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Abstract
In this study, we defined a new parameter, referred to as the cardiac stress index (CSI),

using a nonlinear detrended fluctuation analysis (DFA) of heart rate (HR). Our study aimed

to incorporate the CSI into a cycling based fatigue monitoring system developed in our

previous work so the muscle fatigue and cardiac stress can be both continuously and quan-

titatively assessed for subjects undergoing the cycling exercise. By collecting electrocardio-

gram (ECG) signals, the DFA scaling exponent α was evaluated on the RR time series

extracted from a windowed ECG segment. We then obtained the running estimate of α by

shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage

of all the less-than-one α values, can be synchronously updated every 20 seconds. Since

the rating of perceived exertion (RPE) scale is considered as a convenient index which is

commonly used to monitor subjective perceived exercise intensity, we then related the Borg

RPE scale value to the CSI in order to investigate and quantitatively characterize the rela-

tionship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy

participants were recruited in our study. Each participant was asked to maintain a fixed ped-

aling speed at a constant load during the cycling exercise. Experimental results showed

that a decrease in DFA scaling exponent α or an increase in CSI was observed during the

exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting

that the factors due to cardiac stress might also contribute to fatigue state during physical

exercise. Since the CSI can effectively quantify the cardiac stress status during physical

exercise, our system may be used in sports medicine, or used by cardiologists who carried

out stress tests for monitoring heart condition in patients with heart diseases.

Introduction
Fatigue is often considered as an important indicator in diseases due to abnormality or a pro-
gressive decline in motor function during motor tasks [1–7]. In fact, on-line fatigue detection
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and monitoring is important over many aspects of interventions in physical therapy or exercise
training. For example, without knowing the relative levels of fatigue and onset of fatigue, it
would be very difficult to design effective training programs for patients and athletes. Due to
the convenient, safe, and effective cardiovascular exercise it may provide, a stationary bicycle,
or alternatively called an exercise bicycle, has been typically used as physical therapy or exercise
training equipment. Cycling-based movement, by definition, is to perform rhythmic move-
ment trainings on a stationary bicycle. In general, cycling-based movement can provide a low-
impact, safe and effective way for walking training as well as the lower limb coordination train-
ing [8]. Previous researches in literature have also indicated that cycling exercise can provide a
convenient paradigm used in patients with cardiac disease [9], or neurological disorder [10]–
[11], and in athletes [12]. Although cycling exercise can effectively induce fatigue, there still
remains a deficiency in developing useful quantification methods for on-line monitoring and
analysis of fatigue during exercise.

In fact, fatigue can be classified as central and peripheral fatigue; the former is associated
with the central nervous system (CNS) while the latter is associated with the peripheral neuro-
muscular system [13]–[14]. The rating of perceived exertion (RPE) scale is considered as a con-
venient index which is commonly used to monitor subjective perceived exercise intensity. In
general, RPE would rise as fatigue rises during exercise, and hence one can determine the level
of fatigue simply by monitoring this rise in RPE. For example, there is a previous study showing
that, during fatigue induced by stepping exercise, the increase in RPE was related to both the
cardiovascular status reflected by heart rate, and the local muscle factors monitored by the
median frequency of electromyogram (EMG) [14]. In addition, Stamford indicated that a linear
relationship might exist between RPE and HR during progressively increasing workloads and
submaximal constant load [15]. Borg also suggested that there exists a high correlation between
ten times the value of RPE and actual HR during physical exercise and this actually gives a
good estimate of actual HR during exercise. However, due to its subjectivity and incomplete-
ness, RPE may not be optimal to quantify fatigue during exercise. That is, fatigue is a more
complex phenomenon that may not be solely related to nor reflected by RPE. Therefore, devel-
opment of simple, reliable and objective indices, other than RPE, based on the local muscle fac-
tors (i.e., the motor-related factors) and the factors that influence HR dynamics (i.e., the non-
motor-related factors) for monitoring fatigue state during exercise is demanded.

