4 Since the identification of this virus, a very large
number of genome sequences have been collected.5 The
majority of research studies working with these sequences
focus on the development of a drug or vaccine.6,7 However, the
correct identification and categorization of the virus are very
important in view of reducing the spread of the disease.8

Algorithmic approaches for the identification of the SARS-
CoV-2 virus have been published showing promising results in
correctly identifying SARS-CoV-2 viruses in virus genome data
sets.9 Among the analysis algorithms, the uniform manifold
approximation and projection (UMAP) is one of the most
frequently used algorithms in bioinformatics and clustering
visualization.10 It has recently also been proven very efficient in
clustering SARS-CoV-2 genome isolates,11 though these
methods are computationally complex12 and are not suited
for cheaper and smaller computer architectures such as
microcontroller chips. To make the identification of the virus

widely accessible and easier, as well as allow fast first
identification reducing the complexity of existing algorithms,
straightforward and efficient approaches are needed. This
could be achieved through a simple theory-based approach that
takes the advantage of the biological information hidden in
viruses.
The number of substrings of length k or k-mers in a

sequence is similar for viruses belonging to the same family.13

Several techniques are focused on RNA genome substring
detection using higher k-mer sizes. Some techniques also rely
on natural vectors establishing a very large and detailed space,
in which each biological molecule is uniquely represented by a
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vector.14 Nevertheless, our method is capable of giving more
interpretability of the variation between the frequencies of
RNA codons, a problem known as codon bias.15 Accordingly,
using the genetic code rules (3-mers) to build biology-based
features is a natural choice. The viral proteins within the
human body are encoded based on such virus sequences whose
nucleobase 3-mers or triplets, named codons, are translated
into amino acids via protein synthesis. The latter are in turn
concatenated into a protein. The part of the sequence where
the protein information is stored is called an open reading
frame (ORF).16,17 ORFs can be related to overlapping and
“hidden” genes in viruses, such as SARS-Cov-2.18 The ORF is
identified by a start codon followed by the protein sequence
and stopped by a stop codon. Differences in these ORF regions
within a virus family link to the differentiation among the virus
types of this family.
SARS-CoV-2 and SARS-type viruses in general show a very

large ORF, called ORF1ab,19,20 which is about 13000
nucleobases in length. ORF1ab includes the structural proteins,
which are used to replicate the virus.21 Based on the genetic
code rules and ORFs, we propose a natural very efficient
approach to identify latent spaces that encode the whole
sequence from SARS viruses into biological features. The
Middle East respiratory syndrome-related coronavirus (MERS-
CoV), the severe acute respiratory syndrome coronavirus
(SARS-CoV), the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), and other viruses of the same family
are analyzed to allow for their identification. To this end, we
collect the data from the coronavirus family, extract the
features based on ORFs and the codon counts, and depict low-
dimensional latent spaces to identify well-separated clusters. In
order to both reveal the efficiency and further validate and
strengthen our proposed approach, we increase the complexity
and diversity of the viral RNA data we analyze. To this end, we
only begin with SARS-CoV-2, SARS-CoV, and MERS-CoV,
then include more members of the coronavirus family, and in
the end also include members from other viruses, such as the
herpes DNA virus family.

■ METHODS
Data Collection. A large amount of data has been collected

for the RNA sequences of the respiratory-related coronavirus
family. The data refer to various viruses and were obtained
from the NCBI database22 and the Covid Predictor Project
(CPP),23 as summarized in Table 1. To ensure that the
sequence data did not only contain a protein sequence but also
the whole genome, the flag “complete sequences” has been
used in the GUI API of the databases. The virus data were
stored in the FASTA format, which allows us to store a large
amount of genomic data in one file separated by a header line.
To classify the data, we refer to the three viruses SARS-CoV,
SARS-CoV-2, and MERS-CoV as “SARS/MERS viruses”, and
for the complete list of the respiratory-related coronaviruses in
the table, as the “coronavirus family”. For simplicity in the
following, we will use the notation “SARS” for SARS-CoV and
“MERS” for MERS-CoV. Representative data from the herpes
virus family are also listed and will be used in the end for
additional validation.
Data Preprocessing. A large number of virus sequences

had to be processed for clustering and identification. Reading
and processing the data were possible using the BIO python
library.25 The FASTA format was loaded using the SeqIO
function. The files used for reading out the data contained

