Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus

Varun Alur¹, Varshita Raju², Basavaraj Vastrad³, Chanabasayya Vastrad⁴, Satish Kavatagimath⁵ and Shivakumar Kotturshetti⁴

¹Department of Endocrinology, J.J.M Medical College, Davanagere, Karnataka, India. ²Department of Obstetrics and Gynecology, J.J.M Medical College, Davanagere, Karnataka, India. ³Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, India. ⁴Biostatistics and Bioinformatics, Chanabasava Nilaya, Dharwad, Karnataka, India. ⁵Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, India.

Clinical Medicine Insights: Endocrinology and Diabetes Volume 16: 1-22 © The Author(s) 2023 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/11795514231155635

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM.

METHODS: The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes.

RESULTS: A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes.

CONCLUSION: The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.

KEYWORDS: bioinformatics analysis, differentially expressed genes, hub genes, Type 2 diabetes mellitus, pathway enrichment analysis

RECEIVED: June 22, 2022. ACCEPTED: January 19, 2023.

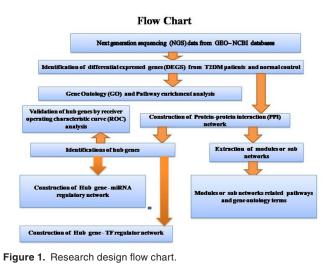
TYPE: Original Research

FUNDING: The author(s) received no financial support for the research, authorship, and/or publication of this article

COMPETING INTERESTS: The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Chanabasayya Vastrad, Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka 580001, India. Email: channu. vastrad@gmail.com

Introduction


Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder and is characterized primarily by a decrease in insulin secretion, typically accompanied by insulin resistance.¹ Globally, it is predicted that 25 million adults (20-79 years) have diabetes, projected to reach 629 million by 2045 and is the ninth leading cause of death.^{2,3} T2DM is mainly associated with macrovascular complications include stroke, coronary artery disease and peripheral arterial disease, and microvascular complications include diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy, and non-vascular diabetes complications include nonalcoholic fatty liver disease, psychiatric disease, obesity, cancer, cognitive impairment, infections, and disability.⁴ There are several important risk factors for T2DM, such as age, sex, family history of diabetes, hypertension, obesity, abdominal obesity, stress in the workplace or home, a sedentary lifestyle, smoking, insufficient fruit and vegetable consumption, physical activity, genetic, and environmental

causes.5 Our understanding of the occurrence and development mechanism of T2DM has been greatly improved; however, the cause and potential molecular mechanism of T2DM are still unclear.⁶ Therefore, it is necessary to identify key genes and pathways for understanding the molecular mechanism and discovering potential biomarkers for T2DM.

In recent decades, more and more researchers have devoted themselves to exploring the potential mechanisms for progression of T2DM. Recent investigation have shown that key biomarkers, such as HHEX, CDKN2A/B, and IGF2BP2,7 CDKAL1 and HHEX/IDE,⁸ ADIPOQ, PPAR-γ, and RXR-α,⁹ ABCC8 and KCNJ11,10 TCF7L2, SLC30A8, PCSK1, and PCSK211 were involved in the T2DM. Recent studies have shown that signaling pathway, including PI3K/AKT-and AMPK signaling pathway,¹² mTOR signaling pathway,¹³ insulin signaling pathway,14 AGE/RAGE/JNK, STAT3/SCOS3, and RAS signaling pathway,¹⁵ and ERK signaling pathway¹⁶ were involved in progression of T2DM. Therefore, it is of great

 $(\mathbf{\hat{H}})$

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

practical significance to explore the genes and signaling pathways of T2DM on islet cells.

RNA sequencing technology can rapidly detect gene expression on a global basis and are particularly useful in screening for differentially expressed genes (DEGs) in diseases.¹⁷ RNA sequencing technology allows the investigation of gene expression in a high throughput manner with high sensitivity, specificity and repeatability. Significant amounts of data have been produced via the use of RNA sequencing and the majority of such data has been uploaded and stored in public databases. Indeed, some researchers found key genes and pathways in T2DM by integrated bioinformatics analysis.¹⁸⁻²³ However, the comparative analysis of DEGs across a range of independent investigation might yield only a relatively limited amount of useful data with regard to T2DM advancement. The disadvantages of these single investigations might be overcome by NGS analysis, as this approach would make it possible to analyze the signaling pathways and interaction networks linked with the identified DEGs. This knowledge might help in elucidating the molecular mechanisms underlying T2DM and its associated complications.

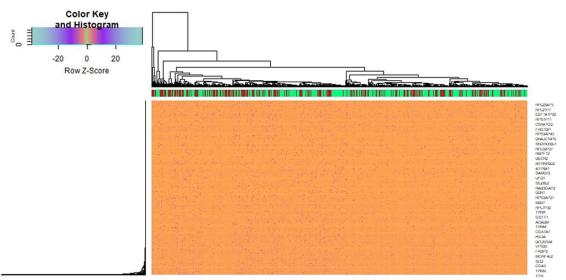
In the present investigation, next generation sequencing (NGS) dataset was downloaded from the Gene Expression Omnibus (GEO) (GEO, http://www.ncbi.nlm.nih.gov/geo/)24: GSE81608.25 DEGs were identified in T2DM. We then carried out gene ontology (GO), REACTOME pathway enrichment analysis, protein-protein interaction (PPI) network analysis, module analysis, miRNA-hub gene regulatory network, and TF-hub gene regulatory network analysis to elucidate the underlying molecular mechanisms. Finally, hub genes were validated by receiver operating characteristic curve (ROC). Collectively, the findings of the present investigation highlighted crucial genes and signaling pathways that might contribute to the pathology of T2DM and associated complications. The research flowchart of this investigation was shown in Figure 1. These may provide a basis for the advancement of future diagnostic, prognostic and therapeutic tools for T2DM.

Materials and Methods

Data resources

NGS dataset GSE81608²⁵ was downloaded from the GEO database. The platform used for NGS data was the GPL16791 Illumina HiSeq 2500 (*Homo sapiens*). The GSE81608 dataset contained data from 1600 samples, including 949 T2DM samples (single human islet cells), and 651 healthy control samples (single human islet cells).

Identification of DEGs


Limma package in R software²⁶ is a tool to identify DEGs by comparing samples from GEO series. Limma package in R software was used to search for in messenger RNAs (mRNAs; DEGs) that were differentially expressed between T2DM and healthy control samples. The cutoff criteria were an adjusted *P*-value of <.05, whereas the logFC value were >0.181 for up regulated genes and <-0.27 for down regulated genes. DEG of this dataset was visualized with volcano map and hierarchical clustering heat map. The volcano plot was drawn using ggplot2 package in R software. Hierarchical clustering heat maps of DEG expression (up regulated genes and down regulated genes) were visualized with gplots package in R software.

GO and REACTOME pathway enrichment analysis of DEGs

GO enrichment analysis (http://geneontology.org/)²⁷ implements the annotation of biological processes (BP), cellular components (CC) and molecular functions (MF) of DEGs. REACTOME (https://reactome.org/)²⁸ is a database that stores large amounts of data on genomics, biological pathways, signaling pathways, diseases, drugs, and chemicals. The present investigation used Database for g:Profiler (http://biit.cs.ut.ee/ gprofiler/)²⁹ to perform GO and REACTOME pathway enrichment analysis. P < .05 was considered to indicate a statistically significant difference.

Construction of the PPI network and module analysis

The IID interactome database (http://iid.ophid.utoronto.ca/) may be searched for associations between known and predicted proteins, and is commonly used to predict PPI information in molecular biology.³⁰ Cytoscape 3.8.2 (http://www.cytoscape. org/)³¹ was used to visualize the results from the PPI network In this investigation, node degree,³² betweenness centrality,³³ stress centrality,³⁴ and closeness centrality,³⁵ which constitutes a fundamental parameter in network theory, was adopted to evaluate the nodes in a network. The node degree betweenness centrality, stress centrality and closeness centrality methods were calculated using Cytoscape plugin Network Analyzer. Module analysis on the PPI network results was performed

Andream
<

Figure 2. Heat map of differentially expressed genes. Legend on the top left indicate log fold change of genes. (A1-A651 = normal control samples; B1-B949 = T2DM samples).

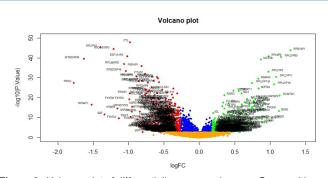
using the PEWCC1³⁶ clustering algorithm that comes with Cytoscape. Module analysis might be used to find out more connected gene groups. In addition, the module analysis were further analyzed for GO and pathway enrichment analysis.

MiRNA-hub gene regulatory network construction

Prediction of miRNA-hub genes was performed by miRNet database (https://www.mirnet.ca/).³⁷ According to the regulatory interaction, miRNA-hub gene regulatory network was constructed based on miRNet by Cytoscape 3.8.2 software.³¹

TF-hub gene regulatory network construction

Prediction of TF-hub genes was performed by NetworkAnalyst database (https://www.networkanalyst.ca/).³⁸ According to the regulatory interaction, TF-hub gene regulatory network was constructed based on NetworkAnalyst by Cytoscape 3.8.2 software.³¹


Validation of hub genes by receiver operating characteristic curve (ROC) analysis

ROC curve analysis was performed to evaluate the sensitivity and specificity of the hub genes for T2DM diagnosis using the R package "pROC."³⁹ An area under the curve (AUC) value was determined and used to label the ROC effect. GEO datasets were used in ROC analysis. AUC > 0.8 indicated that the model had a good fitting effect.⁴⁰

Results

Identification of DEGs

A total of 927 genes were identified to be differentially expressed between T2DM and normal control samples with

Figure 3. Volcano plot of differentially expressed genes. Genes with a significant change of more than two-fold were selected. Green dot represented up regulated significant genes and red dot represented down regulated significant genes.

the threshold of adjusted *P*-value of <.05, and logFC value were >0.181 for up regulated genes and <-0.27 for down regulated genes. Among these DEGs, 461 were up regulated and 466 down regulated genes in T2DM compared with normal control samples and DEGs are listed in Supplemental Table S1. A heat map (Figure 2) and a volcano plot (Figure 3) for the identified DEGs was generated.

GO and REACTOME pathway enrichment analysis of DEGs

To identify the pathways which had the most significant involvement with the genes identified, up regulated and down regulated genes were submitted into g:Profiler for GO terms are listed in Supplemental Table S2 and REACTOME pathway enrichment analysis are listed in Supplemental Table S3. GO enrichment analysis revealed that in BP terms, the up regulated genes were mainly enriched in protein metabolic process and positive regulation of biological process. Down regulated genes were mainly enriched in establishment of

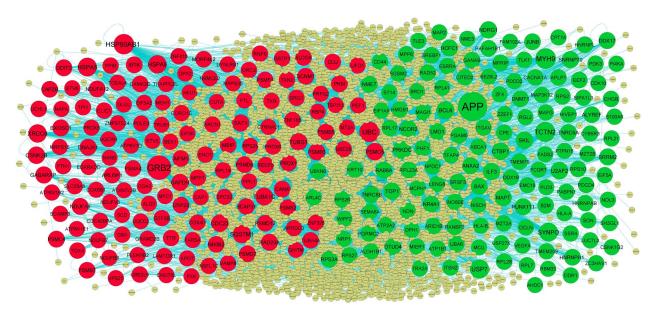


Figure 4. PPI network of DEGs. The PPI network of DEGs was constructed using Cytoscap. Up regulated genes are marked in green; down regulated genes are marked in red. Big node represents nod with more number of interactions and small node represents nod with least number of interactions.

localization and cellular metabolic process. In CC terms, up regulated genes were mainly enriched in intracellular anatomical structure and endomembrane system, whereas down regulated genes were mainly enriched in cytoplasm and intracellular anatomical structure. In MF terms, up regulated genes were mainly enriched in heterocyclic compound binding and protein binding, whereas down regulated genes were mainly enriched in catalytic activity and protein binding. REACTOME pathway enrichment analysis demonstrated that up regulated genes were significantly enriched in metabolism of proteins, and *NR1H3* and *NR1H2* regulate gene expression linked to cholesterol transport and efflux. Down regulated genes were significantly enriched in the metabolism and the citric acid (TCA) cycle and respiratory electron transport.

Construction of the PPI network and module analysis

Following the analysis based on the PPI networks, 4424 nodes and 8670 edges were identified in Cytoscape (Figure 4). The genes with higher scores were the hub genes, as the genes of higher node degree, betweenness centrality, stress centrality, and closeness centrality might be linked with T2DM. The top hub genes include APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, and topological properties of each hub genes in PPI network is given in Table 1. A total of 2 modules were selected through PEWCC1 analysis, and module 1 had nodes 98 and edges 117 (Figure 5A) and module 2 had nodes 81 and edges 248 (Figure 5B). Enrichment analysis demonstrated that modules 1 and 2 might be linked with RNA polymerase II transcription, intracellular anatomical structure, metabolism of proteins, protein metabolic process, positive regulation of biological process, metabolism, immune system, establishment of localization, cytoplasm, neutrophil degranulation, cellular metabolic process, intracellular anatomical structure, and protein binding.