Considering the local muscle factors first, a reduction in median frequency of the EMG
power spectrum has been widely accepted as an indicator of fatigue since it has been observed
in fatigue induced by maximum and sub-maximum voluntary contractions [16–19]. In fact,
such a shift in the power spectrum can be attributed to motor units recruitment [17], [20],
fatigue-induced metabolic accumulation [21], change in intracellular PH [22], and reduction
in muscle fiber conduction velocity [16], [23–25]. It is worth noting that we have developed a
cycling based fatigue monitoring and analysis system for continuously and quantitatively eval-
uating the progression of fatigue in a previous work [26]. In that study, we have proposed a
novel time-varying parameter, called the fatigue progression measure (FPM), to quantify the
local muscle fatigue so the onset of the occurrence of fatigue can be explicitly determined from
the FPM tracings, which was considered unprecedented.

However, one of the interesting questions usually arising from endurance training is often
asked: “Is the one who underwent such a training test truly fatigued or just lacking in motiva-
tion?” Seeking for the answers to the question actually motivated this study. Although heart
rate (HR) would increase when one exercises, an increase in HR does not necessarily indicate
fatigue. On the other hand, fatigue induced by physical exercise may be partly attributed to an
increase in cardiac stress. In fact, the idea of a relationship between cardiac stress and fatigue is
not original. Since intensive exercise will be obviously related to incremented sympathetic tone
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and reduced parasympathetic tone, heart rate variability (HRV) analysis may provide a more
effective and reliable way for figuring out this relationship. In this aspect, some previous
researches in literature, for instance, have reported that HRV may and does show influence of
mental and physical stress [27]–[28].

It has been widely accepted that the autonomic nervous system (ANS) plays a direct role in
the ruling action of the HR control. The CNS in brain receives various stimuli and responds to
these stimuli via the ANS activity. The ANS activity modulates the heart rate as well as other
cardiovascular variables, such as blood pressure, and then feeds back to the CNS again. Since
such a control is close-loop and running continuously, the HRV analysis thus provides a non-
invasive way for the study of ANS modulation. There are a number of previous studies in the
literature having indicated that HRV analysis may provide an insight into the mechanism of
ANS activity [29–31]. In general, HRV is defined by quantifying the variation in heart beats or
interbeat intervals, the so called RR intervals, based on either the time- or frequency-domain
analysis. In addition, some researchers also employed a fractal measure, called the detrended
fluctuation analysis (DFA), to quantitatively characterize the HR dynamics, and suggested that
the DFA might be well suited for non-stationary situations, such as incremental exercise [32]–
[33]. In fact, it has been accepted that fractal-like characteristics of HR can be considered as an
indication of a normal and healthy heart since fractal measure of HR has manifested itself to
change towards uncorrelated randomness for those who were suffering from different heart
diseases or in the aging population [33–35].

As mentioned in the very beginning, we have developed a cycling movement based system
for on-line fatigue monitoring and analysis in a previous work. In this study, we further exam-
ined the effects of cycling exercise on HR dynamics at a constant load. The hypothesis of our
study was partly based on an extension of another previous work in literature regarding the
DFA with its applications into heart rate dynamics on aerobic cycling exercise tests [33].
Although that work has successfully enabled the applications of DFA scaling exponent into
cycling exercise with attractive features, particularly a decrease in α during the graded cycling
exercise test, all their data processes were done after all the RR data were collected, i.e. not real-
time. In this study, we defined an innovative time-varying parameter based on the DFA scaling
exponent, dubbed the cardiac stress index (CSI), and incorporated it into the cycling based
fatigue monitoring system developed by us previously so the muscle fatigue and cardiac stress
can be synchronously monitored during the physical exercise. We believe such a novel system
can be used in sports medicine, or used by cardiac clinicians for on-line monitoring heart con-
dition in patients with heart diseases when undergoing stress tests.

Methods and Materials
The study protocol had been approved by Chang Gung Medical Foundation Institutional
Review Board (IRB no.101-5141B) in accordance with the Helsinki Declaration. All partici-
pants have provided their written consent, approved by Chang Gung Medical Foundation
Institutional Review Board (IRB no.101-5141B), to participate in this study.