more than one sequence. Accordingly, a bulk reading function
was used to import the sequences into a list of dictionaries
containing the name and sequence of a virus. The list of virus
DNA was then stored in a sequence object, which was used in
the process of information extraction. The sequence was first
scanned for an open reading frame,26 i.e., the part of the
sequence where the protein information is stored. A sliding
window traverses the sequence with strides of three (for
triplets) to identify the start and stop codons, as depicted in
Figure 1. In this figure, the open reading frame (ORF)

identification process within a sequence of nucleobases is
sketched. Three different frames of reference are translated and
emphasized by different colors (green, red, and blue). The first
(green) identification frame shows the start codon “ATG” and
the stop codon “TAA” at the end of the reading out, which
indicates a complete ORF with start and stop codons in
contrast to the blue and red frames where they are not present.
The labels in the three colors refer to the amino acids that are
made up of respective codons. Regarding the variability in the
triplet sequences, there are different frames of reference, as a
shift of one or two nucleobases in the sequence can lead to
different starting points of ORFs.27 The pair sequence that
contains the negative image of the original one is also subject
to the protein synthesis and increases the number of possible
frames to six. Typically, six different frames are scanned for
ORFs.27 However, three different frames were analyzed for the

Table 1. Types of Viruses, Approximate Length of a Virus
Genome Sequence, Date on which the Data were Accessed,
Number of Complete Virus Genome Sequences, and
Database for all RNA and DNA Data Used in the Analysis

virus type

approx
sequence
length date accessed

no. of
sequences database

SARS-CoV 29 751 16 June 2020 340 CPP24

SARS-CoV-2 29 903 29 September 2020 22 654 NCBI22

SARS-CoV-2
(PCA set)

29 903 21 August 2020 11 118 NCBI

MERS-CoV 30 111 07 July 2020 530 NCBI
bovine
coronavirus

31 028 23 September 2020 309 NCBI

camel alpha
coronavirus

27 395 23 September 2020 70 NCBI

duck
coronavirus

27 754 23 September 2020 425 NCBI

alpha herpes
virus

178 101 05 October 2020 195 NCBI

beta herpes
virus

236 100 05 October 2020 325 NCBI

gamma
herpes
virus

172 669 05 October 2020 657 NCBI

Figure 1. Sketch depicting the open reading frame (ORF)
identification process within a sequence of nucleobases (see text for
more explanation). The labels in green, red, and blue denote the
amino acids (“Met” is methionine, “Cys” is cysteine, etc.) that are
made up of respective codons.
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positive-strand RNA viruses we study. Such types of viruses
can be directly translated via protein synthesis.
Feature Extraction. To extract the feature vectors for

viruses of the respiratory-related coronavirus family, the open
reading frame ORF1ab scheme was used for relatively long
sequences. A large number of other virus types and families
show shorter ORFs. Accordingly, the length can also play the
role of an identifier for the SARS virus family. To this end, the
ORFs used here in the feature extraction have to be at least
11 000 nucleobases in length. We have extracted the relevant
features from the data by sliding through a given sequence with
strides of three to “cut out” nucleobase triplets, as depicted in
Figure 2. For this analysis, the start codon ATG and the stop

codons TAG, TGA, and TAA were used. In this work, these
triplet counts are used to define and correspond to the features
we further used for our clustering purposes in the following.
The nucleobase triplets in each of the ORF sequences are

counted and divided by the length of the sequence to form a
feature vector. For the data clustering and analysis purposes, as
well as extracting the information of data, the sklearn library
was used.28 Principal component analysis (PCA) was applied
to minimize and reduce the dimensionality. The resulting
feature vector includes the new features consisting of linear
combinations of the counted triplet features. A feature vector
was used as an input to the PCA and then projected to a two-
dimensional feature space including the variance-minimized
features. The latter again corresponds to the triplet counts. The
virus data in Table 1 were used to build the PCA matrix using
all 64 different triplet combinations. Accordingly, the codon

degeneracy of the genetic code, where several codons
correspond to the same amino acid, was taken into account.
For the SARS-CoV-2 case, we have used the set marked as
“PCA set” in the table. Furthermore, the resulting PCA matrix
is used to transform incoming feature vectors of different virus
types to vectors in the PCA feature space, benefiting from the
data similarity. Accordingly, the feature space is the two-
dimensional space formed by two feature vectors from the
PCA.

