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Purpose: In functional MRI (fMRI), faster acquisition via undersampling of data can improve the
spatial-temporal resolution trade-off and increase statistical robustness through increased degrees-of-
freedom. High-quality reconstruction of fMRI data from undersampled measurements requires
proper modeling of the data. We present an fMRI reconstruction approach based on modeling the
fMRI signal as a sum of periodic and fixed rank components, for improved reconstruction from
undersampled measurements.
Methods: The proposed approach decomposes the fMRI signal into a component which has a fixed
rank and a component consisting of a sum of periodic signals which is sparse in the temporal Fourier
domain. Data reconstruction is performed by solving a constrained problem that enforces a fixed,
moderate rank on one of the components, and a limited number of temporal frequencies on the other.
Our approach is coined PEAR - PEriodic And fixed Rank separation for fast fMRI.
Results: Experimental results include purely synthetic simulation, a simulation with real timecourses
and retrospective undersampling of a real fMRI dataset. Evaluation was performed both quantita-
tively and visually versus ground truth, comparing PEAR to two additional recent methods for fMRI
reconstruction from undersampled measurements. Results demonstrate PEAR’s improvement in esti-
mating the timecourses and activation maps versus the methods compared against at acceleration
ratios of R = 8,10.66 (for simulated data) and R = 6.66,10 (for real data).
Conclusions: This paper presents PEAR, an undersampled fMRI reconstruction approach based on
decomposing the fMRI signal to periodic and fixed rank components. PEAR results in reconstruction
with higher fidelity than when using a fixed-rank based model or a conventional Low-rank + Sparse
algorithm. We have shown that splitting the functional information between the components leads to
better modeling of fMRI, over state-of-the-art methods. © 2018 The Authors. Medical Physics pub-
lished by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
[https://doi.org/10.1002/mp.12599]
The copyright line for this article was changed on 19 February, 2018, after original online publication.
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1. INTRODUCTION

Accelerating acquisition in functional MRI (fMRI) has gained
significant attention in neuroimaging. Accelerated fMRI can
provide data at higher frame rates or sampling bandwidths,
leading to higher temporal degrees of freedom.1 This enables
the use of more powerful and sophisticated analysis tech-
niques.2 Alternatively, accelerated fMRI may be used to
increase spatial resolution without sacrificing temporal fidelity,
enabling time-resolved studies of the functional organization
of the brain at finer scales, like cortical layers3 or columns.4 In
resting state fMRI, where the goal is to estimate brain connec-
tivity networks of the subject, accelerated data acquisition can
improve the estimation of resting state networks (RSNs).5

Numerous methods for accelerating acquisition of MRI
data by exploiting its intrinsic structure and redundancy have

been published. In clinical dynamic MRI [e.g., Cardiac MRI
and Dynamic Contrast Enhanced (DCE) MRI], many meth-
ods are based on undersampling in the k-t space.6–8 Since the
introduction of compressed sensing (CS),9–11 accelerated
CS-based methods for clinical MRI have also been devel-
oped.12–17 While some of these methods have been adapted
to fMRI,18–24 the different nature of the fMRI signal (when
compared to clinical dynamic MRI), e.g., its low variance of
signal of interest and its limited spatial compressibility, limits
the adoption of those implementations.

Recently, we introduced an approach for reconstruction of
fMRI from undersampled measurements that is based on
modeling fMRI as fixed-rank, i.e., k-t FASTER (FMRI
Accelerated in Space-time by means of Truncation of Effec-
tive Rank).25 It aligns with the common analysis approaches
in fMRI, which estimate limited numbers of spatial and
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temporal components from the data. It has been demonstrated
that k-t FASTER provides higher quality of activation and
resting state maps when compared with other methods for
fMRI reconstruction from undersampled data. This method
has been extended recently to include multi-channel coil sen-
sitivity information and more flexible radial-Cartesian sam-
pling,26 providing additional encoding information and more
incoherent sampling of k-space, resulting in robust recovery
of task-based fMRI data at acceleration factors of 10 times or
higher.

Several other approaches for reconstruction of fMRI from
undersampled measurements have been recently sug-
gested.27–31 Aggarwal et al. examined enforcing a low-rank
model and signal sparsity.27 Others explored exploiting low
rank and sparsity after the separation of fMRI into two com-
ponents. This approach, known as Low-rank plus Sparse (or
L + S),32 consists of modeling the data as a sum of two com-
ponents, where low rank is enforced on one of them, and
sparsity in some transform domain is enforced on the other.
L + S has been examined for both clinical dynamic MRI33

and fMRI.28–30,34

The common implementation of L + S for clinical
dynamic MRI and fMRI consists of modeling the low rank
component as a “background” image while the sparse compo-
nent contains the dynamic information. This approach leads
to satisfactory results for clinical dynamic MRI applications
where the dynamic signal is significantly above the noise
level [e.g., MR angiography (MRA) and DCE-MRI] or peri-
odic in the time domain (e.g., cardiac MRI). However, based
on our experiments, its performance for fMRI, where the sig-
nal is often near the noise level and filtered by the hemody-
namic response, is sub-optimal.

In this study, we examine a different separation of the data,
where both components contain functional information.
While most previous methods that combine low rank and
sparsity are based on solving an unconstrained minimization
problem by singular value soft-thresholding (SVT),35 in our
approach we solve a constrained minimization problem based
on truncating the singular values (a.k.a Truncated SVD or
TSVD).36 Our approach forces one of the components to
have a moderate fixed rank, and the other to be sparse in the
temporal Fourier domain, leading to improved results com-
pared to an SVT-based approach. Reconstruction is per-
formed via alternating minimization, that enforces the fixed-
rank requirement and sparsity iteratively.

We call our approach PEAR: PEriodic And fixed Rank sep-
aration for fast fMRI. We examine reconstructions from under-
sampled data acquired using golden-angle radial sampling,37

and correspondence to both time-course information [using
General Linear modeling (GLM)] and spatial information
(resting state network maps estimated via dual regression38).
Our experiments consist of a purely synthetic simulation, to
show the concept of separation between the components, a
synthetic simulation using real timecourses to examine corre-
spondence of results to real and known time-courses, and ret-
rospective sampling of a real resting state fMRI dataset, to
examine resting state network recovery. We compare PEAR to

k-t FASTER that uses a fixed-rank model only, and to a con-
ventional, SVT-based L + S implementation. We also explore
the contributions of the different components in PEAR. Based
on our experiments, PEAR exhibits better estimation of the
timecourses and resting state networks from undersampled
data, compared to k-t FASTER and to L + S, using only
9.38% of the data in the simulations and 10% of the data in
the retrospective sampling experiment.