An overview of our cycling-based ergometer system
In order to perform rhythmic movement trainings, a stationary bicycle based ergometer system
was developed and used. The information regarding our cycling-based ergometer system is as
depicted in Fig 1 and described in detail previously [26]. In addition, in this study the system
further equipped with a set of wireless ECG sensors so the ECG signals can be collected and
then processed by the system PC in a real-time manner.
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Fig 2 shows the schematic block diagram of the overall system configuration. According to
the schematic block diagram as depicted in Fig 2, we here use an optical encoder (or alterna-
tively known as the crank angle detector) to estimate the rotation speed of the cycling move-
ment on a real-time basis. Moreover, a resistor-based load control device is incorporated into
our system to provide designated amount of workload imposed to the cycling-based training.

We here adopted EMG and ECG sensors to collect medical data from the subjects. The soft-
ware programs were devised to process these medical signals to extract the diagnostically useful
information in an integrated fashion. In summary, the system PC was used to carry out the on-
line analyses as follows: 1) acquiring and displaying the ECG, EMG, HR, and cycling speed
data, 2) preprocessing the collected raw ECG and EMG data, 3) computing the fast Fourier
transform (FFT) based power spectrum and the DFA scaling exponent, 4) transforming all the
numerical results into fatigue and cardiac stress related parameters (e.g., FPM and CSI) used
for on-line fatigue and cardiac stress monitoring and analysis.

When cycling started, the wearable wireless sensors synchronously collected both EMG and
ECG data from the subject and then transmitted them to an A/D converter so the system PC
may acquire the digital data for on-line monitoring and analysis during the exercise. In addi-
tion, other measures of interest such as the mean cycling speed and instantaneous heart rate
were also on-line monitored so a visual feedback can be provided for the subject while under-
going the test.

Fig 1. The schematic diagram of the ergometer used in our cycling-based real-time fatigue and
cardiac stressmonitoring and analysis system. It mainly consists of a stationary bicycle equipped with a
resistor, crank angle detector and the wireless EMG and ECG sensors with sensor interface devices.

doi:10.1371/journal.pone.0130798.g001

Fig 2. Schematic block diagram of overall system configuration.

doi:10.1371/journal.pone.0130798.g002
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Participants and experimental procedure
There were twenty-two healthy adults recruited for undergoing the bipedal cycling test in this
study. All the participants were healthy and free of any muscular or cardiac diseases. Their
mean age was 22.8 years old and they all had at least 10 years cycling experience. The proce-
dures of the experiment and the characteristics of the bicycle ergometer system were clearly
explained to them before proceeding. Each participant was asked to do one-minute warm-up
exercise to prevent sports injuries. Then, the experiment started and each participant was
asked to sit in an upright position and perform cycling exercise under a constant load through-
out the entire course of experiment with a constant speed of 60 RPM. During the cycling pro-
cess, EMG of vastus lateralis (VL) and gastrocnemius (GAS) muscles, ECG, instantaneous HR,
cycling velocity and cycling time were all synchronously recorded.

In addition, it has been known that the Borg rating of perceived exertion (RPE) scale is used
to reflect how hard a participant feels about the work when exercising [36]. With ranging from
6 to 20, the Borg scale value was also orally rated by each participant every minute during the
experiment. For each participant, the experiment was terminated immediately once his Borg
scale value reached the maximal value of 20.

ECG preprocessing settings and detrended fluctuation analysis (DFA)
on HR dynamics
In addition to the EMG-based fatigue analysis, in this study the detrended fluctuation analysis
(DFA) was further introduced to the characterization of HR dynamics. For this purpose, the
subject’s surface ECG was measured and digitized by an ECG sensor interfacing system first.
The digital ECG data were then wirelessly transmitted to the system PC through Bluetooth.
Note that here the sampling rate was set to 200Hz and the raw ECG data was preprocessed by a
bandpass filter. After detecting the time locations of the R waves for an ECG signal using a tem-
plate-match technique that involves a correlation coefficient based similarity calculation, we
may obtain the interbeat interval (i.e., the RR interval) data sequence corresponding to that
ECG. On the other hand, it should be also noted that for online or mobile HRV analysis ectopic
beats would generally cause abnormal RR intervals, or alternatively known as the outliers, that
occur randomly and are longer or shorter than normal RR data. This would represent a major
source of error when analyzing HRV data in both the time and frequency domain. Therefore,
in order to solve this problem, an algorithm used for detecting and editing RR outliers was
applied before performing DFA. In the editing process, we deleted the RR outliers detected and
then replaced the deleted ones simply by linearly interpolated RR values. In fact, some previous
researches in literature reported that the effects of editing in DFA calculation may not be signif-
icant when the number of outliers is small (typically 5–10%) [37–39]. In our study, the DFA
scaling exponent was thus evaluated on the edited RR time series.