MiRNA-hub gene regulatory network construction

The hub genes of the DEGs in T2DM were performed by online databases miRNet. Based on the miRNAs, a miRNAhub gene regulatory network was constructed with 2630 nodes (miRNA: 2345 and hub gene: 285) and 20765 interaction pairs (Figure 6). PRKDC was the gene targets of 163 miRNAs (eg, hsa-mir-142-5p), MYH9 was the gene targets of 126 miR-NAs (eg, hsa-mir-181b-3p), APP was the gene targets of 125 miRNAs (eg, hsa-mir-216b-5p), ILF3 was the gene targets of 107 miRNAs (eg, hsa-mir-3157-3p), SKIL was the gene targets 91 of miRNAs (eg, hsa-mir-1294), HSPA8 was the gene targets of 116 of miRNAs (eg, hsa-mir-3661), HSP90AB1 was the gene targets of 103 of miRNAs (eg, hsa-mir-200a-3p), SQSTM1 was the gene targets of 94 of miRNAs (eg, hsamir-520d-5p), HSPA5 was the gene targets of 88 of miRNAs (eg, hsa-mir-573), and GRB2 was the gene targets of 65 of miRNAs (eg, hsa-mir-1291), and topological properties of each hub genes and miRNAs in miRNA-hub gene regulatory network are listed in Table 2.

TF-hub gene regulatory network construction

The hub genes of the DEGs in T2DM were performed by online databases NetworkAnalyst. Based on the TFs, a TF-hub gene regulatory network was constructed with 477 nodes (TF: 192 and hub gene: 285) and 8507 interaction pairs (Figure 7). *BCL6* was the gene targets of 60 TFs (eg, *NOTCH1*), *MYH9* was the gene targets of 53 TFs (eg, *PPARD*), *NCOR2* was the gene targets of 50 TFs (eg, *HIF1A*), *APP* was the gene targets of 45 TFs (eg, *SMARCA4*), *NDRG1* was the gene targets of 44

.

 Table 1. Topology table for up and down regulated genes.

REGULATION	NODE	DEGREE	BETWEENNESS	STRESS	CLOSENESS
Up	APP	674	0.277552	48 171 576	0.396397
Up	МҮН9	231	0.067132	12987566	0.351087
Up	TCTN2	203	0.074204	9822804	0.31559
Up	USP7	156	0.048917	10011292	0.341756
Up	SYNPO	148	0.019807	5325396	0.315343
Up	BCL6	99	0.03129	4924434	0.316788
Up	PRKDC	97	0.02396	5704444	0.339213
Up	U2AF2	77	0.016653	3792650	0.316448
Up	SKIL	72	0.021529	2766174	0.31763
Up	CTBP1	72	0.018919	3933722	0.30334
Up	TOP1	66	0.012706	3485932	0.318522
Up	NDRG1	65	0.014232	2582316	0.327508
Up	NCOR2	62	0.014748	2563224	0.327727
Up	ILF3	62	0.010796	3729048	0.325197
Up	MAPT	59	0.011654	2038018	0.335304
Up	SNRNP70	56	0.013306	2811964	0.337737
Up	NME7	54	0.009971	2818468	0.302345
Up	HCFC1	54	0.011189	4114590	0.285724
Up	SRRM2	53	0.008517	2842260	0.304719
Up	DDX17	48	0.010257	2309956	0.34835
Up	RUNX1T1	45	0.007377	1 300 474	0.298327
Up	TNRC6B	44	0.005765	1772074	0.294513
Up	RPS3A	43	0.008663	1 580 346	0.314044
Up	BAX	43	0.010013	1 360 956	0.305287
Up	ANXA2	42	0.006725	1415220	0.32746
Up	RAB8A	38	0.009675	2880488	0.28541
Up	ALYREF	37	0.006723	3260410	0.299114
Up	OTUD4	36	0.009901	1095992	0.306175
Up	TNRC6A	36	0.006285	1066772	0.298629
Up	LMO1	36	0.007004	1983992	0.281738
Up	NR4A1	35	0.007386	1 366 096	0.293516
Up	DNMT1	35	0.007153	1311716	0.318247
Up	JUNB	34	0.007201	2 171 380	0.289501
Up	HNRNPH1	34	0.004039	1 126 254	0.310822
		33	0.002406	639204	0.306684
Up	HNRNPL	55		000204	0.000001

REGULATION	NODE	DEGREE	BETWEENNESS	STRESS	CLOSENESS
Up	RPS2	32	0.005007	944774	0.30743
Up	PGAM5	32	0.004601	1343578	0.295695
Up	CD44	31	0.005854	812632	0.311523
Up	B2M	31	0.005781	1559068	0.265885
Up	RAD52	30	0.004293	852988	0.296289
Up	ATP2A2	30	0.007054	1 516 120	0.312823
Up	SREBF1	30	0.007025	2186330	0.278526
Up	PAFAH1B1	29	0.005215	2372866	0.276438
Up	NDN	29	0.007043	1 329 464	0.296547
Up	SRSF3	28	0.003437	1013722	0.303174
Up	APLP1	27	0.006221	892288	0.276818
Up	GANAB	27	0.004094	990330	0.298347
Up	RPL7	26	0.003381	933236	0.310757
Up	MPRIP	26	0.001472	342632	0.295873
Up	INO80E	25	0.005901	1721260	0.272453
Up	CACNA1A	24	0.010596	1 171 628	0.281863
Up	CHGB	24	0.006952	765 394	0.299337
Up	RPL28	24	0.002372	585818	0.299074
Up	ITSN2	24	0.003281	939596	0.286093
Up	RPS10	23	0.004922	897446	0.326132
Up	RPL23A	23	0.003289	505840	0.311962
Up	PHF1	22	0.003983	1034682	0.277426
Up	HNRNPAB	22	0.001844	495324	0.3108
Up	SH3GL1	22	0.003033	986094	0.270008
Up	HMGB1	21	0.002117	776702	0.290681
Up	PDK3	19	0.002946	742934	0.275937
Up	ARID1B	19	0.004	716712	0.264217
Up	ABCA1	18	0.003966	549762	0.275216
Up	ESRRA	18	0.002502	368532	0.276023
Up	TRA2A	18	0.001473	605004	0.285005
Up	MAGI1	18	0.00426	637328	0.277722
Up	VEGFA	17	0.004134	836256	0.248525
Up	ZC3HAV1	17	0.001292	489318	0.274227
Up	HIVEP1	16	0.001767	378796	0.2718
Up	SIPA1L3	16	0.001056	218866	0.285465
Up	MPP6	16	0.002628	324224	0.275972
Up	RPL17	16	0.001736	515376	0.297165

ю.

Table I. (Continued)

REGULATION	NODE	DEGREE	BETWEENNESS	STRESS	CLOSENESS
Up	SSR4	16	0.001986	441 016	0.283617
Up	RPS27	15	0.002603	522416	0.297905
Up	SON	15	4.63E-04	263370	0.282512
Up	PDCD4	15	0.001508	323916	0.276732
Up	TMEM79	15	0.004325	604778	0.229337
Up	MAFG	14	0.002447	382 134	0.252123
Up	SGSM2	14	0.002229	327358	0.278544
Up	NOL3	14	6.71E-04	214960	0.264091
Up	S100A6	14	9.74E-04	248722	0.280861
Up	MZT2A	14	2.68E-04	75218	0.276801
Up	RPL21	14	0.001091	579282	0.289843
Up	MCPH1	14	8.71E-04	244 188	0.255857
Up	LUC7L3	13	0.001174	368838	0.272386
Up	DDX18	13	0.001648	394268	0.31722
Up	TLE3	13	0.002428	330 598	0.309193
Up	EIF5A	13	0.002018	470016	0.279742
Up	LENG8	13	0.001599	412736	0.24473
Up	OCLN	12	0.001253	314884	0.263462
Up	PABPN1	12	0.001338	370074	0.285705
Up	BRD1	11	0.001735	432360	0.250156
Up	KRT10	11	5.29E-04	212650	0.28389
Up	RPS26	11	6.46E-04	207 408	0.291102
Up	TMEM209	11	0.002671	362732	0.281917
Up	TLK1	11	0.001007	270716	0.252627
Up	NPDC1	11	7.46E-04	230746	0.250595
Up	ST14	11	0.001157	228876	0.261871
Up	UBA6	10	0.00209	401 360	0.269055
Up	MAP3K12	10	0.00226	336206	0.272201
Up	MAP2	10	0.001373	254464	0.319327
Up	ITGAV	10	0.00199	532090	0.270371
Up	CPE	10	0.001881	615956	0.227778
Up	TFAP4	10	7.77E-04	213056	0.26184
Up	MIER1	10	0.0015	272476	0.264123
Up	CPT1A	9	5.45E-04	93620	0.276438
Up	RGL2	9	6.06E-04	170 470	0.251865
Up	CYB5R3	9	9.29E-04	184034	0.256748
Up	DDR1	9	0.001327	189372	0.266558

REGULATION	NODE	DEGREE	BETWEENNESS	STRESS	CLOSENESS
Up	ATP1B1	9	0.001955	400240	0.267073
Up	NME3	9	0.001643	194338	0.301808
Up	MZT2B	9	1.10E-04	28768	0.258413
Up	ALDH1B1	9	9.67E-04	319144	0.277583
Up	PI4KA	9	7.40E-04	268444	0.277879
Up	CSNK1G2	9	0.001421	396030	0.252931
Up	CITED2	9	0.002327	530770	0.263431
Up	RANBP3	9	0.001499	304686	0.236853
Up	NRP1	8	8.45E-04	148358	0.258398
Up	PGRMC2	8	4.66E-04	87082	0.262275
Up	HLA-B	5	0	0	0.210049
Up	HLA-A	4	7.39E-05	16916	0.249408
Up	EIF1AX	1	0	0	0.28389
Up	ARL4C	1	0	0	0.28389
Up	RPL41	1	0	0	0.28389
Up	UBXN6	1	0	0	0.28389
Up	CDK10	1	0	0	0.267235
Up	DPH1	1	0	0	0.266639
Up	AHDC1	1	0	0	0.259871
Up	SEZ6L2	1	0	0	0.191166
Up	PDCD2	1	0	0	0.222239
Up	PTPN18	1	0	0	0.285576
Up	NISCH	1	0	0	0.285576
Up	RBM33	1	0	0	0.285576
Up	WIPF2	1	0	0	0.285576
Up	MCU	1	0	0	0.225479
Up	ZZEF1	1	0	0	0.241075
Up	FCGRT	1	0	0	0.210049
Up	EMC10	1	0	0	0.239898
Up	PLD3	1	0	0	0.239898
Up	FADS2	1	0	0	0.239898
Up	FAM102A	1	0	0	0.212614
Up	SEMA6A	1	0	0	0.222463
Up	ZFX	1	0	0	0.232008
Up	USP27X	1	0	0	0.21869
Down	GRB2	431	0.172947	23419584	0.399693
Down	HSP90AB1	225	0.07414	15655320	0.364663

Table I. (Continued)

ю.

Table I. (Continued)

REGULATION	NODE	DEGREE	BETWEENNESS	STRESS	CLOSENESS
Down	UBC	224	0.075316	15 138 294	0.356148
Down	HSPA5	144	0.05737	10318564	0.363554
Down	SQSTM1	123	0.036494	6909982	0.339317
Down	XRCC6	121	0.034438	8751842	0.335228
Down	HSPA8	120	0.03154	6567910	0.365537
Down	TUBA1C	91	0.023847	3670590	0.328896
Down	TUBG1	81	0.017666	3231832	0.324267
Down	PSMC5	80	0.015146	3450624	0.332456
Down	CSNK2B	77	0.019998	5358078	0.32002
Down	CDC23	75	0.021091	6346650	0.302076
Down	SAT1	69	0.01963	4672960	0.296746
Down	GAPDH	63	0.012495	2722934	0.342046
Down	GABARAP	62	0.01438	2298584	0.299175
Down	RAD23A	56	0.009202	1854168	0.312778
Down	PKM	51	0.009281	2445062	0.320972
Down	DNAJA1	51	0.008274	2322170	0.320763
Down	PSMB3	50	0.005865	1 322 226	0.308051
Down	EXOSC1	50	0.01119	2 195 338	0.294709
Down	DDIT3	48	0.01172	2529152	0.297345
Down	NDUFA9	47	0.013121	3 147 348	0.291102
Down	CANX	46	0.01141	2049224	0.314089
Down	IBTK	45	0.008641	1736696	0.290891
Down	SCNM1	45	0.006692	2252600	0.281594
Down	PSMC4	42	0.003699	829472	0.31331
Down	NDUFA12	42	0.004926	813880	0.250837
Down	MBIP	42	0.01045	2311340	0.274601
Down	PSMD7	41	0.002834	722504	0.302179
Down	USP22	41	0.011629	3407576	0.279884
Down	PSMD6	40	0.001629	559916	0.281863
Down	CLU	40	0.00841	1216580	0.309431
Down	AIFM1	39	0.005419	1729814	0.299966
Down	MORF4L2	39	0.011082	2538970	0.275662
Down	PRDX1	38	0.005407	1 341 464	0.312403
Down	ARL6IP1	37	0.012555	1 641 598	0.244635
Down	CAPZB	36	0.004358	1 050 292	0.311742
Down	PSMD12	34	0.001447	422448	0.305161
Down	PSMB7	34	0.001154	364868	0.289577