Implementation and Optimization. To make our
analysis tools easily accessible and portable to different
computer architectures, we have chosen to use python.
Since, in this case, the operations need more time compared
to a code written in C, we have performed the compilations
using the cython29 library to speed up all operations.
Interestingly, the main sequence manipulation was carried
out with just a sliding window method listed below. This very
short piece of code strongly underlines the simplicity of the
implementation and can return the feature vector containing
the normalized triplet counts. In this short piece of code,
collections, split_DNA, and Tuplecomb denote a standard
python library, which includes a tool for the counting of list
elements, the list containing the DNA sequence cut into
nucleobase sequences of length N, and the list with the final
normalized count of the respective nucleobase combination of
length N. ORFs contain a list of dictionaries with the ORF
sequences. The resulting feature vector is used as an input to
the sklearn PCA function for reducing the dimensionality to a
preselected value. The short code used for the main sequence
manipulation is given in the following.

The feature vectors allow for the further clustering of the
features to identify clusters in the viruses and quantify their

Figure 2. Sketch of the feature extraction scheme. Nucleobase triplets
(the codons), shown on the top, are counted through the counter
“∑” and normalized over the total length of the sequence to lead to
each feature.

Figure 3. Feature space formed by two feature vectors (“0” and “1”) from PCA for the SARS/MERS virus family. The green, red, and blue symbols
correspond to the SARS-CoV-2, SARS, and MERS viruses, respectively.
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separation in the feature space. To this end, the clustering
schemes DBSCAN30 and k-means31 were used. To identify the
optimal number of clusters and check the accuracy of this
number, we have used different clustering scores. These
include the Silhouette score32 (SH), the Calinski−Harabasz
score33 (CH), the Davies−Bouldin index34 (DB), the S_Dbw
score,35 and the SD_score.36 From this list, the S_dbw
typically leads to better cluster identification,37 which is not
confirmed through our analysis. Accordingly, for cases for
which small differences or large deviations in the S_dbw scores
among the viruses were found, we have decided to use one of
the other clustering scores. Note that for the case of SARS-
CoV-2, we have used both relevant sets in Table 1 for
clustering, though for building the PCA matrix only, the older
set was used. Accordingly, we have enriched the data set used
for this virus with updated releases possibly also including
mutated sequences as will be discussed below. Note that all
calculations involved in this work were tested on a Raspberry
Pi 4 with a time consumption of ∼30 min for the whole set of
coronaviruses, which is very much acceptable for the size of the
set used.

■ RESULTS AND DISCUSSION

The main results are presented next, starting with the feature
space analysis for the viruses of the coronavirus family
investigated here. Following the methodology outlined
above, the respective features have been detected and extracted
for ORFs with more than 11 000 nucleobases. The resulting
feature spaces show a good separation between different virus
families. This is first manifested for the three important
members of this family, SARS-CoV-2, SARS, and MERS in
Figure 3. The results are represented in the feature space
resulting from PCA through two of its respected vectors. All
clusters are not only well separated within the feature space but
also show a very dense center with a few outliers. Especially,
the center of the SARS-CoV-2 cluster is further apart from the
other two, denoting a clear separation. The outliers are virus
genomes that have been collected after August 21st, 2020
probably already including mutations of the SARS-CoV-2
virus. To exactly measure the separation of the clusters, we
have calculated the optimal number of clusters using the
clustering algorithms mentioned previously. To achieve this,
the set of feature vectors was normalized within the range of
[0,1] for all features. This ensures that a direction with larger

Table 2. Clustering Scores Obtained with DBSCAN (Top) and k-Means (Bottom) for the Set of the SARS/MERS Virus Family
Feature Vectorsa

clusters SH CH DB S_Dbw SD eps value

DBSCAN
2 0.947 17522.153 1.064 0.810 15.773 0.1400
3 0.977 212370.191 0.872 0.619 11.259 0.1200
4 0.966 171857.284 0.602 0.513 18.466 0.0200
6 0.918 107184.453 0.891 0.477 40.449 0.0100

k-means
2 0.964 69637.592 0.530 2.328 3.683
3 0.980 329053.238 0.054 0.303 2.161
4 0.927 567515.868 0.295 0.340 12.550
5 0.901 666952.415 0.411 0.312 25.373
6 0.885 681855.942 0.478 0.292 36.660
7 0.853 664477.133 0.559 0.295 69.113
8 0.851 665182.423 0.602 0.307 60.904
9 0.853 665133.915 0.545 0.237 64.804

aThe bold numbers in the first column (“clusters”) indicate the expected number of resulting clusters. The bold numbers in the other columns
emphasize the best scoring result. The eps value in the last column (top results) denotes the value used with DBSCAN.