DFA, first proposed by Peng et al. [32], is an algorithm that has proven useful in measuring
the long-term autocorrelation of non-stationary time series. It can quantitatively characterize
the complexity of time series using the fractal theory [32], [40]. In fact, previous researches in
literature have indicated that the DFA scaling exponent, or alternatively known as α, can be
used for classifying biomedical signals into the healthy and unhealthy classes [41]. In general,
DFA simply analyzes the mean square deviation of a signal from its local trend line on a variety
of scales. In short, taking a time series of interest, denoted as x(i), first an integrated time series,
denoted as y(k), can be expressed as

yðkÞ ¼
Xk

i¼1

½xðiÞ � �x� ð1Þ
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where �x represents the mean of x(i). Next, we divided y(k) into a number of equal-length seg-
ments. For each segment of length n, a least squares line is fit to the data. Note that the least
squares line is thought of as being the “trend” in that segment. Then, we detrend the integrated
time series y(k) by subtracting the local trend (i.e., the y coordinate of the least squares line seg-
ments), denoted as yn(k), from each segment separately. The root-mean-square based fluctua-
tion, denoted as F(n), of this detrended time series is then calculated by

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

½yðkÞ � ynðkÞ�2
s

ð2Þ

In order to characterize the relationship between F(n) and the time scale n (i.e., segmental
length), the calculation in (2) is repeated until all possible values of n are applied. In general, a
linear relationship is seen on a log-log plot and the fluctuations can be then characterized by
the slope of the line relating log F(n) to log n. Also note that in our study, n ranged from 4 to
64.

An innovative new-defined indicator of cardiac stress–CSI
In fact, DFA can be used to quantify fractal-like autocorrelation properties of the biomedical
signals which are usually considered complex and time-varying. For example, it has been
applied to investigations into studies of HR dynamics and difference was actually seen between
the values of scaling exponent α derived from healthy and unhealthy (i.e., due to diseases or
aging) subjects, respectively [40–43]. In general, DFA scaling exponent α derived from healthy
subjects appeared larger than that derived from unhealthy ones, implying that the HR time
series corresponding to the unhealthy might be less regular and/or more complex than those
corresponding to the healthy [33]–[35]. Moreover, it is also indicated by previous researches in
literature that the DFA scaling exponent αmight be well suited for studying HR dynamics
under the situation like incremental exercise and could provide as an indication of cardiac
stress status [32]–[33]. Therefore, we simply employed α to devise an innovative time-varying
parameter, dubbed cardiac stress index (CSI), for continuously, quantitatively characterizing
the cardiac stress status. The CSI is defined as

CSI ¼ Number of events with a lower than 1

Total number of events
ð3Þ

Similar to the way that FPM is defined (as described in detail previously [26]), (3) is a time
function which can provide the running estimates of the percentage of less-than-one α counts.
After cycling exercise starts, the denominator in (3) will be incremented by one every time
when there is a new α value produced, while the numerator is incremented by one only when α
is lower than 1. According to the definition in (3), the CSI can be used as a diagnostically useful
indicator to continuously and quantitatively describe the progression of cardiac stress status as
time evolves.