REGULATION	NODE	DEGREE	BETWEENNESS	STRESS	CLOSENESS
Down	BCAP31	34	0.013785	1768344	0.327824
Down	PSMB5	34	0.003403	666674	0.313199
Down	NR0B2	34	0.005798	1517314	0.302138
Down	TUBA4A	33	0.005178	1 530 624	0.307217
Down	RNF6	33	0.003643	1 333 208	0.262166
Down	MPP1	32	0.007264	815422	0.302924
Down	CAMK2D	32	0.008412	1997208	0.289805
Down	PSMF1	32	0.006012	1557236	0.280594
Down	ALDOA	31	0.004458	960 392	0.311391
Down	PSMA4	30	0.002283	522348	0.297505
Down	PSMB2	30	0.003431	769210	0.296309
Down	UCHL1	28	0.00501	791 348	0.328067
Down	TXN2	28	0.00596	1364924	0.272084
Down	ORC3	28	0.005692	1 623 144	0.284273
Down	CLIC1	27	0.004327	824 568	0.304447
Down	UBE2L6	27	0.006391	1958890	0.274499
Down	GBA	26	0.004796	875 116	0.282061
Down	ENO1	26	0.00367	1 143 078	0.306876
Down	RPL14	26	0.004161	1610674	0.298569
Down	FTH1	24	0.004084	777832	0.276783
Down	TXN	24	0.003003	482510	0.302717
Down	GSTP1	24	0.004232	1080546	0.295201
Down	REEP5	24	0.005234	1 041 918	0.267817
Down	TOX4	23	0.005025	1 370 332	0.276058
Down	TTR	23	0.003317	617718	0.272823
Down	CORO1C	23	0.001258	341 072	0.296269
Down	GTF2B	22	0.004837	1919700	0.246228
Down	PPIB	21	0.002633	702460	0.286557
Down	UFD1	20	0.00202	299278	0.298952
Down	GLUL	20	0.003636	572 524	0.266767
Down	SCAMP3	19	0.002153	497 590	0.274738
Down	FTL	19	0.004867	440 140	0.298006
Down	SLC25A5	19	0.001986	352068	0.310844
Down	UBE2B	19	0.002118	572844	0.260713
Down	ZNF326	19	0.002394	916478	0.295359
Down	LAMTOR1	19	0.004398	814628	0.252454
Down	ZNF410	18	0.004751	566 192	0.302386

Table I. (Continued)

ю.

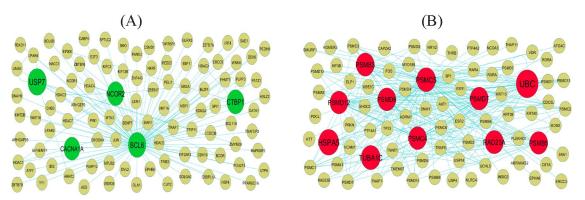
Table I. (Continued)

REGULATION	NODE	DEGREE	BETWEENNESS	STRESS	CLOSENESS
Down	PRDX6	18	0.002313	594 114	0.280327
Down	DRG1	18	0.002816	810 156	0.295122
Down	ATP6V1B2	18	0.002914	816976	0.270388
Down	ZNF165	18	0.003519	739876	0.262493
Down	NDUFV3	18	0.001755	335550	0.259292
Down	EIF3K	18	0.004959	1 105 612	0.27343
Down	NSFL1C	17	0.003491	339954	0.287189
Down	ARCN1	17	0.002733	778374	0.290204
Down	TPI1	17	0.001365	553820	0.293848
Down	ARRDC3	17	0.001321	468292	0.265518
Down	NDUFB8	16	0.001576	271076	0.25175
Down	PRDX5	15	0.00314	356484	0.304824
Down	RPS28	15	0.00171	509708	0.276317
Down	TCEAL4	15	0.002744	249400	0.281451
Down	VAMP8	15	0.003131	687744	0.270437
Down	TRAPPC2L	14	0.004206	559988	0.293516
Down	CNOT6L	14	0.002421	339456	0.257721
Down	ATP6V1D	14	0.002838	320770	0.28589
Down	DYNLRB1	14	0.001865	358956	0.26184
Down	EDARADD	13	0.001601	322314	0.258051
Down	PEF1	13	0.001577	414 800	0.268957
Down	FARSA	13	0.001697	508804	0.2652
Down	POLE3	12	0.004074	517 276	0.286019
Down	COX4I1	12	0.002449	321 508	0.261561
Down	ETV5	12	0.003438	1053244	0.236334
Down	NAPA	12	0.002141	556788	0.283217
Down	VPS25	12	0.002068	519502	0.245014
Down	BEX1	12	0.001246	267736	0.267979
Down	XPOT	11	0.001347	381778	0.281774
Down	MT2A	11	0.001882	359724	0.241562
Down	NDUFB7	11	0.001	155788	0.238231
Down	MRPS35	11	0.00194	415706	0.264107
Down	MRPS15	11	0.001587	179036	0.276058
Down	PLEKHB2	11	0.001437	374900	0.236057
Down	NSMCE2	11	0.001999	798 156	0.237464
Down	CTNNAL1	11	0.001959	302074	0.253119
Down	PPIL1	11	0.001172	393624	0.278019

REGULATION	NODE	DEGREE	BETWEENNESS	STRESS	CLOSENESS
Down	PRPS2	10	0.001596	384080	0.259383
Down	COX6B1	10	5.69E-04	148866	0.236765
Down	ETV6	10	0.002363	207722	0.296408
Down	CAP1	10	5.76E-04	164992	0.273972
Down	SPCS2	10	0.001427	294448	0.282801
Down	GRAMD2B	10	0.002536	387 376	0.231425
Down	CDC42BPA	10	0.001848	460 620	0.252858
Down	ATP6V1E1	2	1.68E-05	7358	0.256421
Down	MPC1	1	0	0	0.230293
Down	TRUB1	1	0	0	0.28389
Down	NANS	1	0	0	0.267235
Down	MDH1	1	0	0	0.267235
Down	GHITM	1	0	0	0.266639
Down	COA3	1	0	0	0.207341
Down	NEU1	1	0	0	0.224518
Down	UQCC2	1	0	0	0.285576
Down	RBP4	1	0	0	0.214355
Down	CUTA	1	0	0	0.226925
Down	GPX2	1	0	0	0.228591
Down	РХК	1	0	0	0.230257
Down	TSPYL5	1	0	0	0.254722
Down	ALG3	1	0	0	0.239898
Down	ZMPSTE24	1	0	0	0.239898
Down	SCD	1	0	0	0.239898
Down	UQCRH	1	0	0	0.200544
Down	EIF5A2	1	0	0	0.232008
Down	ATXN7L3B	1	0	0	0.21869

Table I. (Continued)

TFs (eg, *SUZ12*), *UBC* was the gene targets of 64 TFs (eg, *TAF7L*), *HSP90AB1* was the gene targets of 49 TFs (eg, RUNX2), *TUBA1C* was the gene targets of 47 TFs (eg, *MITF*), *HSPA5* was the gene targets of 44 TFs (eg, *VAP1*), and *HSPA8* was the gene targets of 39 TFs (eg, *E2F1*), and topological properties of each hub genes and TFs in TF-hub gene regulatory network are listed in Table 2.


Validation of hub genes by receiver operating characteristic curve (ROC) analysis

Validated by ROC curves, we found that 10 hub genes had high sensitivity and specificity, including APP (AUC = 0.853),

MYH9 (AUC = 0.852), TCTN2 (AUC = 0.881), USP7(AUC = 0.862), SYNPO (AUC = 0.893), GRB2 (AUC = 0.850), HSP90AB1 (AUC = 0.870), UBC (AUC = 0.865), HSP45(AUC = 0.902), and SQSTM1 (AUC = 0.875) (Figure 8). The hub genes might be biomarkers of T2DM and have positive implications for early medical intervention of the disease.

Discussion

Although there are various investigations on T2DM that have been conducted, the mortality of T2DM is still high. This might be due to the lack of valid biomarkers for detection of early stage T2DM and of valid treatment for T2DM. Therefore, molecular mechanisms of T2DM are necessary for scientists to

Figure 5. Modules of isolated form PPI of DEGs: (A) the most significant module was obtained from PPI network with 98 nodes and 117 edges for up regulated genes and (B) the most significant module was obtained from PPI network with 81 nodes and 248 edges for down regulated genes. Up regulated genes are marked in green; down regulated genes are marked in red.

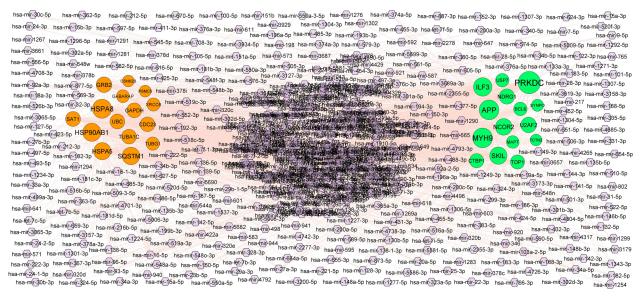


Figure 6. MiRNA-hub gene regulatory network. The purple color diamond nodes represent the key miRNAs; up regulated genes are marked in green; down regulated genes are marked in orange.

find the treat and diagnosis method of T2DM. Because of the fast advancement of NGS technology, it is more convenient to find out the genetic modification of development of diseases. NGS facilitates us to examine the gene, the genetic modification in T2DM, which had been proved to be a better approach to find novel biomarkers in other metabolic diseases.

In the present investigation, we observed whether there were more beneficial genes which could be better biomarkers for the diagnosis, prognosis and therapeutic for T2DM. In order to find out the significant gene of T2DM, we analyzed the NGS data GSE81608 in Limma, where a total number of 927 DEGs were obtained between T2DM and normal control, comprising was 461 up regulated and 466 down regulated genes. $CTBP1^{41}$ and $TRNC^{42}$ are involved in the pathogenesis of T2DM. A previous study has demonstrated that SST (somatostatin) serves an essential role in obesity.⁴³ Therefore, the data suggest that the identified DEGs might participant in the development of T2DM and associated complications and contribute to T2DM treatment.

Then, databases including GO and REACTOME were selected to do gene enrichment analysis. Metabolism of proteins,⁴⁴ metabolism,⁴⁵ the citric acid (TCA) cycle and respiratory electron transport,46 gluconeogenesis,47 immune system,48 heterocyclic compound binding,49 protein binding,50 establishment of localization,⁵¹ cellular metabolic process,⁵² cytoplasm,⁵³ and catalytic activity⁵⁴ were the GO terms and signaling pathways responsible for the advancement of T2DM. A previous study showed that IGFBP2,55 APOH (apolipoprotein H),56 ANXA2,⁵⁷ BAX (BCL2 associated X, apoptosis regulator),⁵⁸ PCSK1N,⁵⁹ PDK4,⁶⁰ CPE (carboxypeptidase E),⁶¹ OCLN (occludin),62 CD44,63 NDN (necdin, MAGE family member),64 MLXIPL (MLX interacting protein like),65 CD36,66 SREBF1,67 NR4A1,68 PCSK2,69 CHGB (chromogranin B),70 PDK3,⁷¹ PDCD4,⁷² EIF5A,⁷³ NRP1,⁷⁴ ABCA1,⁷⁵ DNMT1,⁷⁶ MYH9,77 HMGB1,78 B4GALT5,79 B2M,80 MAP3K12,81 KSR2,⁸² NPY (neuropeptide Y),⁸³ CHGA (chromogranin A),⁸⁴ CD47,85 DLK1,86 PDK4,87 CPE (carboxypeptidase E),61 OCLN (occludin),⁶² CXXC4,⁸⁸ PEMT (phosphatidylethanolamine

Table 2.	miRNA-target	gene and	TF-target of	gene	interaction.
----------	--------------	----------	--------------	------	--------------

REGULATION	TARGET GENES	DEGREE	MICRORNA	REGULATION	TARGET GENES	DEGREE	TF
Up	PRKDC	163	hsa-mir-142-5p	Up	BCL6	60	NOTCH1
Up	MYH9	126	hsa-mir-181b-3p	Up	MYH9	53	PPARD
Up	APP	125	hsa-mir-216b-5p	Up	NCOR2	50	HIF1A
Up	ILF3	107	hsa-mir-3157-3p	Up	APP	45	SMARCA4
Up	SKIL	91	hsa-mir-1294	Up	NDRG1	44	SUZ12
Up	NCOR2	81	hsa-mir-4708-3p	Up	TOP1	41	CREM
Up	U2AF2	65	hsa-mir-196a-5p	Up	ILF3	41	DACH1
Up	NDRG1	60	hsa-mir-374a-5p	Up	MAPT	38	YAP1
Up	TOP1	45	hsa-mir-424-5p	Up	SKIL	37	GATA2
Up	CTBP1	45	hsa-mir-944	Up	PRKDC	36	NUCKS1
Up	BCL6	35	hsa-mir-4701-3p	Up	CTBP1	35	ELF1
Up	USP7	34	hsa-mir-93-5p	Up	U2AF2	34	KDM6A
Up	MAPT	23	hsa-mir-2278	Up	SYNPO	28	SMAD4
Up	SYNPO	15	hsa-mir-138-5p	Up	USP7	27	NANOG
Up	TCTN2	9	hsa-mir-34a-5p	Up	TCTN2	10	SRF
Down	HSPA8	116	hsa-mir-3661	Down	UBC	64	TAF7L
Down	HSP90AB1	103	hsa-mir-200a-3p	Down	HSP90AB1	49	RUNX2
Down	SQSTM1	94	hsa-mir-520d-5p	Down	TUBA1C	47	MITF
Down	HSPA5	88	hsa-mir-573	Down	HSPA5	44	YAP1
Down	GRB2	65	hsa-mir-1291	Down	HSPA8	39	E2F1
Down	SAT1	56	hsa-mir-301b-3p	Down	GAPDH	38	SOX11
Down	UBC	55	hsa-mir-9-5p	Down	GABARAP	38	HOXB4
Down	GAPDH	54	hsa-mir-5690	Down	GRB2	37	TFAP2A
Down	TUBA1C	53	hsa-mir-603	Down	CSNK2B	35	THAP11
Down	CDC23	51	hsa-mir-376a-5p	Down	PSMC5	33	STAT4
Down	TUBG1	32	hsa-mir-182-5p	Down	SQSTM1	30	EP300
Down	XRCC6	31	hsa-mir-618	Down	CDC23	27	TEAD4
Down	GABARAP	26	hsa-mir-34b-3p	Down	SAT1	25	SALL4
Down	PSMC5	10	hsa-mir-452-5p	Down	XRCC6	23	YY1
Down	CSNK2B	9	hsa-mir-149-3p	Down	TUBG1	22	SOX2