The paper is organized as follows. Section II presents the
proposed method for faster fMRI via separation of signals
into periodic and fixed rank components. Section III
describes experimental results. Section IV discusses theoreti-
cal aspects and implementation details of our method and
Section V concludes by highlighting the key results.

2. METHOD

In MRI, data is acquired in the spatial Fourier domain (k-
space). In dynamic MRI applications, such as cardiac MRI,
MRA and DCE MRI, as well as in fMRI, the k-space of each
temporal frame is acquired. By undersampling k-space (i.e.,
taking only partial k-space measurements for each temporal
frame), one can obtain higher frame rate, or alternatively,
cover a greater extent in k-space, thereby increasing spatial
resolution without decreasing temporal resolution.

In the problem of fMRI reconstruction from undersampled
k-space, our goal is to recover the time series of acquired
images. For simplicity, the time series is represented as a
space-time matrix, X 2 RN�T where each column is a 3D
temporal frame concatenated as a vector, N denotes the num-
ber of pixels in a single frame, and T denotes the number of
frames in the time series. The measurement model, which
takes into account that in most cases data is acquired using
multiple coils is:

y ¼ EfXg þ z (1)

where y is a vector of undersampled measurements and E is a
general linear operator that maps a matrix to a vector. For
acquisition with multiple receiver coils, E consists of multi-
plication by coil sensitivities followed by an undersampled
Fourier transform. The vector z represents the measurement
noise, modeled as complex Gaussian with zero mean.

Since y is generated via undersampling, proper reconstruc-
tion of X from y requires assumptions on X. Relying on
framework of CS, many methods that are based on sparsity of
X in some transform domain were examined for dynamic
MRI in general and for fMRI in particular. In our recent
work, we considered modeling X as a fixed rank matrix,
which aligns with the theory that X is composed of a rela-
tively small number of spatially coherent temporal processes.
The fixed-rank based approach for fMRI (i.e., k-t FASTER)
solves the following minimization problem25:

min
X2RN�T

ky� EfXgk2 s:t: rankðXÞ ¼ r; (2)

where r is a fixed, moderate rank that ranges between 20 and
50 in our fMRI approach (but may be much lower in other
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MRI modalities). Unlike some other types of dynamic MRI
that exhibit high variance of signals of interest, in fMRI valu-
able information may also be embedded in low variance com-
ponents, slightly above the noise level. Consequently, method
to retrieve information from higher dimensions is expected to
provide better results for fMRI.

An approach that was applied initially for clinical dynamic
MRI,33 and has been examined recently for fMRI,28,29,34 con-
sists of modeling the dynamic sequence as a sum of two com-
ponents. A low-rank component that represents mainly the
background (denoted as the L component), and a component
that contains the valuable signal. The latter is modeled as
sparse in some transform domain, and denoted as the S com-
ponent. This approach, known as L + S,32 is based on solv-
ing the following unconstrained problem:

min
L;S2RN�T

1
2
ky�EfLþSgk22þk1kLk� þk2kWfSgk1 (3)

where L and S denote the low-rank and sparse components,
‖�‖* and ‖�‖1 are the nuclear norm and the ‘1 norm, k1,2 are tun-
ing parameters that control the weight given to each term in the
optimization problem and the reconstructed space-time matrix
is X = L+S. The linear transformation Ψ is a sparsifying trans-
formation applied on S, depending on the specific dynamic
MRI application. For MRA, Ψ may be chosen as an identity
transform, whereas for cardiac MRI, which consists of periodic
temporal structure, Ψ may be a temporal Fourier transform (i.e.,
applying a Fourier transform row-wise, independently on each
of the rows of S).33 For fMRI, both types of transformations
were examined: Otazo et al.34 considered the identity transform
(although their decomposition is used for analysis rather than
acceleration) and Singh et al.28 examined the temporal Fourier
transform. We note that L + S solves an unconstrained problem
that does not explicitly enforce a fixed rank, and the solution is
often based on SVT. By viewing the results of current imple-
mentations of L + S for fMRI28,34 we found that in practice the
resulting L component tends to have a very low rank and typi-
cally contains only background information, while the impor-
tant functional information is in the S component.

Some fMRI analysis models suggest that while neural sig-
nals have strong band limited components, they also exist
across the frequency spectrum.39 Therefore, we consider
including sparsity in the temporal spectrum, to capture the
bandlimited assumption, in addition to a fixed rank representa-
tion that would be more suitable for broader-band signals. In
particular, we propose modeling the fMRI signal as a sum of a
fixed rank component, which contains the high variance infor-
mation, and a periodic component that captures the periodicity
that is not captured in the fixed rank component. Thus, we
model the fMRI data X as X = A+P, where A and P are the
fixed rank and periodic components, respectively. We enforce
a limited number of temporal periodic signals for P, by
demanding sparsity in the temporal Fourier domain, and a
fixed rank for Awhich contains the high variance signal.

To understand the rationale behind this modeling, Fig. 1
shows 4 timecourses of arbitrarily selected pixels in a resting
state fMRI dataset, that exhibited high correspondence

(|Z| > 6) with regressors that represent a Default Mode Net-
work (DMN) map or a visual network map after a dual-
regression against those network maps. The signals in the fig-
ure were extracted from the fMRI sequence after conventional
fMRI pre-processing (including skull stripping, motion cor-
rection, and slice timing correction), and the spatial locations
of the selected pixels are shown at the bottom left of the fig-
ure. The timecourses are shown in the time domain (top left)
and in the temporal Fourier domain, after removing the DC
component (top right). It can be seen that while three of the
timecourses exhibit peaks in the spectral domain and are suit-
able for sparse representation in the temporal Fourier domain,
one of the timecourses exhibits a broad spectrum in the tem-
poral Fourier domain. As a result, separation into fixed rank
and periodic components allows better representation of sig-
nals (compared to fixed-rank only or periodic component
only) as it is expected to capture both broad-band and band-
limited temporal spectra.