Figure 4. Feature space formed by two feature vectors (“0” and “1”) from PCA for the coronavirus family. The colors correspond to the different
viruses as denoted by the legend.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c01625
ACS Omega 2021, 6, 20158−20165

20161

https://pubs.acs.org/doi/10.1021/acsomega.1c01625?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01625?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01625?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01625?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c01625?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


absolute values does not dominate during clustering.
Interestingly, clustering the viruses of the SARS/MERS family
results in a number of predicted clusters, equal to the number
of viruses within the clustered data set. The resulting clustering
scores obtained using the DBSCAN and k-means clustering
algorithms are summarized in Table 2.
With this very promising result of very clear and distinct

clustering of the three viruses, SARS, SARS-CoV-2, and MERS,
we move on with increasing the complexity and richness of the
data sets. In the following, we perform feature extraction and
clustering for all viruses of the corona family listed in Table 1.
The clusters in the feature space for the viruses of the corona
family are depicted in Figure 4. In most of the cases, well-
defined clusters are observed having a dense center with
outliers further away. In the case of the camel alpha
coronavirus, this is not exactly the case, as the respective
features are more spread out. There is no exact explanation for
this, as many factors, such as mutations over time or mutations
due to different geographic positions do play a role. Note that

for this virus genome, the outlier distribution is also based on a
very small data set in comparison to the larger three data sets
of SARS, MERS, and SARS-CoV-2. Overall, due to the shorter
sequences of the viruses compared to the SARS ones, the
respective clusters are smaller. The clustering scores and data
for these clusters and the clustering scores are summarized in
Table 3.
We further increase the diversity in the virus data sets by

including data from the herpes virus family together with the
coronavirus family data used previously. These data refer to the
last three entries in Table 1 and are used for validating the
efficiency of our approach in distinguishing among viruses and
their families. The clustering results in the feature space are
depicted in Figure 5. The well-defined clusters of the herpes
family are clearly separated from the rest in the PCA feature
space. Note that only the gamma herpes virus can be seen in
this feature space, as it is the only one of its family with an
ORF above 11 000 nucleobases on the positive sense frames of
its genome. The results of this clustering analysis show that

Table 3. Clustering Scores Obtained with DBSCAN (Top) and k-Means (Bottom) for the Set of the Coronavirus Family
Feature Vectorsa

cluster SH CH DB S_Dbw SD eps value

DBSCAN
2 0.899 15961.958 0.535 0.750 5.136 0.1900
3 0.919 15077.836 1.353 0.559 7.591 0.1500
4 0.948 46796.690 0.811 0.407 13.382 0.0900
5 0.954 162956.426 0.776 0.401 14.003 0.0800
6 0.951 145818.938 0.781 0.374 14.351 0.0400
8 0.951 119730.571 0.731 0.261 33.030 0.0200
12 0.914 62971.981 1.087 0.289 105.356 0.0100

k-means
2 0.927 50233.283 0.626 1.932 4.121
3 0.940 62878.163 0.727 1.331 5.377
4 0.954 109480.204 0.395 0.547 4.341
5 0.955 231772.508 0.205 0.276 5.931
6 0.926 386880.318 0.289 0.263 15.574
7 0.904 453096.583 0.370 0.246 29.796
8 0.904 543059.277 0.372 0.221 30.940
9 0.893 601798.301 0.408 0.230 41.851

aThe bold number in the first column (“clusters”) indicates the expected number of resulting clusters. The bold numbers in the other columns
emphasize the best scoring result. The eps value in the last column (top results) denotes the value at which the DBSCAN clustering was performed.

Figure 5. Feature space formed by two feature vectors (“0” and “1”) from PCA for the corona and herpes virus families. The colors correspond to
the different viruses as denoted by the legend.
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more data are required to identify a clear separation of the
different coronaviruses in the PCA feature space. However,
even with the data at hand, well-defined clusters are observed
for most of the cases. Regarding the overall score analysis, the
S_Dbw score was revealed to be inefficient in identifying the
right amount of clusters for the virus families considered here,
while other clustering scores varied around the expected
amount of clusters S_Dbw indicated the largest cluster number
in most cases. DBSCAN did perform better in this feature
space distribution than k-means. This is indicated by the
resulting clustering scores that appear to be closer to the
expected resulting number of clusters for DBSCAN.
Overall, Figure 5 provides a very intuitive visual separation

of the different virus types. No significant mixing of the
different virus types in the feature space could be observed.
The SARS-CoV-2 virus is spreading from the dense cluster
center into a more sparse distribution. A possible reason for
this are the different mutations in ORF1ab since the first
discovery of the virus (note in Table 1 the access date of the
respective data). The MERS virus shows a broad spread in this
feature space. This could also be attributed also to mutations
and possible other variations of the MERS virus. The bovine
and duck coronaviruses showed excellent clustering. On the
other hand, the sparsity of the data for the camel alpha
coronavirus did not allow us to determine the cluster shape,
while it is located close to the duck coronavirus cluster. In the
end, the fact that our results do not reveal any overlap in the
feature space between the shorter herpes ORFs and the
coronavirus family opens a line for research toward a more
complete virus classifier. However, to draw a solid conclusion,
an extensive scan of other virus families should be performed.
This was not the task of the current work, which focused
mainly on providing a proof-of-principle study on the concept
of the efficient identification of virus clusters.