Recall in our previous study, we have devised another time-varying parameter, dubbed
fatigue progression measure (FPM), based on the percentage of reduced median frequencies
(MFs) of the EMG spectrum for quantitatively and continuously measuring the degree of
fatigue [26]. According to [26], the FPM is defined as

FPM ¼ Number of events with MF lower than the reference
Total number of events

ð4Þ

Here, we simply set the reference (i.e., the threshold) as first MF value obtained from the
cycling test. Note that since MF is updated as time evolves, the FPM (i.e., the percentage of
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reduced MFs) would be synchronously updated. For example, given 10 MF numbers, when the
threshold is crossed at the 2nd number, the FPM sequence would be 0/1, 1/2, 2/3, 3/4, 4/5,. . .,
9/10; if crossed at the 3rd point, it would be 0/1, 0/2, 1/3, 2/4, 3/5, 4/6, . . . 8/10. Obviously, FPM
value will remain at zero until there is a MF number crossing (i.e., smaller than) the threshold.
In fact, in our latest system, as presented in this study, the α value and the filtered MF value
were both synchronously produced every 20 seconds and thus, the time-varying parameters,
FPM and CSI, were updated every 20 seconds to provide the continuous measures of fatigue
and cardiac stress status, respectively. Figs 3–7 provide a typical real-time profile obtained dur-
ing a cycling test, consisting of a bandpass filtered ECG signal, an RR data segment, DFA scal-
ing exponent α tracings, CSI and FPM tracings, respectively.

Fig 3 shows a 1-second bandpass filtered ECG segment measured during the cycling test.
The corresponding RR interval data sequence derived from the ECG signal was then obtained,
as shown in Fig 4. Next, the running estimate of DFA scaling exponent α throughout the entire
cycling test can be derived, as depicted in Fig 5. Here, we simply evaluated α (tk) by shifting a
1-minute analysis window centered at tk by a step of 20 seconds on the RR data. Observing Fig
5, a decrease in α was seen. This might be regarded as the result of an increase in cardiac stress
[33]. The CSI tracings corresponding to the α signal were further evaluated and updated by
successively comparing the α values with the reference value, 1.0, using (3) and plotted in Fig 6.
Inspecting Fig 6, we may see that just like the FPM, the CSI can be used to assess the cardiac
stress progression as well as detect the onset time at which the cardiac endurance starts to
decrease. Fig 7 shows the real-time FPM estimates derived from the VL muscle measured dur-
ing the test.

Results and Discussion
As mentioned previously, we collected the raw EMG as well as ECG data from twenty-two sub-
jects during the cycling tests in order to evaluate the overall performance of our system with its

Fig 3. A preprocessed ECG segment measured during a cycling test.

doi:10.1371/journal.pone.0130798.g003
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applications into real-time muscle fatigue and cardiac stress assessment. Note that among all
the physiological measures employed in our system, the CSI method as described in previous
subsection is innovative and new. Being similar to the FPM with respect to continuous muscle
fatigue monitoring, the CSI can not only detect the onset time at which the cardiac endurance

Fig 4. An RR data segment.

doi:10.1371/journal.pone.0130798.g004

Fig 5. DFA scaling exponent α estimates derived from the RR time series.

doi:10.1371/journal.pone.0130798.g005
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starts to decrease, but also continuously measure the progression of cardiac stress. Therefore,
we believe this would represent the most significant benefit from this work. The subsequent
numerical analysis results and discussions will be focused on the performance evaluation of
both the FPM and CSI methods.

Fig 6. CSI tracings.

doi:10.1371/journal.pone.0130798.g006

Fig 7. FPM tracings.

doi:10.1371/journal.pone.0130798.g007
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Results of parameter trend analysis
Note that in our study, a constant load was applied for all the twenty-two subjects. Evaluation
on CSI stopped at the time when the subject’s Borg RPE scale value reached 20. First, it should
be noted that since there was considerable diversity in the cycling time of all the subjects under-
going the tests, in order to facilitate the task of performance evaluation we here evenly divided
the cycling time interval of each subject into four sections/stages so the stochastic analysis may
be conveniently performed. Figs 8–10 depict the mean HR, mean α, and mean CSI, respec-
tively, of all the twenty-two subjects evaluated at the four stages in the course of cycling exer-
cise. It is revealed from these figures that while the mean HR of these subjects increased from
143 beats/min to 170 beats/min during the cycling exercise, the mean DFA scaling exponent
measure α decreased from 1.07 to 0.69, implying that the HR became less regular and/or more
complex as the cycling time increased and thus the CSI increased from 0.26 to 0.70 (the maxi-
mum value of CSI is 1.0), as expected.