N-methyltransferase),⁸⁹ FADS2,⁹⁰ RREB1,⁹¹ HNRNPAB (heterogeneous nuclear ribonucleoprotein A/B),⁹² CPT1A,⁹³ ALDH1B1, ⁹⁴ ESRRA (estrogen related receptor alpha),⁹⁵ NISCH (nischarin),⁹⁶ SSTR3,⁹⁷ ND1,⁹⁸ NCOR2,⁹⁹ RBP4,¹⁰⁰ GSTP1,¹⁰¹ CYB5A,¹⁰² G6PC2,¹⁰³ DNAJC15,¹⁰⁴ TMED6,¹⁰⁵ PSMD6,¹⁰⁶ CLU (clusterin),¹⁰⁷ TTR (transthyretin),¹⁰⁸ TXN (thioredoxin),¹⁰⁹ LAMTOR1,¹¹⁰ GLUL (glutamate-ammonia ligase),¹¹¹ NEU1,¹¹² HSPA8,¹¹³ AP3S2,¹¹⁴ COX4I1,¹¹⁵ MT2A¹¹⁶ *MTCH2*,¹¹⁷ *ESD* (esterase D),¹¹⁸ *UBE2L6*,¹¹⁹ *SCD* (stearoyl-CoA desaturase),¹²⁰ *MGST3*,¹²¹ *NQO1*,¹²² *NSMCE2*,¹²³ and *PRSS1*¹²⁴ played an important role in T2DM. Quintela et al,¹²⁵ Yuan et al,¹²⁶ Cacace et al,¹²⁷ Hao et al,¹²⁸ Beckelman et al,¹²⁹ Liu et al,¹³⁰ Sekiguchi et al,¹³¹ Castillon et al,¹³² O'Donnell-Luria et al,¹³³ Coupland et al,¹³⁴ Koufaris et al,¹³⁵ Qvist et al,¹³⁶ Richter et al,¹³⁷ Torres et al,¹³⁸ Jeong et al,¹³⁹ Bermejo-Bescós et al,¹⁴⁰ Ramon-Duaso et al,¹⁴¹ Guilarte,¹⁴²

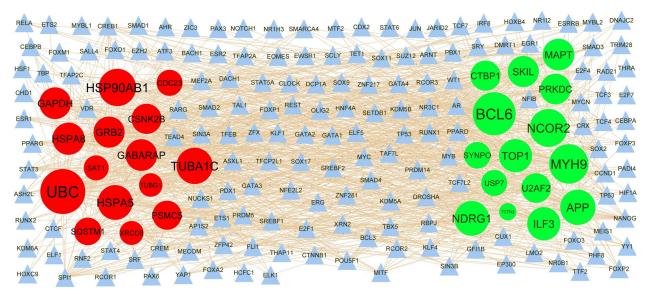


Figure 7. TF-hub gene regulatory network. The blue color triangle nodes represent the key TFs; up regulated genes are marked in green; down regulated genes are marked in red.

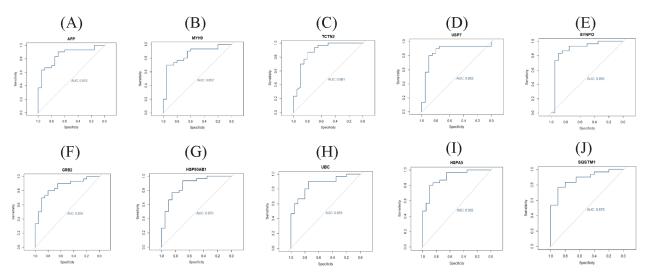


Figure 8. ROC curve validated the sensitivity, specificity of hub genes as a predictive biomarker for T2DM: (A) APP, (B) MYH9, (C) TCTN2, (D) USP7, (E) SYNPO, (F) GRB2, (G) HSP90AB1, (H) UBC, (I) HSPA5, and (J) SQSTM1.

Mukaetova-Ladinska et al,¹⁴³ Fazeli et al,¹⁴⁴ Butler et al,¹⁴⁵ Nackenoff et al,¹⁴⁶ Konyukh et al,¹⁴⁷ Hu et al,¹⁴⁸ Kaur et al,¹⁴⁹ Nakamura et al,¹⁵⁰ Liu et al,¹⁵¹ Obara et al,¹⁵² Herrmann et al,¹⁵³ Ozgen et al,¹⁵⁴ Masciullo et al,¹⁵⁵ Perrone et al,¹⁵⁶ Su et al,¹⁵⁷ Zhao et al,¹⁵⁸ Igbal et al,¹⁵⁹ Gal et al,¹⁶⁰ Wang et al,¹⁶¹ Stefanović et al,¹⁶² Zahola et al,¹⁶³ Bik-Multanowski et al,¹⁶⁴ Mata et al,¹⁶⁵ Li et al,¹⁶⁶ Payton et al,¹⁶⁷ and Chai et al¹⁶⁸ indicated that UBA6, TIA1, DPP6, USP7, EEF2, ITM2B, DPH1, PAK3, KMT2E, MAPT (microtubule associated protein tau), HCFC1, BRD1, TAOK2, PHF1, STMN2, APP (amyloid beta precursor protein), MBNL2, APLP1, MAP2, SRRM2 CST3, SRRM2, CST3, PLD3, SEZ6L2, DOC2A, PI4KA, GNAO1, TRA2A, MIDN (midnolin), HOOK3, MCPH1, SACS (sacsin molecular chaperone), TUBA4A, ASAH1, ATP6V1B2, SVBP (small vasohibin binding protein), AIFM1, UBC (ubiquitin C), IFI30, SCGN (secretagogin, EF-hand calcium binding protein), MTRNR2L12, GBA (glucosylceramidase beta), TXN2, NQO2, and PPIL1 were involved in the development and progression of cognitive impairment. RPS3A,169 PGAM5,170 RPL7,171 TLK1,¹⁷² DDR1,¹⁷³ ILF3,¹⁷⁴ TNRC6A,¹⁷⁵ GGCX (gammaglutamyl carboxylase),176 S100A6,177 LSAMP (limbic system associated membrane protein),¹⁷⁸ KCNA5,¹⁷⁹ LUC7L3,¹⁸⁰ ATAD3C,181 SRSF3,182 MCU (mitochondrial calcium uniporter),¹⁸³ ATP2A2,¹⁸⁴ GAA (glucosidase alpha, acid),¹⁸⁵ MAGI1,¹⁸⁶ WIPF2,¹⁸⁷ VAMP8,¹⁸⁸ UCHL1,¹⁸⁹ CLIC1,¹⁹⁰ PSMB5,¹⁹¹ GRB2,¹⁹² MPSTE24,¹⁹³ COX6B1,¹⁹⁴ SQSTM1¹⁹⁵, COTL1196, CD63197, NDUFB7198, BEX1199 and MTRNR2L8 200 plays a major role in mediating cardiovascular diseases progression. HLA-A,201 VEGFA (vascular endothelial growth factor A),²⁰² RPS26,²⁰³ BMP6,²⁰⁴ HLA-B,²⁰⁵ IER3IP1,²⁰⁶ MT1E,²⁰⁷ ACADM (acyl-CoA dehydrogenase medium chain),²⁰⁸ and GAPDH (glyceraldehyde-3-phosphate dehydrogenase)²⁰⁹ are

associated with progression of Type 1 diabetes mellitus. PEMT (phosphatidylethanolamine N-methyltransferase),²¹⁰ INSM1,²¹¹ BCL6,²¹² RUNX1T1,²¹³ PGRMC2,²¹⁴ ARID1B,²¹⁵ CITED2,²¹⁶ KLF13,²¹⁷ PPT1,²¹⁸ ARRDC3,²¹⁹ HSPA5,²²⁰ MDH2,²²¹ and COA3,²²² have been previously reported to be a key biomarkers for the early detection of obesity. A previous study demonstrated that IGFBP5,223 PRDX6,224 PKM (pyruvate kinase M1/2),²²⁵ PRDX1,²²⁶ and USP22²²⁷ were more highly expressed in diabetic nephropathy. Durgin et al,²²⁸ Zhang et al,²²⁹ Hamada et al,²³⁰ Gong et al,²³¹ Li et al,²³² Lin et al,²³³ and Schweigert et al²³⁴ suggested that CYB5R3, CACNA1A, GLCCI1, CAP1, HSP90AB1, BLVRA (biliverdinreductase A), and CRIP1 were involved in the progression of hypertension. These results suggested that these, cognitive impairment, cardiovascular diseases, obesity, diabetic nephropathy and hypertension responsible genes might influence the development of T2DM through the altered expression. Therefore, these genes might involve in these GO terms and pathways are most likely to be important in the development of T2DM and T2DM associated complications.

By PPI network and module analysis, we identified the hub genes that might affect the origin or advancement of T2DM. *TCTN2, SYNPO* (synaptopodin), *PSMD12, PSMC4, TUBA1C, PSMC5, PSMD7*, and *RAD23A* might serve as a novel target for early diagnosis and specific therapy of T2DM and T2DM associated complications, and the related mechanisms need to be further investigation.

In addition, miRNA-hub gene regulatory network construction and TF-hub gene regulatory network were constructed. In addition, miRNA-mRNA networks were constructed. The roles of hub genes, miRNA and TF in the pathogenesis of T2DM are discussed. Hsa-mir-142-5p,235 hsamir-1291,236 NOTCH1,237 PPARD (peroxisome proliferatoractivated receptor delta),²³⁸ HIF1A,²³⁹ RUNX2,²⁴⁰ and E2F1²⁴¹ levels are correlated with disease severity in patients with T2DM. Previous studies have demonstrated that hsa-mir-216b-5p²⁴² and hsa-mir-200a-3p²⁴³ appears to be expressed in Type 1 diabetes. Hsa-mir-1294, 244 SUZ12, 245 and YAP1246 were responsible for progression of cognitive impairment. Hsamir-573247 and SMARCA4248 were linked with progression of hypertension. Therefore, cognitive impairment and hypertension responsible biomarkers might be used as a diagnostic biomarker because of its essential role in the pathogenesis in early T2DM. Our study also suggests that PRKDC (protein kinase, DNAactivated, catalytic subunit), SKIL (SKI like proto-oncogene), NDRG1, hsa-mir-181b-3p, hsa-mir-3157-3p, hsa-mir-3661, hsa-mir-520d-5p, TAF7L, and MITF (Microphthalmiaassociated transcription factor) are the novel biomarkers of the entire process of T2DM and T2DM associated complications development and might be used as the novel diagnostic biomarker for T2DM and T2DM associated complications.

The conduct of updating methods was calculated the classification work in which collected a higher score in efficiency, AUC, specificity, and sensitivity. As a result, 10 hub genes with AUC > 0.80 showed excellent diagnostic value for T2DM, and thus were considered as hub genes of T2DM, including *APP*, *MYH9*, *TCTN2*, *USP7*, *SYNPO*, *GRB2*, *HSP90AB1*, *UBC*, *HSPA5*, and *SQSTM1*. Through these analyses, we expect to provide novel insights into the molecular pathogenesis of T2DM and its associated complications and provide a more detailed molecular mechanism for the development of T2DM treatment. Although bioinformatics analysis has been performed in these present investigations, some limitations exist. Lacking of experimental validation of hub genes is a limitation of the study. In addition, we do not conduct in vitro and in vivo experiments of hub genes in T2DM. Corresponding experiments will be performed to verify in our future investigation, thus conversely testifying in bioinformatics analysis.

In conclusion, the present study identified 10 hub genes (*APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5*, and *SQSTM1*) with crucial role in progression of T2DM; our results suggested these genes could add a new dimension to our understanding of the T2DM and might be served as potential biomarkers that will be assisting endocrinologist in developing novel therapeutic strategies for T2DM patients. However, there are some limitations in this study. Further larger clinical sample size and in-depth clinical experiments are needed to clarify the clear mechanism and warrant the prognostic value of these DEGs in T2DM.

Declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Author contributions

Varun Alur: Methodology; Validation. Varshita Raju: Formal analysis; Validation. Basavaraj Vastrad: Writing – original draft; Writing – review & editing. Chanabasayya Vastrad: Investigation; Software. Satish Kavatagimath: Formal analysis; Resources. Shivakumar Kotturshetti: Resources; Supervision.

Acknowledgements

I thank Yurong Xin, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA, very much, the author who deposited their NGS dataset GSE81608, into the public GEO database.

Availability of data and materials

The datasets supporting the conclusions of this article are available in the GEO (Gene Expression Omnibus) (https:// www.ncbi.nlm.nih.gov/geo/) repository [(GSE81608) (https:// www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608)].

ORCID iD

Chanabasayya Vastrad D https://orcid.org/0000-0003-3615 -4450

Informed consent

No informed consent because this study does not contain human or animals participants.

Ethics approval

Not applicable.

Trial registration

Not applicable.

Supplemental material

Supplemental material for this article is available online.

REFERENCES

- 1. Caruso R, Magon A, Baroni I, et al. Health literacy in type 2 diabetes patients: a systematic review of systematic reviews. *Acta Diabetol.* 2018;55:1-12.
- Gruss SM, Nhim K, Gregg E, Bell M, Luman E, Albright A. Public health approaches to Type 2 diabetes prevention: the US National Diabetes Prevention Program and Beyond. *Curr Diab Rep.* 2019;19:78.
- Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. *J Epidemiol Glob Health*. 2020;10:107-111.
- Magliano DJ, Sacre JW, Harding JL, Gregg EW, Zimmet PZ, Shaw JE. Youngonset type 2 diabetes mellitus - implications for morbidity and mortality. *Nat Rev Endocrinol*. 2020;16:321-331.
- Borzouei S, Soltanian AR. Application of an artificial neural network model for diagnosing type 2 diabetes mellitus and determining the relative importance of risk factors. *Epidemiol Health.* 2018;40:e2018007.
- Rojas J, Bermudez V, Palmar J, et al. Pancreatic beta cell death: novel potential mechanisms in diabetes therapy. *J Diabetes Res.* 2018;2018:9601801.
- Grarup N, Rose CS, Andersson EA, et al. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. *Diabetes*. 2007;56:3105-3111.
- Pascoe L, Tura A, Patel SK, et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. *Diabetes*. 2007;56:3101-3104.
- Shi H, Lu Y, Du J, et al. Application of back propagation artificial neural network on genetic variants in adiponectin ADIPOQ, peroxisome proliferator-activated receptor-γ, and retinoid X receptor-α genes and type 2 diabetes risk in a Chinese Han population. *Diabetes Technol Ther.* 2012;14:293-300.
- Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. *Diabetes*. 2003;52:568-572.
- Zheng X, Ren W, Zhang S, et al. Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population. *Mol Biol Rep.* 2012;39:17-23.
- Li Y, Liu Y, Liang J, Wang T, Sun M, Zhang Z. Gymnemic acid ameliorates hyperglycemia through PI3K/AKT- and AMPK-Mediated signaling pathways in Type 2 diabetes mellitus rats. *J Agric Food Chem*. 2019;67:13051-13060.
- Suhara T, Baba Y, Shimada BK, Higa JK, Matsui T. The mTOR signaling pathway in myocardial dysfunction in type 2 diabetes mellitus. *Curr Diab Rep.* 2017;17:38.
- Mackenzie RW, Elliott BT. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. *Diabetes Metab* Syndr Obes. 2014;7:55-64.
- Abo El-Nasr NME, Saleh DO, Mahmoud SS, et al. Olmesartan attenuates type 2 diabetes-associated liver injury: cross-talk of AGE/RAGE/JNK, STAT3/ SCOS3 and RAS signaling pathways. *Eur J Pharmacol.* 2020;874:173010.
- Ozaki KI, Awazu M, Tamiya M, et al. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. *Am J Physiol Endocrinol Metab.* 2016;310:E643-E651.

- Mao Y, Shen J, Lu Y, et al. RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer. *Oncotarget*. 2017;8: 42537-42547.
- Podder NK, Rana HK, Azam MS, et al. A system biological approach to investigate the genetic profiling and comorbidities of type 2 diabetes. *Gene Rep.* 2020;21:100830.
- Rahman MH, Peng S, Hu X, et al. A network-based bioinformatics approach to identify molecular biomarkers for type 2 diabetes that are linked to the progression of neurological diseases. *Int J Environ Res Public Health*. 2020;17:1035.
- Hasan MI, Hossain MA, Bhuiyan P, Miah MS, Rahman MH. A system biology approach to determine therapeutic targets by identifying molecular mechanisms and key pathways for type 2 diabetes that are linked to the development of tuberculosis and rheumatoid arthritis. *Life Sci.* 2022;297:120483.
- Hossain MA, Al Amin M, Hasan MI, et al. Bioinformatics and system biology approaches to identify molecular pathogenesis of polycystic ovarian syndrome, type 2 diabetes, obesity, and cardiovascular disease that are linked to the progression of female infertility. *Inform Med Unlocked*. 2022;30:100960.
- Rahman MH, Peng S, Hu X, et al. Bioinformatics methodologies to identify interactions between type 2 diabetes and neurological comorbidities. *IEEE* Access. 2019;7:183948-183970.
- Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules. *BMC Endocr Disord.* 2021;21:80.
- Clough E, Barrett T. The gene expression omnibus database. *Methods Mol Biol.* 2016;1418:93-110.
- Xin Y, Kim J, Okamoto H, et al. RNA sequencing of single human islet cells reveals type 2 diabetes genes. *Cell Metab.* 2016;24:608-615.
- Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.* 2015;43:e47.
- Thomas PD. The gene ontology and the meaning of biological function. *Methods Mol Biol.* 2017;1446:15-24.
- Fabregat A, Jupe S, Matthews L, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2018;46:D649-D655.
- Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments. *Nucleic Acids Res.* 2007;35:W193-W200.
- Kotlyar M, Pastrello C, Malik Z, Jurisica I. IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species. *Nucleic Acids Res.* 2019;47:D581-D589.
- Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* 2003;13:2498-2504.
- 32. Pržulj N, Wigle DA, Jurisica I. Functional topology in a network of protein interactions. *Bioinformatics*. 2004;20:340-348.
- Nguyen TP, Liu WC, Jordán F. Inferring pleiotropy by network analysis: linked diseases in the human PPI network. *BMC Syst Biol.* 2011;5:179.
- Shi Z, Zhang B. Fast network centrality analysis using GPUs. BMC Bioinform. 2011;12:149.
- Fadhal E, Gamieldien J, Mwambene EC. Protein interaction networks as metric spaces: a novel perspective on distribution of hubs. *BMC Syst Biol.* 2014;8:6.
- Zaki N, Efimov D, Berengueres J. Protein complex detection using interaction reliability assessment and weighted clustering coefficient. *BMC Bioinform*. 2013;14:163.
- 37. Fan Y, Xia J. miRNet-functional analysis and visual exploration of miRNA-target interactions in a network context. *Methods Mol Biol.* 2018;1819:215-233.
- Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. Network Analyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. *Nucleic Acids Res.* 2019;47:W234-W241.
- Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. *BMC Bioinform*. 2011;12:77.
- 40. Ren C, Li M, Du W, et al. Comprehensive bioinformatics analysis reveals hub genes and inflammation state of rheumatoid arthritis. *Biomed Res Int.* 2020;2020:1-13.
- Erfanian Omidvar M, Ghaedi H, Kazerouni F, et al. Clinical significance of long noncoding RNA VIM-AS1 and CTBP1-AS2 expression in type 2 diabetes. J Cell Biochem. 2019;120:9315-9323.
- 42. Duraisamy P, Elango S, Vishwanandha VP, Balamurugan R. Prevalence of mitochondrial tRNA gene mutations and their association with specific clinical phenotypes in patients with type 2 diabetes mellitus of Coimbatore. *Genet Test Mol Biomarkers*. 2010;14:49-55.
- 43. Kumar U, Singh S. Role of somatostatin in the regulation of central and peripheral factors of Satiety and obesity. *Int J Mol Sci.* 2020;21:2568.
- Gougeon R, Marliss EB, Jones PJ, Pencharz PB, Morais JA. Effect of exogenous insulin on protein metabolism with differing nonprotein energy intakes in type 2 diabetes mellitus. *Int J Obes Relat Metab Disord*. 1998;22:250-261.

- Yao K, Zeng L, He Q, Wang W, Lei J, Zou X. Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: a meta-analysis of 12 randomized controlled trials. *Med Sci Monit.* 2017;23:3044-3053.
- Gaster M, Nehlin JO, Minet AD. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype? *Arch Physiol Biochem.* 2012;118:156-189.
- Chung ST, Hsia DS, Chacko SK, Rodriguez LM, Haymond MW. Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes. *Diabetologia*. 2015;58:596-603.
- Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. *Front Immunol.* 2020;11:1582.
- Wu WL, Hao J, Domalski M, et al. Discovery of novel tricyclic heterocycles as potent and selective DPP-4 inhibitors for the treatment of type 2 diabetes. ACS Med Chem Lett. 2016;7:498-501.
- Shoukry A, Bdeer SEL-A, El-Sokkary RH. Urinary monocyte chemoattractant protein-1 and vitamin D-binding protein as biomarkers for early detection of diabetic nephropathy in type 2 diabetes mellitus. *Mol Cell Biochem*. 2015; 408:25-35.
- Hearn T, Spalluto C, Phillips VJ, et al. Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. *Diabetes*. 2005; 54:1581-1587.
- 52. Bouché C, Serdy S, Kahn CR, Goldfine AB. The cellular fate of glucose and its relevance in type 2 diabetes. *Endocr Rev.* 2004;25:807-830.
- Turner R, Stratton I, Horton V, et al. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK prospective Diabetes Study Group. *Lancet*. 1997;350:1288-1293.
- Cheung A, Kusari J, Jansen D, Bandyopadhyay D, Kusari A, Bryer-Ash M. Marked impairment of protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type 2 diabetes mellitus. *J Lab Clin Med.* 1999;134:115-123.
- Wittenbecher C, Ouni M, Kuxhaus O, et al. Insulin-like growth factor binding protein 2 (IGFBP-2) and the risk of developing type 2 diabetes. *Diabetes*. 2019;68:188-197.
- Castro A, Lázaro I, Selva DM, et al. APOH is increased in the plasma and liver of type 2 diabetic patients with metabolic syndrome. *Atherosclerosis*. 2010; 209:201-205.
- Caron D, Boutchueng-Djidjou M, Tanguay RM, Faure RL. Annexin A2 is SUMOylated on its N-terminal domain: regulation by insulin. *FEBS Lett.* 2015;589:985-991.
- Podestà F, Romeo G, Liu WH, et al. Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. *Am J Pathol.* 2000;156:1025-1032.
- Liu T, Zhao Y, Tang N, et al. Pax6 directly down-regulates pcsk1n expression thereby regulating PC1/3 dependent proinsulin processing. *PLoS One.* 2012; 7:e46934.
- Kim YI, Lee FN, Choi WS, Lee S, Youn JH. Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. *Diabetes*. 2006;55:2311-2317.
- Alsters SIM, Goldstone AP, Buxton JL, et al. Truncating homozygous mutation of carboxypeptidase E (CPE) in a morbidly obese female with type 2 diabetes mellitus, intellectual disability and hypogonadotrophic hypogonadism. *PLoS One*. 2015;10:e0131417.
- 62. Yu T, Lu XJ, Li JY, et al. Overexpression of miR-429 impairs intestinal barrier function in diabetic mice by down-regulating occludin expression. *Cell Tissue Res.* 2016;366:341-352.
- Kodama K, Horikoshi M, Toda K, et al. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. *Proc Natl Acad Sci U S A*. 2012;109:7049-7054.
- Goldfine AB, Crunkhorn S, Costello M, et al. Necdin and E2F4 are modulated by rosiglitazone therapy in diabetic human adipose and muscle tissue. *Diabetes*. 2006;55:640-650.
- Mtiraoui N, Turki A, Nemr R, et al. Contribution of common variants of ENPP1, IGF2BP2, KCNJ11, MLXIPL, PPARγ, SLC30A8 and TCF7L2 to the risk of type 2 diabetes in Lebanese and Tunisian Arabs. *Diabetes Metab.* 2012;38:444-449.
- Castelblanco E, Sanjurjo L, Falguera M, et al. Circulating soluble CD36 is similar in type 1 and Type 2 diabetes mellitus versus non-diabetic subjects. *J Clin Med.* 2019;8:710.
- Krause C, Sievert H, Geißler C, et al. Critical evaluation of the DNAmethylation markers ABCG1 and SREBF1 for type 2 diabetes stratification. *Epigenomics.* 2019;11:885-897.
- Huang Q, Xue J, Zou R, et al. NR4A1 is associated with chronic low-grade inflammation in patients with type 2 diabetes. *Exp Ther Med.* 2014;8: 1648-1654.