To obtain the separation into A and P components, we
propose the following minimization problem:

min
A2C

P2RN�T

1
2
ky� EfAþ Pgk22 þ kkFtfPgk1 (4)

where C is the set of matrices with a fixed rank r (ranges
between 20 and 50 in our fMRI approach) and Ft is the tem-
poral Fourier transform that applies a Fourier transform row-
wise on each of the rows of P (where X̂ ¼ Âþ P̂).

We solve Eq. (4) using alternating minimization (AM).40 In
this approach, in each iteration we perform minimization with
respect to one variable while keeping the other one fixed, and
then switch between the variables. In our case, we start with an
arbitrary initial point P0. For n≥1 we iteratively compute:

An ¼ arg min
A2C

DðA;Pn�1Þ

¼ arg min
A2C

1
2
ky� EfAþ Pn�1gk22 (5)

Pn ¼ arg min
P2RN�K

DðAn;PÞ

¼ arg min
P2RN�K

1
2
ky� EfAn þ Pgk22 þ kkFtfPgk1: (6)

We solve each sub-problem Eqs.(5), (6) via gradient projec-
tion41 where the proximal gradient is used for the non-differ-
entiable ‘1 function in Eq. (6). A solution for Eq. (5) has
been proposed by Goldfarb et al.42, a.k.a Iterative Hard
Thresholding with Matrix Shrinkage (IHT-MS). It consists of
a gradient step for data consistency followed by a projection
step onto the subspace C. The general step is:

An ¼ RrðSlðAn�1 � aEHfEfAn�1 þ Pn�1g � ygÞÞ (7)

where Rr(Q) is the projection onto the subspace C, defined
as: RrðQÞ ¼ Pr

i¼1 riuiv
H
i where r1 ≥ r2 ≥ . . . ≥ rm are the

singular values of Q, and ui and vi are the singular vectors
associated with ri. The operator Sl(Q) is the singular value
soft-thresholding operator, defined as: Sl(Q) = U[Σ�lI]+V

H

where Σ = diag(r1,r2,. . .,rm) and U and V are the left and
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FIG. 1. Top: timecourses (left) and amplitude spectrum (right) after removing DC of four selected pixels from a preprocessed resting-state fMRI dataset. Bottom
left: spatial locations of selected pixels. Pixels #1-#3 showed high correspondence (|Z| > 6) with Default Mode Network and pixel #4 showed high correspon-
dence with a visual network. The amplitude spectrum of the pixels shows that while pixels #1, #2 and #4 exhibit a limited number of peaks in the spectral domain
(and therefore may be suitable for sparse modeling in the temporal Fourier domain) pixel #3 involves a wide range of spectral components. As a result, separation
into a fixed-rank and periodic components as proposed by our method would allow better representation of those signals, compared to using a fixed rank compo-
nent (k-t FASTER) or a periodic component only (L + S).
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right singular vectors associated with Σ. The parameter a is a
step size, which controls the rate of convergence.

The rationale behind applying Sl(�) before applying Rr(�)
can be explained by modeling the lower singular values,
frigmi¼ rþ1 as representing noise, while frigri¼ 1 represent data
contaminated with additive noise. The subtraction of l from
frigri¼ 1 is explained as removing noise from the higher singu-
lar values. Based on our experiments,25 the selection of
l = c�rr + 1 where c is a fixed parameter, leads to good results.

To solve Eq. (6) we use the Iterative Shrinkage-Threshold-
ing Algorithm (ISTA),43,44 whose details are given in
Appendix A. The general step for the solution of Eq. (6) is:

Pn ¼ FH
t fKkðFtfPn�1 � aEHfEfAn�1 þ Pn�1g � yggÞg

(8)

where Λk indicates the soft-thresholding operator with
parameter k, applied element-wise. Finally, by defining
Xn�1 = An�1 + Pn�1�aEH{E{An�1 + Pn�1}�y}} we get
that Eqs. (7) and (8) become:

An ¼ RrðSlðXn�1 � Pn�1ÞÞ (9)

Pn ¼ FH
t fKkðFtfXn�1 � An�1gÞg: (10)

The convergence of an iterative solution based on Eq. (7) has
been proven by Goldfarb et al. and the convergence of an iter-
ative solution based on Eq. (8) is well studied in the litera-
ture.43,45 Therefore, based on Csiszar and Tusndy,46 the
convergence of our proposed AM framework is guaranteed.

The proposed algorithm is coined PEriodic And fixed
Rank separation for fast fMRI (PEAR) and is summarized in
Algorithm 1, where SVD represents the singular value
decomposition and frigrþ1

i¼ 1 are the singular values of the
matrix Xn�1�Pn�1 in descending order. The operator FH

t is
the conjugate temporal Fourier transform, and EH is the con-
jugate transpose of E.

Algorithm 1 PEAR: PEriodic And fixed Rank separation for fast fMRI

Input

Multicoil undersampled k-t data: y

Space-time multicoil encoding operator: E

Temporal Fourier transform: Ft

Predefined rank: r, Soft-shrinkage parameter: c

Tuning constant: k, Step size: a

Iteration limit: N

Output: Estimated fMRI time-series: X̂

Initialize:

P0 = 0, X0 = EH{y}

Iterations for n = 1..N

UΣVH = SVD(Xn�1�Pn�1)

Rðj; jÞ¼ Rðj; jÞ� c �rrþ1; j\ r and Rðj; jÞ [ c �rrþ1

0; otherwise.

�

An = UΣVH

Pn ¼ FH
t fKkðFtfXn�1 � An�1gÞg

Xn = An+Pn�aEH{E{An+Pn}�y}}

To summarize, the major differences between L + S and
the PEAR approach for fMRI are outlined below:

• Thresholding mechanism and a fixed rank solution:
The solution of the L + S problem given in Eq. (2)
using the same AM approach used for solving Eq. (4)
results in an algorithm that is different from Algorithm
1 in the thresholding mechanism of the singular values.
While in Algorithm 1 we perform singular value soft-
tresholding (SVT) with the value c�rr+1 followed by
truncating the r+1. . .m singular values (TSVD), for the
solution of Eq. (2) we perform SVTwith value k1, with
no rank constraint. The issue of an SVT-based solution
versus a TSVD-based solution has been studied in the
literature previously,47 and it has been shown that
TSVD performs better for fixed rank problems.47 Based
on our experience, fMRI can be considered as a fixed
rank problem, since the number activation networks is
relatively small and in many cases kept fixed for analy-
sis. This statement also aligns with our experimental
results for fMRI hereinafter.