Moreover, we also depicted the mean FPM plots derived from the twenty-two subjects’ VL
and GAS muscles in Figs 11 and 12, respectively. In general, it is revealed from Figs 11 and 12
that both VL’s and GAS’s fatigue were progressively developing during the cycling exercise.
However, in comparison to CSI, the rate of increase in FPM seemed generally smaller (from
0.21 to 0.40). We may speculate that this could be partly attributed to that the subjects were
continuously trying to adjust and change their postures and attitudes during the cycling
motion so the progressive development of muscle fatigue may slow down [44].

Fig 8. Mean HR values evaluated over all the subjects at the four stages of the cyclingmovement.

doi:10.1371/journal.pone.0130798.g008

Fig 9. Mean α values evaluated over all the subjects at the four stages of the cyclingmovement.

doi:10.1371/journal.pone.0130798.g009
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Amultivariate linear regression analysis used to relate the Borg rating of
perceived exertion (RPE) value to the FPM and CSI
In general, the main purpose of the linear regression analysis here is to use mathematical
expressions to describe the Borg RPE scale in terms of the FPM and/or CSI. The scenario of
our numerical experiment is described as follows. First, we let the Borg RPE be the dependent
variable, and let both the FPM and CSI be independent variables. That is, we have

Borg RPE ¼ CFPM VL � FPM VLþ CFPM GAS � FPM GASþ CCSI � CSIþ C0 ð5Þ

where CFPM_VL, CFPM_GAS, CCSI and C0 are unknown constants called the modeling parameters.
Note that the coefficients CFPM_VL, CFPM_GAS, CCSI control the behavior of the model and can
be used to quantify the attribute and strength of the relationship between Borg RPE scale and
FPM of VL and GAS muscles, and CSI, respectively. Moreover, a quantity referred to as the
coefficient of determination R2, ranging from 0 to 1, is used to measure the proportion of the
dependent variable, i.e., Borg scale, attributable to the information obtained from the indepen-
dent variables, FPM_VL, FPM_GAS, and CSI, in the multivariate linear model.

As described previously, FPM of VL and GAS, as well as CSI were evaluated and updated as
time evolved. Also, the Borg RPE scale value was synchronously recorded during the cycling
test. Therefore, we first performed a multivariate linear regression analysis, as indicated in (5),
on the Borg scale, FPM and CSI data derived from each subject and tabulated all the statistical

Fig 10. Mean CSI values evaluated over all the subjects at the four stages of the cyclingmovement.

doi:10.1371/journal.pone.0130798.g010

Fig 11. Mean FPM values of VL evaluated over all the subjects at the four stages of the cycling
movement.

doi:10.1371/journal.pone.0130798.g011
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analysis results in Table 1. It is observed from Table 1 that all the coefficients except CFPM_GAS

were positive, indicating that the FPM of VL muscle and CSI were positively correlated with
the Borg value. It should be also noted that although the mean of CFPM_GAS was negative, it
may not be able to reach a satisfactory significance level (since p = 0.259). Moreover, the aver-
aged coefficient of determination R2 (i.e., computed over all the twenty-two subjects) was 0.86,
indicating that 86% of the variation in the Borg RPE scale can be explained by a joint analysis
of FPM and CSI in the linear model.

Secondly, we related the Borg scale to the FPM data only using the linear regression model
as follows:

Borg RPE ¼ CFPM VL � FPM VLþ CFPM GAS � FPM GASþ C0 ð6Þ

Similarly, we tabulated all the statistical results in Table 2. Observing Table 2, we may see
that the mean values of coefficients CFPM_VL and CFPM_GAS were both positive, indicating that
the FPM of VL and GAS muscles were both positively correlated with the Borg value, as
expected. Also, the mean value of R2 was only 0.68, indicating that only 68% of the variation in
the Borg RPE scale can be explained by FPM of VL and GAS in the linear model.