- Chang TJ, Chiu YF, Sheu WHH, et al. Genetic polymorphisms of PCSK2 are associated with glucose homeostasis and progression to type 2 diabetes in a Chinese population. *Sci Rep.* 2015;5:14380.
- Herold Z, Herold M, Rosta K, Doleschall M, Somogyi A. Lower serum chromogranin B level is associated with type 1 diabetes and with type 2 diabetes patients with intensive conservative insulin treatment. *Diabetol Metab Syndr.* 2020;12:61.
- Mayer AE, Löffler MC, Loza Valdés AE, et al. The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling. *Sci Signal*. 2019;12:eaav9150.
- Zhang J, Zhang M, Yang Z, et al. PDCD4 deficiency ameliorates left ventricular remodeling and insulin resistance in a rat model of type 2 diabetic cardiomyopathy. *BMJ Open Diabetes Res Care*. 2020;8:e001081.
- Mastracci TL, Colvin SC, Padgett LR, Mirmira RG. Hypusinated eIF5A is expressed in the pancreas and spleen of individuals with type 1 and type 2 diabetes. *PLoS One.* 2020;15:e0230627.
- Hoseini-Aghdam M, Sheikh V, Eftekharian MM, Rezaeepoor M, Behzad M. Enhanced expression of TIGIT but not neuropilin-1 in patients with type 2 diabetes mellitus. *Immunol Lett.* 2020;225:1-8.
- Yoon HY, Lee MH, Song Y, Yee J, Song G, Gwak HS. ABCA1 69C>T polymorphism and the risk of type 2 diabetes mellitus: a systematic review and updated meta-analysis. *Front Endocrinol.* 2021;12:639524.
- Chen YT, Lin WD, Liao WL, Tsai YC, Liao JW, Tsai FJ. NT5C2 methylation regulatory interplay between DNMT1 and insulin receptor in type 2 diabetes. *Sci Rep.* 2020;10:16087.
- Zhao H, Ma L, Yan M, et al. Association between MYH9and APOL1gene polymorphisms and the risk of diabetic kidney disease in patients with type 2 diabetes in a Chinese Han population. J Diabetes Res. 2018;2018:1-6.
- HuangJ, ZengT, Tian Y, et al. Clinical significance of high-mobility group box-1 (HMGB1) in subjects with type 2 diabetes mellitus (T2DM) combined with chronic obstructive pulmonary disease (COPD). J Clin Lab Anal. 2019;33:e22910.
- Li SF, Zhu CS, Wang YM, et al. Downregulation of β1,4-galactosyltransferase 5 improves insulin resistance by promoting adipocyte commitment and reducing inflammation. *Cell Death Dis.* 2018;9:196.
- 80. Kim MK, Yun KJ, Chun HJ, et al. Clinical utility of serum beta-2-microglobulin as a predictor of diabetic complications in patients with type 2 diabetes without renal impairment. *Diabetes Metab.* 2014;40:459-465.
- Ye M, Li D, Yang J, et al. MicroRNA-130a targets MAP3K12 to modulate diabetic endothelial progenitor cell function. *Cell Physiol Biochem*. 2015; 36:712-726.
- Pearce LR, Atanassova N, Banton MC, et al. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. *Cell*. 2013;155:765-777.
- 83. Nakhate KT, Yedke SU, Bharne AP, Subhedar NK, Kokare DM. Evidence for the involvement of neuropeptide Y in the antidepressant effect of imipramine in type 2 diabetes. *Brain Res.* 2016;1646:1-11.
- Kogawa EM, Grisi DC, Falcão DP, et al. Impact of glycemic control on oral health status in type 2 diabetes individuals and its association with salivary and plasma levels of chromogranin A. *Arch Oral Biol.* 2016;62:10-19.
- Bitar MS. Diabetes impairs angiogenesis and induces endothelial cell senescence by up-regulating thrombospondin-CD47-dependent signaling. *Int J Mol Sci.* 2019;20:673.
- Kameswaran V, Golson ML, Ramos-Rodríguez M, et al. The dysregulation of the DLK1-MEG3 locus in islets from patients with type 2 diabetes is mimicked by targeted epimutation of its promoter with TALE-DNMT constructs. *Diabetes*. 2018;67:1807-1815.
- Mori J, Alrob OA, Wagg CS, Harris RA, Lopaschuk GD, Oudit GY. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. *Am J Physiol Heart Circ Physiol.* 2013;304: H1103-H1113.
- Guan B, Zhan Z, Wang L, Wang L, Liu L. CXXC4 mediates glucose-induced βcell proliferation. *Acta Diabetol.* 2020;57:1101-1109.
- Hartz CS, Nieman KM, Jacobs RL, Vance DE, Schalinske KL. Hepatic phosphatidylethanolamine N-methyltransferase expression is increased in diabetic rats. *J Nutr.* 2006;136:3005-3009.
- Mazoochian L, Mohammad Sadeghi HM, Pourfarzam M. The effect of FADS2 gene rs174583 polymorphism on desaturase activities, fatty acid profile, insulin resistance, biochemical indices, and incidence of type 2 diabetes. *J Res Med Sci.* 2018;23:47.
- Bonomo JA, Guan M, Ng MC, et al. The ras responsive transcription factor RREB1 is a novel candidate gene for type 2 diabetes associated end-stage kidney disease. *Hum Mol Genet.* 2014;23:6441-6447.
- Ghosh A, Abdo S, Zhao S, et al. Insulin inhibits nrf2 gene expression via heterogeneous nuclear ribonucleoprotein F/K in diabetic mice. *Endocrinology*. 2017;158:903-919.

- Hirota Y, Ohara T, Zenibayashi M, et al. Lack of association of CPT1A polymorphisms or haplotypes on hepatic lipid content or insulin resistance in Japanese individuals with type 2 diabetes mellitus. *Metabolism.* 2007;56: 656-661.
- 94. Singh S, Chen Y, Matsumoto A, et al. ALDH1B1 links alcohol consumption and diabetes. *Biochem Biophys Res Commun.* 2015;463:768-773.
- Larsen LH, Rose CS, Sparsø T, et al. Genetic analysis of the estrogen-related receptor alpha and studies of association with obesity and type 2 diabetes. *Int J Obes*. 2007;31:365-370.
- Dong S, Blüher M, Zhang Y, Wu H, Alahari SK. Development of insulin resistance in nischarin mutant female mice. *Int J Obes*. 2019;43:1046-1057.
- Shah SK, He S, Guo L, et al. Discovery of MK-1421, a potent, selective sstr3 antagonist, as a development candidate for type 2 diabetes. ACS Med Chem Lett. 2015;6:513-517.
- Hattori Y, Nakajima K, Eizawa T, et al. Heteroplasmic mitochondrial DNA 3310 mutation in NADH dehydrogenase subunit 1 associated with type 2 diabetes, hypertrophic cardiomyopathy, and mental retardation in a single patient. *Diabetes Care*. 2003;26:952-953.
- Cividini F, Scott BT, Suarez J, et al. Ncor2/PPARα-dependent upregulation of MCUb in the type 2 diabetic heart impacts cardiac metabolic flexibility and function. *Diabetes*. 2021;70:665-679.
- Zhang L, Cheng YL, Xue S, Xu ZG. The role of circulating RBP4 in the type 2 diabetes patients with kidney diseases: a systematic review and meta-analysis. *Dis Markers*. 2020;2020:8830471.
- 101. Abbas S, Raza ST, SMir S, Siddiqi Z, Mahdi F. No association of SNP 313A→G in GSTP1 with nephropathy, hypertension and dyslipidemia in type 2 diabetes mellitus. *Br J Biomed Sci.* 2019;76:153-155.
- Huang K, Nair AK, Muller YL, et al. Whole exome sequencing identifies variation in CYB5A and RNF10 associated with adiposity and type 2 diabetes. *Obe*sity. 2014;22:984-988.
- Shi Y, Li Y, Wang J, et al. Meta-analyses of the association of G6PC2 allele variants with elevated fasting glucose and type 2 diabetes. *PLoS One.* 2017; 12:e0181232.
- Minchenko DO, Davydov VV, Budreiko OA, et al. The expression of CCN2, IQSEC, RSPO1, DNAJC15, RIPK2, IL13RA2, IRS1, and IRS2 genes in blood of obese boys with insulin resistance. *Fiziol Zb*. 2015;61:10-18.
- Wang X, Yang R, Jadhao SB, et al. Transmembrane emp24 protein transport domain 6 is selectively expressed in pancreatic islets and implicated in insulin secretion and diabetes. *Pancreas*. 2012;41:10-14.
- Chen M, Hu C, Zhang R, et al. A variant of PSMD6 is associated with the therapeutic efficacy of oral antidiabetic drugs in Chinese type 2 diabetes patients. *Sci Rep.* 2015;5:10701.
- Cai R, Han J, Sun J, et al. Plasma clusterin and the CLU gene rs11136000 variant are associated with mild cognitive impairment in type 2 diabetic patients. *Front Aging Neurosci.* 2016;8:179.
- Kwanbunjan K, Panprathip P, Phosat C, et al. Association of retinol binding protein 4 and transthyretin with triglyceride levels and insulin resistance in rural Thais with high type 2 diabetes risk. *BMC Endocr Disord.* 2018; 18:26.
- Wondafrash DZ, Nire'a AT, Tafere GG, Desta DM, Berhe DA, Zewdie KA. Thioredoxin-interacting protein as a novel potential therapeutic target in diabetes mellitus and its underlying complications. *Diabetes Metab Syndr Obes*. 2020;13:43-51.
- Ying L, Zhang M, Ma X, et al. Macrophage LAMTOR1 deficiency prevents dietary obesity and insulin resistance through inflammation-induced energy expenditure. *Front Cell Dev Biol.* 2021;9:672032.
- 111. Griffin JWD, Liu Y, Bradshaw PC, Wang K. In silico preliminary association of ammonia metabolism genes GLS, CPS1, and GLUL with risk of Alzheimer's disease, major depressive disorder, and Type 2 diabetes. J Mol Neurosci. 2018;64:385-396.
- 112. Fougerat A, Pan X, Smutova V, et al. Neuraminidase 1 activates insulin receptor and reverses insulin resistance in obese mice. *Mol Metab.* 2018;12:76-88.
- 113. Chiva-Blanch G, Peña E, Cubedo J, et al. Molecular mapping of platelet hyperreactivity in diabetes: the stress proteins complex HSPA8/Hsp90/CSK2 α and platelet aggregation in diabetic and normal platelets. *Transl Res.* 2021;235: 1-14.
- 114. Kazakova EV, Zghuang T, Li T, Fang Q, Han J, Qiao H. The gas6 gene rs8191974 and ap3s2 gene rs2028299 are associated with type 2 diabetes in the northern Chinese Han population. *Acta Biochim Pol.* 2017;64:227-231.
- 115. Van der Schueren B, Vangoitsenhoven R, Geeraert B, et al. Low cytochrome oxidase 4I1 links mitochondrial dysfunction to obesity and type 2 diabetes in humans and mice. *Int J Obes*. 2015;39:1254-1263.
- Haynes V, Connor T, Tchernof A, Vidal H, Dubois S. Metallothionein 2a gene expression is increased in subcutaneous adipose tissue of type 2 diabetic patients. *Mol Genet Metab.* 2013;108:90-94.