• Separation of functional information between com-
ponents: In conventional implementation of L + S for
fMRI,28,29,34 the L component is modeled as very low
rank, and therefore contains background information and
no functional information. In PEAR, functional informa-
tion is split between the components. Consequently,
recovered functional information is not limited to peri-
odic signals only, and results are improved compared to
L + S, as will be shown in the next section. Indeed, the
solution of Eq. (4) can be approximated by solving Eq.
(2) with appropriate selection of k1,2 values. However, in
PEAR we do not aim at separating between background
information (which is typically modeled as a very low
rank of 1 or 2) and functional information. Instead, we
enforce a fixed rank (based on a priori knowledge of typ-
ical fMRI dimensionalities, often between 20�50),
which allows functional information to be captured in
both A and P components, and taking advantage of both
fixed-rank and sparsity modeling. The use of fixed rank
simplifies the implementation of PEAR for a variety of
datasets, as it obviates the need to examine a range of
k1,2 values for each separate dataset. In addition, our
experiments show that solving (4) provides better results
for fMRI, when compared to solving Eq. (2) also for the
case where k1,2 were carefully chosen for optimality.

To demonstrate the performance of PEAR compared to a
well defined ground truth and additional algorithms for the
reconstruction of fMRI from undersmpled measurements, we
performed 3 types of experiments. In all experiments PEAR
is compared to k-t FASTER25 and L + S28 [where sparsity is
enforced in the temporal Fourier domain, as shown in Eq.
(2)].

The first experiment is a simulation based on syntheti-
cally generated mixtures of periodic and aperiodic signals,
and aims to compare the results of PEAR to the
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aforementioned methods and to examine how PEAR sep-
arates the signals into periodic and fixed rank compo-
nents. The second experiment is an extension of the first
experiment using realistic time-courses instead of purely
synthetic ones. In the third experiment we examine the
performance of PEAR for a retrospectively undersampled
realistic 3D fMRI data sequence.

In all experiments, data is undersampled retrospectively,
through a radial sampling approach using the golden-
angle37,48 and the NUFFT49 package was used for forward
and adjoint spatial Fourier transforms. The output of each
experiment is provided as z-statistics maps that reflect the
degree to which each timecourse (in the case of experiments
1 and 2) or spatial regressor (in case of experiment 3) is
expressed with a unique time-course in the data. Output maps
were null-corrected using a Gaussian and Gamma mixture
model.5

The parameters c = 0.7, a = 1 (for k-t FASTER) and
a = 0.5 (for PEAR and L + S) were selected experimentally.
In all cases, all time-points were initialized to the mean image
calculated from all projections. All algorithms were run 100
iterations or until the minimum update between consecutive
iterations was below 10�4. For k-t FASTER and PEAR we
examined the parameter r in the range between 1 and 50, and
experimentally used r = 32 for k-t FASTER, r = 27 for
PEAR in experiments 1 and 2, and r = 20 for PEAR in
experiment 3. In experiments 1 and 2 the parameters were
tuned for optimal performance for each method (where opti-
mal performance is evaluated by examining the z-stat maps),
and in experiment 3 parameters were tuned for optimality on
a training set and results were obtained using the same
parameters for an unseen fMRI sequence.

3. EXPERIMENTAL RESULTS

3.A. Experiment 1: purely synthetic simulation

In this experiment, we simulated a phantom consisting of
5 Regions of Interest (ROIs). Each ROI is spatially formed as
a single letter from the letters “FMRIB”, and contains one of
5 purely synthetic timecourses, generated as follows. The

letters “F” and “I” were purely periodic timecourses where
“F” contains a single frequency and “I” contains a mixture of
three frequencies, “R” was a purely aperdioc timecourse, and
“M” and “B” were a superposition of periodic and aperiodic
timecourses. The phantom was added to a realistic back-
ground fMRI dataset, to form a 2D fMRI sequence with
known functional timecourses, of size 64 9 64, with 512
time points. The timecourses and their spatial locations in the
simulated image are shown in Fig. 2 (left and top).

Undersampling was carried out in the k-t space. We exam-
ined two undersampling ratios, first by taking 8 radial projec-
tions at each timepoint (corresponding to acceleration ratio of
R = 8 relative to a fully-sampled, maximally efficient Carte-
sian acquisition). We then repeated the experiment using only
6 radial projections at each timepoint (corresponding to
R = 10.66). This simulates one slice of a hybrid radial-Carte-
sian trajectory, which rotates an EPI trajectory within 3D k-
space.26 An additive white Gaussian noise with zero mean
was added to the samples in the k-space domain to obtain
SNR of 25dB. For PEAR, k was examined in the range of
0.45–3.4 and was selected as k = 0.91 experimentally. For
L + S, k1 was examined in the range of 1.1–3.4 and k2 was
examined in the range of 0.45–3.4. These parameters were
selected as k1 = 1.6 and k2 = 0.91 experimentally (the values
for k, k1,2 are provided after normalization with respect to the
standard deviation of the data).

To examine the correspondence of the reconstruction with
the ground-truth, we performed regression against the origi-
nal timecourses using General Linear Model (GLM).50 Fig-
ure 3 shows the F-test results as null-corrected z-statistics
maps,5 for the ground-truth data (fully sampled image with-
out the addition of noise), L + S, k-t FASTER and PEAR, for
both R = 8 and R = 10.66. All maps are thresholded at
|Z| > 4.4 and shown with color scale mapped between 4.4 <
|Z| < 15.