Finally, we quantified the association between the Borg scale level and the cardiac stress by
fitting the Borg scale and CSI data to the following linear regression model

Borg RPE ¼ CCSI � CSIþ C0 ð7Þ

and then tabulated all the statistical results in Table 3. Observing Table 3, again we see that the
mean value of coefficient CCSI was positive with p<0.01 (p = 0.0007), suggesting that the CSI
was significantly positively correlated with the Borg RPE value. In addition, the mean value of
R2 was also 0.68 in this case, evidently indicating that there was 68% of the variation in the

Fig 12. Mean FPM values of GAS evaluated over all the subjects at the four stages of the cycling
movement.

doi:10.1371/journal.pone.0130798.g012

Table 1. Statistical analysis results of the modeling parameter estimation derived from the linear
regression model in (3).

Independent variable Coefficient p value

FPM_VL 7.34 + 4.24 0.091

FPM_GAS -0.09 + 2.71 0.259

CSI 8.01 + 1.77 0.094

C0 (intercept) 10.68 + 0.09 <0.01

doi:10.1371/journal.pone.0130798.t001
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Borg RPE scale, at most, attributable to the non-motor features of fatigue due to cardiac stress
in the linear model.

Discussion
First, it should be noted that analysis results produced by numerical experiments as presented
above have substantially validated the use of CSI in cardiac stress quantification. Secondly, just
as the FPM, a typical CSI curve also shows an exponential-like increase as time evolves after
the time instant at which the cardiac stress starts to increase (or the cardiac endurance starts to
decrease). Further observing and comparing results presented in Fig 8 and Figs 11 and 12, one
may find that CSI seemed to increase more quickly than did the FPM. As mentioned previ-
ously, this could be partly attributed to that subjects might adaptively and spontaneously regu-
late muscle groups for reducing local muscle fatigue by adjusting their postures and attitudes.
As a result, this could effectively defer the progressive fatigue of a specific muscle such as VL or
GAS, thus reducing the increase rate of FPM.

Moreover, it has been widely accepted that the Borg RPE scale can be used to rate the degree
of perceived intensity of exercise [36]. In our experiments, participants were also asked to rate
their perception of the exertion to express how they felt for the exercise intensity. We speculate
that this RPE value, to a certain extent, may not only reflect the physical fatigue, but also reflect
the cardiac stress status. Therefore, a multivariate linear regression analysis was performed to
further evaluate how the Borg RPE value was correlated with the FPM and/or the CSI. In this
aspect, we experimentally studied the performances of linear regression on three models
formed by relating the Borg scale to FPM and CSI, to FPM only, and to CSI only, as indicated
in (5), (6), and (7), respectively. First, according to the results as provided in Tables 1–3 one
may see that while both the models in (6) and (7) achieved 68% R2 value, the model in (5)
achieved 86%, indicating that the Borg scale may be attributable to both the local muscle
fatigue and cardiac stress. Secondly, considering the model in (5), we may see from Table 1
that while the Borg RPE scale generally increased only about 0.734 on scale for 0.1 added to
FPM of VL muscles, it increased approximately 0.801 on scale for 0.1 added to CSI, implying
that the effect on Borg scale due to CSI might be slightly dominant over that due to FPM of VL.
On the other hand, the effect due to FPM of GAS might be negligible in this model. In addition,
we also see from the numerical results in Table 1 that the mean intercept C0 = 10.68 actually
implied that either the muscle fatigue or cardiac stress might start to contribute to Borg scale
increment from Borg = 11.

Table 2. Statistical analysis results of the modeling parameter estimation derived from the linear
regression model in (4).

Independent variable Coefficient p value

FPM_VL 4.62 + 5.90 0.079

FPM_GAS 4.05 + 3.19 0.031

C0 (intercept) 13.37 + 0.85 0.039

doi:10.1371/journal.pone.0130798.t002

Table 3. Statistical analysis results of the modeling parameter estimation derived from the linear
regression model in (5).