- 117. Ng MCY, Tam CHT, So WY, et al. Implication of genetic variants near NEGR1, SEC16B, TMEM18, ETV5/DGKG, GNPDA2, LIN7C/BDNF, MTCH2, BCDIN3D/FAIM2, SH2B1, FTO, MC4R, and KCTD15 with obesity and type 2 diabetes in 7705 Chinese. J Clin Endocrinol Metab. 2010;95:2418-2425.
- Subramanian VS, Krishnaswami CV, Damodaran C. HLA, ESD, GLOI, C3 and HP polymorphisms and juvenile insulin dependent diabetes mellitus in Tamil Nadu (south India). *Diabetes Res Clin Pract*. 1994;25:51-59.
- Wei W, Li Y, Li Y, Li D. Adipose-specific knockout of ubiquitin-conjugating enzyme E2L6 (Ube2l6) reduces diet-induced obesity, insulin resistance, and hepatic steatosis. *J Pharmacol Sci.* 2021;145:327-334.
- 120. Jacobs S, Schiller K, Jansen EH, Boeing H, Schulze MB, Kröger J. Evaluation of various biomarkers as potential mediators of the association between $\Delta 5$ desaturase, $\Delta 6$ desaturase, and stearoyl-coa desaturase activity and incident type 2 diabetes in the European prospective investigation into cancer and Nutrition-Potsdam Study. *Am J Clin Nutr.* 2015;102:155-164.
- 121. Thameem F, Yang X, Permana PA, Wolford JK, Bogardus C, Prochazka M. Evaluation of the microsomal glutathione S-transferase 3 (MGST3) locus on 1q23 as a Type 2 diabetes susceptibility gene in Pima Indians. *Hum Genet*. 2003;113:353-358.
- 122. Ramprasath T, Murugan PS, Kalaiarasan E, Gomathi P, Rathinavel A, Selvam GS. Genetic association of glutathione peroxidase-1 (GPx-1) and NAD(P) H:quinone oxidoreductase 1(NQO1) variants and their association of CAD in patients with type-2 diabetes. *Mol Cell Biochem*. 2012;361:143-150.
- Payne F, Colnaghi R, Rocha N, et al. Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance. J Clin Investig. 2014;124: 4028-4038.
- Liu QC, Zhuang ZH, Zeng K, Cheng ZJ, Gao F, Wang ZQ. Prevalence of pancreatic diabetes in patients carrying mutations or polymorphisms of the PRSS1 gene in the Han population. *Diabetes Technol Ther*. 2009;11:799-804.
- 125. Quintela I, Barros F, Fernandez-Prieto M, et al. Interstitial microdeletions including the chromosome band 4q13.2 and the UBA6 gene as possible causes of intellectual disability and behavior disorder. *Am J Med Genet A*. 2015;167A:3113-3120.
- Yuan Z, Jiao B, Hou L, et al. Mutation analysis of the TIA1 gene in Chinese patients with amyotrophic lateral sclerosis and frontotemporal dementia. *Neurobiol Aging.* 2018;64:160.e9-160.e12.
- Cacace R, Heeman B, Van Mossevelde S, et al. Loss of DPP6 in neurodegenerative dementia: a genetic player in the dysfunction of neuronal excitability. *Acta Neuropathol.* 2019;137:901-918.
- Hao YH, Fountain M, Fon Tacer K, et al. USP7 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder. *Mol Cell*. 2015;59:956-969.
- Beckelman BC, Yang W, Kasica NP, et al. Genetic reduction of eEF2 kinase alleviates pathophysiology in Alzheimer's disease model mice. J Clin Investig. 2019;129:820-833.
- Liu X, Chen KL, Wang Y, et al. A novel ITM2B mutation associated with familial Chinese dementia. J Alzheimers Dis. 2021;81:499-505.
- Sekiguchi F, Nasiri J, Sedghi M, et al. A novel homozygous DPH1 mutation causes intellectual disability and unique craniofacial features. J Hum Genet. 2018;63:487-491.
- Castillon C, Gonzalez L, Domenichini F, et al. The intellectual disability PAK3 R67C mutation impacts cognitive functions and adult hippocampal neurogenesis. *Hum Mol Genet.* 2020;29:1950-1968.
- O'Donnell-Luria AH, Pais LS, Faundes V, et al. Heterozygous variants in KMT2E cause a spectrum of neurodevelopmental disorders and epilepsy. *Am J Hum Genet.* 2019;104:1210-1222.
- Coupland KG, Kim WS, Halliday GM, Hallupp M, Dobson-Stone C, Kwok JB. Role of the long non-coding RNA MAPT-as1 in regulation of microtubule associated protein Tau (MAPT) expression in Parkinson's disease. *PLoS One*. 2016;11:e0157924.
- 135. Koufaris C, Alexandrou A, Tanteles GA, Anastasiadou V, Sismani C. A novel HCFC1 variant in male siblings with intellectual disability and microcephaly in the absence of cobalamin disorder. *Biomed Rep.* 2016;4:215-218.
- Qvist P, Rajkumar AP, Redrobe JP, et al. Mice heterozygous for an inactivated allele of the schizophrenia associated brd1 gene display selective cognitive deficits with translational relevance to schizophrenia. *Neurobiol Learn Mem.* 2017;141:44-52.
- Richter M, Murtaza N, Scharrenberg R, et al. Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling. *Mol Psychiatry*. 2019;24:1329-1350.
- Torres AK, Jara C, Olesen MA, Tapia-Rojas C. Pathologicallyphosphorylated tau at S396/404 (PHF-1) is accumulated inside of hippocampal synaptic mitochondria of aged wild-type mice. *Sci Rep.* 2021;11:4448.
- Jeong BH, Kim HJ, Lee KH, Carp RI, Kim YS. RARB and STMN2 polymorphisms are not associated with sporadic Creutzfeldt–Jakob disease (CJD) in the Korean population. *Mol Biol Rep.* 2014;41:2389-2395.

- Bermejo-Bescós P, Martín-Aragón S, Jiménez-Aliaga K, et al. Processing of the platelet amyloid precursor protein in the mild cognitive impairment (MCI). *Neurochem Res.* 2013;38:1415-1423.
- Ramon-Duaso C, Gener T, Consegal M, et al. Methylphenidate attenuates the cognitive and mood alterations observed in Mbnl2 knockout mice and reduces microglia overexpression. *Cereb Cortex*. 2019;29:2978-2997.
- Guilarte TR. APLP1, Alzheimer's-like pathology and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. *Neurotoxicol.* 2010;31:572-574.
- 143. Mukaetova-LadinskaEB, XuerebJH, Garcia-SierraF, et al. Lewybodyvariant of Alzheimer's disease: selective neocortical loss of t-SNARE proteins and loss of MAP2 and alpha-synuclein in medial temporal lobe. *ScientificWorldJournal*. 2009;9:1463-1475.
- 144. Fazeli S, Motovali-Bashi M, Peymani M, et al. Correction: A compound downregulation of SRRM2 and miR-27a-3p with upregulation of miR-27b-3p in PBMCs of Parkinson's patients is associated with the early stage onset of disease. PLoS One. 2020;15:e0244776.
- 145. Butler JM, Sharif U, Ali M, et al. A missense variant in CST3 exerts a recessive effect on susceptibility to age-related macular degeneration resembling its association with Alzheimer's disease. *Hum Genet*. 2015;134:705-715.
- 146. Nackenoff AG, Hohman TJ, Neuner SM, et al. PLD3 is a neuronal lysosomal phospholipase D associated with β-amyloid plaques and cognitive function in Alzheimer's disease. *PLoS Genet*. 2021;17:e1009406.
- Konyukh M, Delorme R, Chaste P, et al. Variations of the candidate SEZ6L2 gene on chromosome 16p11.2 in patients with autism spectrum disorders and in human populations. *PLoS One*. 2011;6:e17289.
- Hu X, Tang J, Lan X, Mi X. Increased expression of DOC2A in human and rat temporal lobe epilepsy. *Epilepsy Res.* 2019;151:78-84.
- 149. Kaur H, Jajodia A, Grover S, Baghel R, Jain S, Kukreti R. Synergistic association of PI4KA and GRM3 genetic polymorphisms with poor antipsychotic response in south Indian schizophrenia patients with low severity of illness. *Am J Med Genet B Neuropsychiatr Genet*. 2014;165B:635-646.
- Nakamura K, Kodera H, Akita T, et al. De novo mutations in GNAO1, encoding a gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet. 2013;93:496-505.
- Liu Q, Zhu L, Liu X, et al. TRA2A-induced upregulation of LINC00662 regulates blood-brain barrier permeability by affecting ELK4 mRNA stability in Alzheimer's microenvironment. *RNA Biol.* 2020;17:1293-1308.
- Obara Y, Imai T, Sato H, Takeda Y, Kato T, Ishii K. Midnolin is a novel regulator of parkin expression and is associated with Parkinson's disease. *Sci Rep.* 2017;7:5885.
- Herrmann L, Wiegmann C, Arsalan-Werner A, et al. Hook proteins: association with Alzheimer pathology and regulatory role of hook3 in amyloid beta generation. *PLoS One*. 2015;10:e0119423.
- Ozgen HM, van Daalen E, Bolton PF, et al. Copy number changes of the microcephalin 1 gene (MCPH1) in patients with autism spectrum disorders. *Clin Genet*. 2009;76:348-356.
- Masciullo M, Modoni A, Fattori F, et al. A novel mutation in the SACS gene associated with a complicated form of spastic ataxia. J Neurol. 2008; 255:1429-1431.
- Perrone F, Nguyen HP, Van Mossevelde S, et al. Investigating the role of ALS genes CHCHD10 and TUBA4A in Belgian FTD-ALS spectrum patients. *Neurobiol Aging*. 2017;51:177.e9-177.e16.
- Su Y, Yang L, Li Z, et al. The interaction of ASAH1 and NGF gene involving in neurotrophin signaling pathway contributes to schizophrenia susceptibility and psychopathology. *Prog Neuropsychopharmacol Biol Psychiatry*. 2021; 104:110015.
- Zhao W, Gao X, Qiu S, et al. A subunit of V-atpases, ATP6V1B2, underlies the pathology of intellectual disability. *EBioMedicine*. 2019;45:408-421.
- Iqbal Z, Tawamie H, Ba W, et al. Loss of function of SVBP leads to autosomal recessive intellectual disability, microcephaly, ataxia, and hypotonia. *Genet Med.* 2019;21:1790-1796.
- GalJ, ChenJ, KatsumataY, et al. Detergent insoluble proteins and inclusion bodylike structures immunoreactive for PRKDC/DNA-PK/DNA-PKcs, FTL, NNT, and AIFM1 in the amygdala of cognitively impaired elderly persons. J Neuropathol Exp Neurol. 2017;77:21-39.
- Wang KK, Yang Z, Sarkis G, Torres I, Raghavan V. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. *Expert Opin Ther Targets*. 2017;21: 627-638.
- 162. Stefanović M, Životić I, Stojković L, Dinčić E, Stanković A, Živković M. The association of genetic variants IL2RA rs2104286, IFI30 rs11554159 and IKZF3 rs12946510 with multiple sclerosis onset and severity in patients from Serbia. J Neuroimmunol. 2020;347:577346.
- 163. Zahola P, Hanics J, Pintér A, et al. Secretagogin expression in the vertebrate brainstem with focus on the noradrenergic system and implications for Alzheimer's disease. *Brain Struct Funct.* 2019;224:2061-2078.

- Bik-Multanowski M, Pietrzyk JJ, Midro A. MTRNR2L12: a candidate blood marker of early Alzheimer's disease-like dementia in adults with down syndrome. *J Alzheimers Dis.* 2015;46:145-150.
- Mata IF, Leverenz JB, Weintraub D, et al. GBA variants are associated with a distinct pattern of cognitive deficits in Parkinson's disease. *Mov Disord.* 2016;31:95-102.
- LiKY,XiangXJ,SongL, et al. MitochondrialTXN2 attenuates amyloidogenesis via selective inhibition of BACE1 expression. *J Neurochem.* 2021;157:1351-1365.
- Payton A, Miyajima F, Ollier W, et al. Investigation of a functional quinine oxidoreductase (NQO2) polymorphism and cognitive decline. *Neurobiol Aging*. 2010;31:351-352.
- Chai G, Webb A, Li C, et al. Mutations in spliceosomal genes PPIL1 and PRP17 cause neurodegenerative pontocerebellar hypoplasia with microcephaly. *Neuron*. 2021;109:241-256.e9.
- Tang Y, He Y, Li C, et al. RPS3A positively regulates the mitochondrial function of human periaortic adipose tissue and is associated with coronary artery diseases. *Cell Discov.* 2018;4:52.
- Zhou H, Li D, Zhu P, et al. Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mptp pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res. 2018;65:e12503.
- 171. Linke AT, Marchant B, Marsh P, Frampton G, Murphy J, Rose ML. Screening of a HUVEC cDNA library with transplant-associated coronary artery disease sera identifies RPL7 as a candidate autoantigen associated with this disease. *Clin Exp Immunol.* 2001;126:173-179.
- Song YF, Zhao L, Wang BC, et al. The circular RNA TLK1 exacerbates myocardial ischemia/reperfusion injury via targeting miR-214/RIPK1 through TNF signaling pathway. *Free Radic Biol Med.* 2020;155:69-80.
- 173. Franco C, Hou G, Ahmad PJ, et al. Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. *Circ Res.* 2008;102:1202-1211.
- ZhangJY, Yang Z, Fang K, Shi ZL, Ren DH, Sun J. Long noncoding RNAILF3-AS1 regulates myocardial infarction via the miR-212-3p/SIRT1 axis and PI3K/Akt signaling pathway. *Eur Rev Med Pharmacol Sci.* 2020;24: 2647-2658.
- Li L, Chen Q, Feng C, Jin Y, Xia S. Aberrant expression of TNRC6a and miR-21 during myocardial infarction. 3 *Biotech*. 2019;9:285.
- Shyu HY, Fong CS, Fu YP, et al. Genotype polymorphisms of GGCX, NQO1, and VKORC1 genes associated with risk susceptibility in patients with largeartery atherosclerotic stroke. *Clin Chim Acta*. 2010;411:840-845.
- MofidA, NewmanNS, Lee PJ, et al. Cardiacoverexpression of S100A6 attenuates cardiomyocyte apoptosis and reduces infarct size after myocardial ischemiareperfusion. *J Am Heart Assoc.* 2017;6:e004738.
- Wang L, Hauser ER, Shah SH, et al. Polymorphisms of the tumor suppressor gene LSAMP are associated with left main coronary artery disease. *Ann Hum Genet.* 2008;72:443-453.
- 179. Christophersen IE, Olesen MS, Liang B, et al. Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. *Eur Heart J.* 2013;34:1517-1525.
- Gao G, Dudley SC Jr. RBM25/LUC7L3 function in cardiac sodium channel splicing regulation of human heart failure. *Trends Cardiovasc Med.* 2013;23:5-8.
- Frazier AE, Compton AG, Kishita Y, et al. Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus. *Med* (NY). 2021;2:49-73.e10.
- Ortiz-SánchezP, Villalba-OreroM, López-OlañetaMM, et al. LossofSRSF3in cardiomyocytes leads to decapping of contraction-related mRNAs and severe systolic dysfunction. *Circ Res.* 2019;125:170-183.
- Zaglia T, Ceriotti P, Campo A, et al. Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. *Proc Natl Acad Sci U S A*. 2017;114:E9006-E9015.
- Angrisano T, Schiattarella GG, Keller S, et al. Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure. *PLoS One*. 2014;9:e106024.
- Zhang J, Ma L, Zhang J, et al. Altered expression of lysosomal hydrolase, acid αglucosidase, gene in coronary artery disease. *Coron Artery Dis.* 2016;27: 104-108.
- Zhang Q, Wang F, Wang F, Wu N. Long noncoding RNA MAGII-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol. 2020;235:245-253.
- 187. Tao Z, Cao Z, Wang X, Pan D, Jia Q. Long noncoding RNA SNHG14 regulates ox-LDL-induced atherosclerosis cell proliferation and apoptosis by targeting miR-186-5p/WIPF2 axis. *Hum Exp Toxicol.* 2021;40:47-59.
- Akao H, Polisecki E, Kajinami K, et al. KIF6, LPA, TAS2R50, and VAMP8 genetic variation, low density lipoprotein cholesterol lowering response to pravastatin, and heart disease risk reduction in the elderly. *Atherosclerosis*. 2012;220:456-462.