It can be seen that for R = 8, PEAR and k-t FASTER pro-
vide similar results that outperform L + S, where PEAR pro-
vides some improvement compared k-t FASTER. However,
for R = 10.66 the superiority of PEAR is clearly demon-
strated, as PEAR provides the most reliable result, being the
only method that almost perfectly recovers both “R” and “B”

FIG. 2. Left: spatial locations of the ROIs used in experiments 1 and 2, each ROI is formed as single letter and contains a single timecourse. Top: the timecourses
used for each ROI in experiment 1. “F” and “I” are purely periodic timecourses where “F” contains a single frequency and “I” contains a mixture of three fre-
quencies, “R” is a purely aperdioc timecourse, and “M” and “B” are superposition of periodic and aperiodic timecourses. Bottom: Timecourses used in experi-
ment 2 for each simulated ROI (letter). [Color figure can be viewed at wileyonlinelibrary.com]
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with minimum false positive errors at R = 10.66. In addition,
we see that L + S is unable to recover the aperiodic time-
course “R”, as opposed to both k-t FASTER and PEAR
thanks to their fixed-rank component. Note that when com-
paring the results of PEAR to k-t FASTER, the greater z-sta-
tistics produced by PEAR should also be taken into account.
We see that while both k-t FASTER and PEAR show similar
recovery patterns for “F”, “M”, and “I”, PEAR provides
higher z-stat values, demonstrating improved signal recovery
and significance of activation detection.

An interesting analysis is the contribution of each compo-
nent in PEAR. Figure 4 shows the GLM results for the A and
P components of PEAR separately (for R = 10.66), where
the z-statistics maps are thresholded at |Z| > 4.9 and shown
with color scale mapped between 4.9 < |Z| < 15. Note that
the sum of the null-corrected z-statistics maps of A and P is
not equal to the z-statistics map of PEAR, due to the null-cor-
rection applied for each map, that depends with each map’s
noise level. However, the separation of PEAR into periodic
and fixed rank components is clearly demonstrated. The A
component highly corresponds to the letter “R” which is a
purely aperiodic timecourse, and with the letters “M” and
“B” that include an aperiodic part. The P component highly
corresponds to the letters “F” and “I” which are purely peri-
odic timecourses, and to the letters “M” and “B” that include

an periodic part. As demonstrated, this separation allows bet-
ter modeling and leads to better recovery compared to k-t
FASTER and L + S. Another analysis is presented in Fig. 5,
where example portions of the mean timecourses from the

FIG. 3. Experiment 1: GLM F-test results of L + S, k-t FASTER and PEAR for purely synthetic simulation, for R = 8 (top) and R = 10.66 (bottom). The z-stat
map of the ground truth is also shown (left). All maps are thresholded at |Z| > 4.4 and with color scale mapped between 4.4 < |Z| < 15. It can be seen that L + S
is unable to recover the letter “R”, due to its purely aperiodicity. While PEAR exhibits some improvement compared to the other methods for R = 8, its superior-
ity is clearly demonstrated for R = 10.66, as PEAR provides almost perfect recovery of the letters “R” and “B”, at minimal ratio of false positive errors. In addi-
tion, PEAR provides better statistical significance (compared to k-t FASTER) for the recovery of “F”, “M”, “I” and “B”. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 4. Experiment 1: GLM F-test results of A and P components of PEAR
for R = 10.66. Maps are thresholded at |Z| > 4.9 and with color scale
mapped between 4.9 < |Z| < 15. It can be seen that the A component cap-
tures the letter “R” which is purely aperiodic, and the letters “M” and “B”
that include an aperiodic part. The P component captures the letters “F” and
“I” which represent periodic timecourses, and the letters “M” and “B” that
include an periodic part. [Color figure can be viewed at wileyonlinelibrary.-
com]
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five letter ROIs are shown for the ground truth, L + S, k-t
FASTER and PEAR reconstruction results, including the
timecourses for the A and P components of PEAR separately.
The timecourses are shown in arbitrary units, to allow proper
examination of their structure. It can be seen that as expected,
L + S is limited in its ability to track the rapid changes that
appear in the letter “R”. In addition, the P component of
PEAR indeed contains the periodic part of the signal, and
therefore exhibits high correspondence with letters that are
fully periodic (“F” and “I”).

These simulations clearly demonstrate the expected behav-
ior of our proposed approach under conditions where signals
include pure periodicity; however, these are not a realistic
depiction of fMRI data, even in task conditions, since these
signals are rarely strongly periodic. The following experiment
examines the performance of the various algorithms for real-
istic timecourses.

3.B. Experiment 2: simulation with realistic
timecourses

In this experiment, we generated 5 realistic timecourses.
First, we used a regression of a realistic fMRI dataset taken
from the Human Connectome Project (HCP) database51

against 15 canonical resting state network maps (RSNs),38

derived from high-dimensional group-level Independent
Component Analysis (ICA) of resting state fMRI datasets.
The regression result provided 15 timecourses, each one cor-
responds to a single RSN regressor. We pulled 5 timecourses
and used them instead of the purely synthetic timecourses
used in experiment 1. These timecourses were used for the
same simulation of the letters FMRIB, rather than retained in
the original network spatial maps, due to the ease of visually
evaluating the output parameter maps.

We repeated the same setting of experiment 1 (including
the same SNR, sampling ratios, and selected parameters for
each algorithm) where the only difference is the use of realis-
tic timecourses instead of simulated ones. The realistic time-
courses, including the corresponding regressors used for
generation of the timecourses, are shown in Fig. 2 (bottom
and left).

Figure 6 shows the General Linear Model (GLM) F-test50

results as null-corrected z-statistics maps that were com-
puted against the realistic time courses of all letters, for the
ground-truth data (fully sampled image without the addition
of noise), L + S, k-t FASTER and PEAR, for R = 8 and
R = 10.66. All maps are thresholded at |Z| > 4.7 and shown
with color scale mapped between 4.7 < |Z| < 15. In

Time points
100 150 200 250 300 350 400

Mean letter timecourses (F)

Time points
100 120 140 160 180 200

Mean letter timecourses (M)
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FIG. 5. Example portions of the mean timecourses of the five letter ROIs are shown for the ground truth, L + S, k-t FASTER and PEAR reconstruction results,
including the timecourses for the A and P components of PEAR separately (Experiment 1, R = 10.66). The timecourses are shown in arbitrary units, to allow
proper examination of their structure. It can be seen that L + S is limited in its ability to track the rapid changes that appear in the letter “R”. In addition, the sep-
aration of PEAR into A and P component is clearly seen, as the P component exhibits high correspondence with letters that are fully periodic (“F” and “I”), and
A exhibits high correspondence with the aperiodic letter, “R”. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 44 (12), December 2017

6173 Weizman et al.: PEAR separation for fast fMRI 6173



correspondence with experiment 1, for realistic timecourses
we see that for R = 8, both k-t FASTER and PEAR provide
similar results that outperform L + S. For R = 10.66, we
see that PEAR provides cleaner results, as can be seen
mainly when comparing the recovery of the letters “R”, “I”,
and “B”. Similarly to experiment 1, we need to examine the
z-statistics when comparing the results of PEAR to k-t FAS-
TER. It can be seen that although both k-t FASTER and
PEAR show similar recovery pattern for “F”, and “M”,
PEAR results provide higher z-stat values, demonstrating
improved signal recovery.