■ SUMMARY
In this work, we have analyzed the data from different viruses.
We have used nucleobase triplets contained in virus RNA
sequences as features for PCA. These features were in turn
used to identify cluster formations in the resulting PCA feature
space. A very distinct separation among viruses of different
families was observed, with most of the clusters having a clear
dense central region, though the sparsity of some of the virus
data sets did not allow for clear clustering in some cases. The
SARS-CoV-2 viruses showed the best clustering (note that
these were the richest data sets). The spreading of some
features away from the dense cluster in the PCA feature space
links to mutations observed in the virus. Other viruses, such as
the bovine and duck coronaviruses, revealed very clear clusters
without having outliers indicating that no mutations are
included. SARS, MERS, and the camel alpha coronaviruses are
the ones revealing clusters with more spread-out clusters and
outliers. Interestingly, MERS showed a distribution that could
be interpreted as splitting up into different subtypes of MERS
viruses. The inclusion of herpes viruses, to verify how distinct
the virus families are, denoted that there was no overlap
between the feature space regions. There were no other
candidates found on the databases that could fulfill the
requirements to further test these observations.
Despite the fact that we do not focus on finding the best set

of biological features for a high-accurate general virus classifier,
we were able to discriminate among respiratory-related viruses
through a fast and efficient scheme. We could find a clustered

feature space solely based on the ORFs and the genetic code
and provide open source implementation on portable devices
(e.g., Raspberry Pi 4b), which are easily accessible also beyond
the scientific community. Our proposed scheme provides a
pathway on how to use simple biological information for the
first screening of virus types. Another important aspect is
mutations on the diagnostic targets, which are continuously
being identified and keep increasing in type and number as a
pandemic keeps spreading out.38 The information on the
mutations enters directly the ORFs, leading to different
clusters. We have attributed many outliers in the clustering
of some of the viruses to early mutations in the sequences.
Based on this, as mutations increase, these are expected to
form separate clusters closer to the initial virus cluster. These
should be identified through our analysis as clusters of viruses
with certain mutations. Nonetheless, our proposed analysis
pipeline and feature extraction scheme using simply the
occurrence of nucleobase triplets in ORF1ab was revealed to
be highly efficient in detecting and distinguishing among virus
types.
Our work has clearly underlined that using the inherently

hidden biological information in the ORFs is both essential
and a necessary condition in analyzing biological data. In the
end, we have proposed a biology-driven analysis scheme that is
highly efficient in identifying and distinguishing among viruses.
At the same time, this approach provides a technique portable
to a variety of distinct architectures, making it widely accessible
for fast and on-the-fly detection. To best classify the virus,
other descriptors like the virus morphology, the area of
occurrence, the symptoms the virus causes, etc. have to be
considered. This is not included in the method we propose.
Therefore it is a necessary but not a sufficient condition for
classification. Here, we claim and propose a very simple
scheme based mainly on “counting” biological information, a
method that is very efficiently portable to a variety of distinct
architectures for fast and on-the-fly detection pointing to new
avenues in virus detection. Our proposed classification scheme
is simple and efficient and should be considered as a part of a
full diagnostic tool. It can be further refined by also including
features beyond the ORFs and can be combined with
supervised techniques to allow for more accurate detection
and read out of the exact virus type or sequence. In this way,
the efficiency towards the aim of competing with other more
complex detection schemes can be easily enhanced. Based on
our analysis, we expect that our approach will remain efficient
with respect to other schemes also in the case of very large
numbers of available sequences. In such situations, some
technical modifications might be necessary, e.g., an online
update of the PCA matrix,39 splitting the data set into smaller
ones of well-known mutations, etc. The classification scheme
presented here is certainly prone to further refinement based
on mutation information and is the first step towards a
complete, detailed, and more accurate algorithmic pipeline
starting with classification and moving into the direction of an
exact virus identification.
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