- Gong Z, Ye Q, Wu JW, Zhou JL, Kong XY, Ma LK. UCHL1 inhibition attenuates cardiac fibrosis via modulation of nuclear factor-κB signaling in fibroblasts. *Eur J Pharmacol.* 2021;900:174045.
- Zhu J, Xu Y, Ren G, et al. Tanshinone IIA sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. *Eur J Pharmacol.* 2017;815:427-436.
- Cai Y, Yu SS, He Y, et al. EGCG inhibits pressure overload-induced cardiac hypertrophy via the PSMB5/Nmnat2/SIRT6-dependent signalling pathways. *Acta Physiol.* 2021;231:e13602.
- Ye M, Guo XJ, Kan KJ, et al. Loss of GRB2 associated binding protein 1 in arteriosclerosis obliterans promotes host autophagy. *Chin Med J.* 2020;134:73-80.
- Galant D, Gaborit B, Desgrouas C, et al. A heterozygous ZMPSTE24 mutation associated with severe metabolic syndrome, ectopic fat accumulation, and dilated cardiomyopathy. *Cells.* 2016;5:21.
- 194. Abdulhag UN, Soiferman D, Schueler-Furman O, et al. Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. *Eur J Hum Genet*. 2015;23:159-164.
- Jeong SJ, Zhang X, Rodriguez-Velez A, Evans TD, Razani B. p62/SQSTM1 and selective autophagy in cardiometabolic diseases. *Antioxid Redox Signal*. 2019;31:458-471.
- 196. Tan DX, Chen XX, Bai TZ, Zhang J, Li ZF. Sevoflurane up-regulates microRNA-204 to ameliorate myocardial ischemia/reperfusion injury in mice by suppressing Cotl1. *Life Sci.* 2020;259:118162.
- 197. Murakami T, Komiyama Y, Masuda M, et al. Flow cytometric analysis of platelet activation markers CD62P and CD63 in patients with coronary artery disease. *Eur J Clin Invest.* 1996;26:996-1003.
- Correia SP, Moedas MF, Naess K, et al. Severe congenital lactic acidosis and hypertrophic cardiomyopathy caused by an intronic variant in NDUFB7. *Hum Mutat*. 2021;42:378-384.
- Accornero F, Schips TG, Petrosino JM, et al. BEX1 is an RNA-dependent mediator of cardiomyopathy. *Nat Commun.* 2017;8:1875.
- Shen Y, Peng C, Bai Q, et al. Epigenome-wide association study indicates hypomethylation of MTRNR2L8 in large-artery atherosclerosis stroke. *Stroke*. 2019;50:1330-1338.
- Howson JM, Walker NM, Clayton D, Todd JA. Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A. *Diabetes Obes Metab.* 2009;11 (Suppl 1):31-45.
- 202. Bus P, Scharpfenecker M, Van Der Wilk P, Wolterbeek R, Bruijn JA, Baelde HJ. The VEGF-A inhibitor sFLT-1 improves renal function by reducing endothelial activation and inflammation in a mouse model of type 1 diabetes. *Diabetologia*. 2017;60:1813-1821.
- 203. Plagnol V, Smyth DJ, Todd JA, Clayton DG. Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. *Biostatistics*. 2009;10:327-334.
- 204. Westerweel PE, van Velthoven CT, Nguyen TQ, et al. Modulation of TGF-β/ BMP-6 expression and increased levels of circulating smooth muscle progenitor cells in a type I diabetes mouse model. *Cardiovasc Diabetol*. 2010;9:55.
- 205. Mikk ML, Kiviniemi M, Laine AP, et al. The HLA-B*39 allele increases type 1 diabetes risk conferred by HLA-DRB1*04:04-DQB1*03:02 and HLA-DRB1*08-DQB1*04 class II haplotypes. *Hum Immunol.* 2014;75:65-70.
- 206. ShalevSA, Tenenbaum-RakoverY, HorovitzY, et al. Microcephaly, epilepsy, and neonatal diabetes due to compound heterozygous mutations in IER3IP1: insights into the natural history of a rare disorder. *Pediatr Diabetes*. 2014;15: 252-256.
- 207. Guo M, Zhang T, Dong X, et al. Using hESCs to probe the interaction of the diabetes-associated genes CDKAL1 and MT1E. *Cell Rep.* 2017;19: 1512-1521.
- Afreh-Mensah D, Agwu JC. Coexistence of medium chain acyl-coa dehydrogenase deficiency (MCADD) and type 1 diabetes (T1D): a management challenge. *BMJ Case Rep.* 2021;14:e239325.
- Blatnik M, Thorpe SR, Baynes JW. Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes. *Ann NY Acad Sci.* 2008;1126:272-275.
- Gao X, van der Veen JN, Zhu L, et al. Vagus nerve contributes to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice. *J Hepatol*. 2015;62:913-920.
- Khan R, Raza SHA, Junjvlieke Z, et al. Function and transcriptional regulation of bovine TORC2 gene in adipocytes: roles of C/EBP, XBP1, INSM1 and ZNF263. *Int J Mol Sci.* 2019;20:4338.
- Senagolage MD, Sommars MA, Ramachandran K, et al. Loss of transcriptional repression by BCL6 confers insulin sensitivity in the setting of obesity. Cell Rep. 2018;25:3283-3298.e6.
- Zhou Y, Hambly BD, Simmons D, McLachlan CS. RUNX1T1 rs34269950 is associated with obesity and metabolic syndrome. *QJM*. 2021;114:553-558.
- Galmozzi A, Kok BP, Kim AS, et al. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. *Nature*. 2019;576:138-142.

- SonmezFM, UctepeE, GunduzM, et al. Coffin-Siris syndrome with café-au-lait spots, obesity and hyperinsulinism caused by a mutation in the ARID1B gene. *Intractable Rare Dis Res.* 2016;5:222-226.
- JiaG, Sowers JR. Targeting CITED2 for angiogenesis in obesity and insulin resistance. *Diabetes*. 2016;65:3535-3536.
- Koh IU, Lee HJ, Hwang JY, Choi NH, Lee S. Obesity-related cpg methylation (cg07814318) of Kruppel-like factor-13 (KLF13) gene with childhood obesity and its cis-Methylation quantitative loci. *Sci Rep.* 2017;7:45368.
- Liu Y, Zhao W, Gu G, et al. Palmitoyl-protein thioesterase 1 (PPT1): an obesityinduced rat testicular marker of reduced fertility. *Mol Reprod Dev.* 2014;81:55-65.
- Patwari P, Emilsson V, Schadt EE, et al. The arrestin domain-containing 3 protein regulates body mass and energy expenditure. *Cell Metab.* 2011;14: 671-683.
- 220. Xiang R, Fan LL, Huang H, et al. Increased Reticulon 3 (RTN3) leads to obesity and hypertriglyceridemia by interacting with heat shock protein family A (Hsp70) member 5 (HSPA5). *Circulation*. 2018;138:1828-1838.
- Kim EY, Han BS, Kim WK, Lee SC, Bae KH. Acceleration of adipogenic differentiation via acetylation of malate dehydrogenase 2. *Biochem Biophys Res Commun.* 2013;441:77-82.
- 222. Ostergaard E, Weraarpachai W, Ravn K, et al. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature. *J Med Genet.* 2015;52:203-207.
- 223. Simon CM, Rauskolb S, Gunnersen JM, et al. Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy. *Acta Neuropathol.* 2015;130:373-387.
- 224. Zhang Q, HuY, HuJE, et al. Sp1-mediated upregulation of prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. *Life Sci.* 2021;278:119529.
- 225. Qi W, Keenan HA, Li Q, et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. *Nat Med.* 2017;23:753-762.
- 226. Jia C, Ke-Hong C, Fei X, et al. Decoy receptor 2 mediation of the senescent phenotype of tubular cells by interacting with peroxiredoxin 1 presents a novel mechanism of renal fibrosis in diabetic nephropathy. *Kidney Int.* 2020;98: 645-662.
- Mao R, Shen J, Hu X. RETRACTED: BMSCs-derived exosomal microRNAlet-7a plays a protective role in diabetic nephropathy via inhibition of USP22 expression. *Life Sci.* 2021;268:118937.
- Durgin BG, Hahn SA, Schmidt HM, et al. Loss of smooth muscle CYB5R3 amplifies angiotensin II-induced hypertension by increasing sGC heme oxidation. JCI Insight. 2019;4:e129183.
- 229. Zhang L, Sun Y, Zhang X, et al. Three novel genetic variants in the FAM110D, CACNA1A and NLRP12 genes are associated with susceptibility to hypertension among Dai people. *Am J Hypertens*. 2021;34:874-879.
- Hamada AM, Yamamoto I, Nakada Y, et al. Association between GLCCI1 promoter polymorphism (Rs37972) and post-transplant hypertension in renal transplant recipients. *Kidney Blood Press Res.* 2017;42:1155-1163.
- 231. Gong Y, Yu M, Yang J, et al. The Cap1-claudin-4 regulatory pathway is important for renal chloride reabsorption and blood pressure regulation. *Proc Natl Acad Sci* USA. 2014;111:E3766-E3774.
- Li M, Mulkey F, Jiang C, et al. Identification of a genomic region between SLC29A1 and HSP90AB1 associated with risk of bevacizumab-induced hypertension: CALGB 80405 (Alliance). *Clin Cancer Res.* 2018;24:4734-4744.
- Lin R, Wang X, Zhou W, et al. Association of a BLVRA common polymorphism with essential hypertension and blood pressure in Kazaks. *Clin Exp Hypertens*. 2011;33:294-298.
- 234. Schweigert O, Adler J, Längst N, et al. CRIP1 expression in monocytes related to hypertension. *Clin Sci.* 2021;135:911-924.
- 235. Collares CV, Evangelista AF, Xavier DJ, et al. Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. *BMC Res Notes*. 2013;6:491.
- 236. Catanzaro G, Besharat ZM, Chiacchiarini M, et al. Circulating MicroRNAs in elderly type 2 diabetic patients. *Int J Endocrinol.* 2018;2018:6872635.
- El-Sawaf ES, Saleh S, Abdallah DM, Ahmed KA, El-Abhar HS. Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. *Life Sci.* 2021;279:119697.
- Villegas R, Williams S, Gao Y, et al. Peroxisome proliferator-activated receptor delta (PPARD) genetic variation and type 2 diabetes in middle-aged Chinese women. *Ann Hum Genet.* 2011;75:621-629.
- 239. Huang Y, Jin L, Yu H, et al. SNPs in PRKCA-HIF1A-GLUT1 are associated with diabetic kidney disease in a Chinese Han population with type 2 diabetes. *Eur J Clin Invest*. 2020;50:e13264.
- Zhang G, Li H, Zhao W, et al. miR-205 regulates bone turnover in elderly female patients with type 2 diabetes mellitus through targeted inhibition of Runx2. *Exp Ther Med.* 2020;20:1557-1565.

- 241. Ali Beg MM, Verma AK, Saleem M, et al. Role and significance of circulating biomarkers: miRNA and E2F1 mRNA expression and their association with type-2 diabetic complications. *Int J Endocrinol.* 2020;2020:6279168.
- 242. Tesovnik T, Kovač J, Pohar K, et al. Extracellular vesicles derived HumanmiRNAs modulate the immune system in type 1 diabetes. *Front Cell Dev Biol.* 2020;8:202.
- 243. Assmann TS, Recamonde-Mendoza M, Puñales M, Tschiedel B, Canani LH, Crispim D. MicroRNA expression profile in plasma from type 1 diabetic patients: case-control study and bioinformatic analysis. *Diabetes Res Clin Pract*. 2018;141:35-46.
- 244. Groen K, Maltby VE, Lea RA, et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. *BMC Med Genomics*. 2018;11:48.
- 245. Chen Y, Zhang Y, Ye G, Sheng C, Kong L, Yuan L. Knockdown of lncRNA PCAI protects against cognitive decline induced by hippocampal neuroinflammation via regulating SUZ12. *Life Sci.* 2020;253:117626.
- Sun W, Zhao J, Li C. Dexmedetomidine provides protection against hippocampal neuron apoptosis and cognitive impairment in mice with Alzheimer's disease by mediating the miR-129/YAP1/JAG1 axis. *Mol Neurobiol*. 2020;57:5044-5055.
- WangP, Zhang C, Li J, et al. Adipose-derived mesenchymalstromal cells improve hemodynamic function in pulmonary arterial hypertension: identification of microRNAs implicated in modulating endothelial function. *Cytotherapy*. 2019;21:416-427.
- 248. Ma H, He Y, Bai M, et al. The genetic polymorphisms of ZC3HC1 and SMARCA4 are associated with hypertension risk. *Mol Genet Genomic Med.* 2019;7:e942.