In Fig. 6 we show the results of k-t FASTER for two dif-
ferent ranks (r = 27,32). It can be seen that choosing the
same rank (27) for kt-FASTER and PEAR leads to different
results, a fact that indicates the contribution of the P compo-
nent on top of the fixed-rank components.

To examine the ability of PEAR to recover nonstationari-
ties in resting-state patterns (we relate to the functional defi-
nition of “non-stationary”, in which we consider that the
connectivity between regions is non-stationary, i.e., correla-
tions between regions varying over time), we generated a new
timecourse for the letter “B” by concatenating the first 256

FIG. 6. Experiment 2: GLM F-test results of ground truth, L + S, k-t FASTER (for ranks of 27 and 32) and PEAR (for rank 27) for simulation with realistic
timecoureses, for R = 8 (top)and R = 10.66 (bottom). The z-stat map of the ground truth is also shown (left). All maps are thresholded at |Z| > 4.7 and with
color scale mapped between 4.7 < |Z| < 15. It can be seen that while PEAR and k-t FASTER provide similar results for R = 8, PEAR provides better results for
R = 10.66 with minimal ratio of false positive errors. In addition, it can be seen that choosing the same rank (27) for kt-FASTER and PEAR leads to different
results, a fact that indicates the contribution of the P component on top of the fixed-rank components. [Color figure can be viewed at wileyonlinelibrary.com]
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timepoints of the “F” timecourse and the last 256 timepoints
of the “R” timecourse. Together with the original ROI’s and
timecourses of “F” and “R” we repeated the experiment for
R = 8 and R = 10.66. The timecourses used in this experi-
ment and the results of PEAR are seen in Fig. 7. It can be
seen that although “B” is non-stationary, PEAR recovers “B”
reliably.

3.C. Experiment 3: retrospective undersampling of
real fMRI dataset

In this experiment, we examined kt-FASTER, L + S and
PEAR for the scenario of undersampled 3D fMRI data. We
used simultaneous multi-slice EPI data acquired on a 3T
MRI system, with parameters based on HCP protocols:
TR = 836 ms, multi-band factor(MB) = 8, and isotropic res-
olution of 2 mm. Data was registered to an MNI standard
space with dimensions 919109991 and included 512 time-
points. We examined two sampling ratios. First, we used 15%
(R = 6.66) of the data by taking only 14 radial blades at each
timepoint for each axial slice. In addition, we examined the
scenario of using only 10% of the data (R = 10). To keep
memory requirements under control, reconstructions were
performed independently for each 91 9 109 2D axial slice
with 512 timepoints. An additive white Gaussian noise with
zero mean was added to the samples in the k-space domain to
obtain SNR of 25 dB. After reconstruction, all 2D recon-
structed slices were stacked together to form a 3D image with
512 time point for further analysis. We applied a brain mask
to focus only on within-brain voxels.

After data reconstruction, we evaluated correspondence of
the data to 15 canonical Resting State Networks (RSN)
derived from high-dimensional group-level ICA of resting
fMRI datasets from the HCP database.51 Evaluation was done
using dual regression52 as follows. First, we performed spatial
regression of the reconstructed dataset against the canonical
maps (regressors) to extract the timecourses corresponding to

each map. Then, we performed temporal regression of the
dataset against the time series. The output is a set of z-statistic
maps (one for each regressor) that reflect the degree to which
each spatial regressor is expressed with a unique time-course
in the data. More details about the dual regression process
appear in Appendix B.

We compared the z-statistics maps from PEAR to those
computed from the fully sampled data (ground truth) and
from reconstructions using L + S and k-t FASTER meth-
ods. In this experiment, the parameters for each algorithm
were tuned for a training sequence, and the results are
evaluated using the same parameters for an unseen data
sequence. For PEAR, k was examined in the range
between 0.25 and 2, and was selected as k = 1.75 experi-
mentally. For L + S, k1 was examined in the range
between 0.25 and 1.75, and k2 was examined in the range
between 0.13 and 1.75. These parameters were selected as
k1 = 1.25 and k2 = 0.25 experimentally (the values for k,
k1,2 are provided after normalization with respect to the
standard deviation of the data).

Figure 8 shows the Default Mode Network (DMN) regres-
sor used for dual regression overlaid on the MNI atlas, as well
as the z-stat dual regression outputs of the ground truth, kt-
FASTER, L + S and PEAR for R = 6.66. All maps are
thresholded at |Z| > 3.3 and with color scale mapped between
3.3 < |Z| < 8. The green ellipses show regions where differ-
ences between PEAR’s activation patterns and L + S’s and/
or k-t FASTER’s activation patterns can clearly be seen. We
note that PEAR provides better correspondence to ground
truth in most activation regions compared to k-t FASTER,
and less false positive errors compared to L + S. While
L + S shows the best activation pattern in the frontal lobe,
evaluation of the results needs to take into account both cor-
respondence of activation regions and false positive errors
ratio, which are higher in L + S results. The trade-off
between the true and false positive errors is provided by the
ROC curves, later in this paper.