Independent variable Coefficient p value

CSI 11.00 + 1.21 < 0.01

C0 (intercept) 10.23 + 0.66 < 0.01

doi:10.1371/journal.pone.0130798.t003
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Furthermore, consider the case of relating the Borg scale to FPM only, as indicated by the
linear model in (6). First, we may see from the analysis results as provided in Table 2 that the
averaged coefficient of determination R2 was only 68%, manifesting that in addition to local
muscle fatigue, the Borg scale should be also attributable to the factors other than muscle
fatigue. Secondly, we found that the effects on Borg scale due to FPMs of VL and GAS muscles,
respectively, were almost comparable. Thirdly, another interesting note is in this case the mean
intercept C0 was 13.37, which indicated that the muscle fatigue might start to contribute to
Borg scale increment from Borg = 13 (i.e., indicating that the exercise intensity is “somewhat
hard”) or so. That is, this might imply that the onset of muscle fatigue generally occurred when
subjects rated 13 on Borg scale. It is worth noting that such an observation is actually consistent
to that found in our previous work [26].

Similarly, we also attempted to relate the Borg scale solely to CSI using the linear model as
expressed in (7) and obtained the results as shown in Table 3. It is revealed from Table 3 that
although the averaged coefficient of determination R2 was only 68%, both the statistical results
of CCSI and C0 achieved the highest significant level (with p<0.01), in comparison to the
numerical results as tabulated in Tables 1 and 2. According to the results as shown in Table 3,
we may see that, as mentioned previously, CSI was positively correlated with the Borg RPE
scale. In addition, we also found that here the mean intercept C0 was 10.23, which was actually
consistent to the results in Table 1. That is, this number simply indicated that the cardiac stress
might generally start to contribute to Borg scale increment since Borg = 11. In fact, according
to the Borg RPE scale subjects may rate their perception of the exertion 11 on scale when they
feel the exercise intensity is “fairly light” and the effort level corresponding to this value is 60%
of maximum effort [36]. Therefore, we may further conclude that such an exercise intensity
might be thought of as being a possible threshold for substantially, effectively initiating the car-
diac stress “overload,” and also, the onset of cardiac stress elevation seemed to generally occur
prior to the onset of muscle fatigue.

In summary, the numerical experimental results produced by a nonlinear analysis of HRV
indicated that the cycling exercise effects on HR dynamics can be continuously and quantita-
tively captured by CSI. Moreover, we further incorporated the CSI into our system so the onset
of the occurrence of non-motor features of fatigue due to cardiac stress “overload” can be
explicitly determined from the CSI tracings. In the authors’ opinion, in addition to providing
an on-line muscle fatigue monitoring and analysis, the proposed system may be also used in
sports medicine, or used by cardiologists who carried out stress tests for monitoring heart con-
dition in patients with heart diseases, thus representing a significant benefit from this study.

Conclusion
In this paper, a cycling-based training system for real-time muscle fatigue and cardiac stress
monitoring and analysis is introduced. In fact, RPE scale has been widely accepted as a conve-
nient index which is often used to determine the level of fatigue during physical exercise. How-
ever, since fatigue induced by exercise is a complex phenomenon which may not be solely
related to RPE, our study thus aimed to develop novel indices, other than RPE, and seek for
their applicability for objectively and quantitatively monitoring and assessing muscle fatigue
and cardiac stress during physical exercise. A new parameter, dubbed the CSI, used to quantify
the cardiac stress status of subjects undergoing cycling exercise was developed. Similar to how
the FPM was used to monitor the progression of muscle fatigue, the CSI was also incorporated
into the system that was developed in our previous work for continuously and quantitatively
assessing the progression of cardiac stress during exercise. In addition, in order to validate the
applicability of FPM and CSI into exercise-induced fatigue analysis, we further related the Borg
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RPE to both the FPM and CSI using a multivariate linear regression analysis. Numerical exper-
imental results indicated that the Borg RPE was generally positively correlated with FPM and/
or CSI, suggesting that the motor factors and the factors due to cardiac stress might both con-
tribute to fatigue state during physical exercise.
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