FIG. 7. PEAR results for non-stationary timecourse: Left: timecourses used for “F”, “R” and “B”. “F” and “R” represent realistic timecourses of brain networks
and “B” is composed of concatenating the first 256 timepoints of the “F” timecourse and the last 256 timepoints of the “R” timecourse. Right: GLM F-test results
of ground truth, and PEAR at R = 8 and R = 10.66. All maps are thresholded at |Z| > 5.6 and with color scale mapped between 5.6 < |Z| < 15. It can be seen
that although “B” has a non-stationary timecourse, PEAR provides reliable results in recovering it, for both R = 8 and R = 10.66. [Color figure can be viewed at
wileyonlinelibrary.com]
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The results for R = 10, are shown in Fig. 9. It can be seen
that while L + S provides noisy results and k-t FASTER
underestimates the activation regions, PEAR maps are more
similar to the ground truth. In addition, the phenomenon that
has been demonstrated in experiments 1 and 2 repeats itself
in real data – PEAR provides some improvement compared
to the other methods for moderate acceleration ratio (R = 6),
and significant improvement for high acceleration ratio
(R = 10). Reconstruction results (R = 6.66)

To provide measure for comparison between the methods,
we computed the receiver operating characteristic (ROC)
curves. This curve shows the performance of each method
when compared to the ground truth (in terms of true positive
ratio (TPR) against false positive ratio (FPR)) as the discrimi-
nation threshold varies. As a reference, we used the ground
truth DMN z-stat map shown in Fig. 8 (thresholded at |
Z| > 3.3). For the generation of ROC we computed the TPR
and FPR for each DMN z-stat map for each method, as the
threshold Z value ranges between 0 and 10.

A common scalar measure for the performance of the
algorithm is the area under the curve (often referred to as
AUC). Figure 10 shows the ROC curves for kt-FASTER,
L + S and PEAR, including the AUC computed for each
curve, for R = 6.66 and R = 10. It can be seen that
PEAR provides the most convex shape with the highest
AUC in both cases. In addition, the degraded performance

of L + S for R = 10 can clearly be seen by examining its
ROC curve for R = 10. To check the validity of this result
for different RSN maps, we computed the AUC for all the
15 canonical RSN maps used in our dual regression pro-
cess. The results are shown in Fig. 11. We see that while
there are cases in which k-t FASTER or L + S outperform
PEAR for some of the maps, PEAR provides the best
AUC for the majority of the maps for both R = 6.66 and
R = 10.

Finally, we examined the separation of PEAR into into
A and P components, in terms of both time courses and
spatial z-stat maps (for R = 6.66). For this purpose, we first
performed dual regression analysis for the A component
and for the P component separately, to generate a z-stat
map for each. Those maps, thresholded at |Z| > 3.3 and
with color scale mapped between 3.3 < |Z| < 8, are shown
in Fig. 12 and demonstrate that both A and P components
contain functional activity. Then, we arbitrary selected a
single pixel that exhibited high correspondence with DMN
for both A and P (z-stat value of |Z| > 4). Figure 13 shows
the timecourses and amplitude spectra of the A and P com-
ponents, for the selected pixel, where the spatial location of
the pixel is shown at the bottom of the Figure. The time-
courses and amplitude spectra show that the A component
contains a wide range of frequencies. The P component
contains a limited number of temporal frequencies and

FIG. 8. Experiment 3: retrospective sampling of realistic fMRI dataset. Left: the regressor used for dual regression overlaid on the MNI template, and the dual
regression results of the ground truth. Right: dual regression results of L + S, k-t FASTER and PEAR obtained at undersampling ratio of 15% (R = 6.66). All
maps are thresholded at |Z| > 3.3 and with color scale mapped between 3.3 < |Z| < 8. The ellipses illustrate regions where differences between PEAR to k-t FAS-
TER and/or L + S are clearly demonstrated. [Color figure can be viewed at wileyonlinelibrary.com]
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captures the low-energy periodicity that is not captured in
A. This separation shows that a selection of a fixed, moder-
ate rank for the A component, in addition to a demand for

a limited number of temporal frequencies for the P compo-
nent leads to the desired separation, which results in
improved z-stat results shown earlier.
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FIG. 10. Receiver operating characteristic (ROC) curve for experiment 3. Performance of L + S, kt-FASTER and PEAR are shown. The numbers in brackets
indicate the area under the curve (AUC) for each method. The ROC results are generated for the ground truth map thresholded at |Z| > 3.3 serving as a reference.
It can be seen that PEAR provides the highest AUC for DMN, for both R = 6.66 and R = 10. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 9. Experiment 3: retrospective sampling of realistic fMRI dataset. Dual regression results of L + S, k-t FASTER and PEAR obtained at undersampling ratio
of 10% (R = 10) . All maps are thresholded at |Z| > 3.3 and with color scale mapped between 3.3 < |Z| < 8. It can be seen that while L + S provides noisy
results and k-t FASTER underestimates the activation regions (compared to the ground truth shown in Fig. 8), PEAR maps are more similar to the ground truth.
[Color figure can be viewed at wileyonlinelibrary.com]
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4. DISCUSSION

4.A. Relation to previous works

As described in the Introduction, a few methods that have
been published recently also focus on separation of fMRI into
two components.28,30,31,34 The main differences between our
work and these prior works lie in the methodology and exper-
iments. First, we enforce both components to contain func-
tional information explicitly, by solving an unconstrained
minimization problem that enforces the A component to have
a fixed moderate rank, using a TSVD based solution. This is
in contrast to L + S-based methods that practically enforce
all the functional information to be contained in a single com-
ponent, required to be sparse in some transform domain. As a
result, the L + S solution might be sub-optimal in reconstruc-
tion of signals that are neither periodic, nor strong enough to
be captured in the low-rank component.

Second, the experimental part of this paper presents a
thorough validation of the suggested approach (compared to
other existing methods), based on realistic nonuniform under-
samping, and examines the spatial activation of resting state
networks with broad spectrum characteristics. This analysis,
which also includes the examination of the functional infor-
mation that is contained in each of the components, is
expanded compared to previous papers that deal with separa-
tion of fMRI into components; in particular, some of them
show task-based MRI where the design is periodic or basic
RSN analysis.

4.B. Error measures and reproducibility

It is important to note that in the case of fMRI, conven-
tional measures between the reconstructed datasets (e.g.,
MSE or correlations) may be misleading, as lower MSE does
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FIG. 11. Area under ROC for 15 RSN maps, for R = 6.66 and R = 10 separately. It can be seen that PEAR provides the best performance for most of the maps,
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FIG. 12. Z-stat maps of A and P components of PEAR for R = 6.66. Maps
are thresholded at |Z| > 3.3 and with color scale mapped between 3.3 <|
Z| < 8. It can clearly be seen that both components contain functional infor-
mation and present activation regions in locations that correspond to similar
activation regions in the ground truth. [Color figure can be viewed at
wileyonlinelibrary.com]

Medical Physics, 44 (12), December 2017

6178 Weizman et al.: PEAR separation for fast fMRI 6178



not necessarily mean that low variance functional information
is preserved. Therefore, evaluation of results in this work is
based the z-stat analysis of activation maps, which is the
common tool used today for resting state fMRI analysis.

In addition, while prospective undersampling is possible
(and has been carried out in our previous works25), its evalua-
tion has to be performed against connectivity maps taken
from the literature or group-averaged RSN spatial maps, lead-
ing to uncertainty in ensuring that subject-specific detail is

retained. Therefore, we focus on retrospectve undersampling,
which allows accurate comparison against a well defined
ground truth.

4.C. Limitations

This work focuses on resting state fMRI, which is a branch
in fMRI research that deals with mapping brain connectivity
based on an fMRI experiment that does not involve
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FIG. 13. Top: Timecourses and amplitude spectra of a pixel resulted with |Z| > 4 for DMN z-stat map. Timecourses and amplitude spectra of ground truth (top
row) and A and P components of PEAR result (for R = 6.66) (second row) are shown. Values are shown in arbitrary units for better view. The spatial location of
the selected pixel on an axial slice is also shown (left). It can be seen that the A component contains a wide range of frequencies. The P component contains a
limited number of temporal frequencies and captures the periodicity that is not captured in the fixed-rank component, A. This separation shows that a selection
of a fixed, moderate rank for the A component, in addition to a demand for a limited number of temporal frequencies for the P component leads to the desired
separation, which results in improved z-stat results shown earlier. [Color figure can be viewed at wileyonlinelibrary.com]
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stimulation. In contrast, task-based fMRI involves known
manipulations of brain activity (a.k.a task-based fMRI),
although some of the properties of task-based fMRI data are
very similar to resting fMRI (i.e., the low variance signal
based on the BOLD effect). Since many other reconstruction
techniques place strong assumptions on brain activity, e.g.,
that it is periodic, highly reproducible or smooth in time,
PEAR does not place these assumptions and therefore is
expected to provide reliable results also for task-base fMRI.
However, the analysis of task-based fMRI with PEAR is
reserved for future research.

In addition, the reconstruction time of PEAR for a single
realistic 2D axial slice in the dimensions described in our
experimental results (109 9 91 with 512 time points) is
approximately 15 min using MATLAB running on a single
machine with 3.2 GHz CPU. To allow recovery of a multi-
slice image, we used cluster-based computing that processed
all 91 slices in parallel and provided a 3D volume approxi-
mately at the same running time. While the computation time
and the need for cluster-based computing are drawbacks of
all iterative methods used to reconstruct fMRI sequences
examined in this paper (k-t FASTER and L + S), it is per-
formed offline, while the subject is no longer in the scanner
and does not require expensive MRI resources. In addition,
we are examining approches to accelerate the reconstruction
process, mainly by improving the NUFFT, using methods
with lower computational complexity53 and implementing
algorithms in a real-time programming environment.

5. CONCLUSIONS

This paper presents PEAR, an under-sampled fMRI
reconstruction approach based on separating the fMRI sig-
nal to periodic and fixed-rank components. The higher
accelaration ratio offered by PEAR results in reconstruc-
tion with higher fidelity than when using a fixed-rank
based model or a conventional L + S algorithm. We have
shown that splitting the functional information between the
A and P components, by solving a constrained problem
that enforces a fixed, moderate rank for the A component,
leads to better modeling for fMRI, due to the unique nat-
ure of the fMRI signal. Future work will focus on extend-
ing this work to task-based fMRI using both retrospective
and prospective sampling.
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APPENDIX A

SOLUTION OF EQ. (6) USING ISTA

Let Q = Ft{P}. Using the fact that Ft is unitary, Eq. (6)
can be written as:

Pn ¼ FH
t fDðAn;QÞg (A1)

where

DðAn;QÞ ¼ arg min
Q2RN�K

1
2
ky� EfAn þ FH

t fQggk22
þ kkQk1: (A2)

An iterative solution to Eq. (A2) can be obtained using the
iterative shrinkage-thresholding algorithm (ISTA),43,44,45

whose general step is:

Qkþ1¼KkðQk�aFtfEHfEfAnþFH
t fQkgg�yggÞ (A3)

Here Λk is the soft-thresholding operator with parameter k, a
is the step size and Q0 = Pn�1. Using the fact that
Pn ¼ FH

t fQKg, setting K = 1 and using Eq. (11) we get that
the general step for the solution of Eq. (6) is:

Pn ¼ FH
t fKkðFtfPn�1g � aFtfEHfEfAn þ Pn�1g � yggÞ

¼ FH
t fKkðFtfPn�1 � aEHfEfAn�1 þ Pn�1g � yggÞg;

(A4)

where the last equality is Eq. (8) in the paper.

APPENDIX B

FORMAL DERIVATION OF THE DUAL-
REGRESSION USED IN EXPERIMENT 3

In experiment 3, we evaluate our results by generating spa-
tial maps and associated timecourses corresponding to
group-level ICA components of resting state fMRI. This pro-
cess is carried out via dual regression.38 In dual-regression,
we assume that we have group ICA maps that represent vari-
ous resting-sate maps (regressors). In our case, those maps
were derived from high-dimensional group-level ICA of rest-
ing fMRI datasets from the HCP database. For simplicity, the
maps are represented as a 2D matrix, M 2 RM�N , where N is
the number of pixels and M denotes the number of maps (in
experiment 3, we used M = 15 maps). Then, we first find the
timecourses associated with each map using pseudo-inverse:

Q ¼ XTMy (B1)

where X is our space-time fMRI series. As a result, the col-
umns of Q 2 RT�M represents the M time-courses associated
with the maps within our single subject’s data, X. To find the
spatial maps associated with those time-courses, we use
pseudo-inverse again:

MX ¼ QyXT (B2)

where the rows of MX are the spatial maps of the subject’s
data, X. These are the maps that are shown (after null-
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correction using a Gaussian and Gamma mixture model5) in
Figs. 8, 9 and 12. More details about the dual-regression
method can be found at in Erhardt et al.54

a)Author to whom correspondence should be addressed. Electronic mail:
weizmanl@tx.technion.ac.il; Telephone: +972-4-8291724.
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