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ABSTRACT Objective: To design and implement an easy-to-use, Point-of-Care (PoC) lateral flow
immunoassays (LFA) reader and data analysis system, which provides a more in-depth quantitative analysis
for LFA images than conventional approaches thereby supporting efficient decisionmaking for potential early
risk assessment of cardiovascular disease (CVD). Methods and procedures: A novel end-to-end system
was developed including a portable device with CMOS camera integrated with optimized illumination and
optics to capture the LFA images produced using high-sensitivity C-Reactive Protein (hsCRP) (concentration
level < 5 mg/L). The images were transmitted via WiFi to a back-end server system for image analysis and
classification. Unlike common image classification approaches which are based on averaging image intensity
from a region-of-interest (ROI), a novel approach was developed which considered the signal along the
sample’s flow direction as a time series and, consequently, no need for ROI detection. Long Short-Term
Memory (LSTM) networks were deployed for multilevel classification. The features based on Dynamic
Time Warping (DTW) and histogram bin counts (HBC) were explored for classification. Results: For the
classification of hsCRP, the LSTM outperformed the traditional machine learning classifiers with or without
DTW and HBC features performed the best (with mean accuracy of 94%) compared to other features.
Application of the proposed method to human plasma also suggests that HBC features from LFA time series
performed better than the mean from ROI and raw LFA data. Conclusion: As a proof of concept, the results
demonstrate the capability of the proposed framework for quantitative analysis of LFA images and suggest the
potential for early risk assessment of CVD. Clinical impact: The hsCRP levels <5 mg/L were aligned with
clinically actionable categories for early risk assessment of CVD. The outcomes demonstrated the real-world
applicability of the proposed system for quantitative analysis of LFA images, which is potentially useful for
more LFA applications beyond presented in this study.

INDEX TERMS Lateral flow immunoassays (LFA), CMOS image sensor, long short-termmemory (LSTM),
dynamic time warping, high-sensitivity C-Reactive Protein.

I. INTRODUCTION
Cardiovascular diseases (CVD) are considered as a major
threat to global health and the leading cause of death globally

with 85% of them caused by heart attack or stroke. In addi-
tion, over 75% of CVD deaths occur in lower and middle
income countries where medical resources are limited [1].
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There is a growing demand for a range of portable, rapid
and low cost PoC devices such as Lateral Flow Immunoas-
says (LFA) for the early risk assessment of CVD in resource
limited settings.

LFAs have been applied for home pregnancy tests [2], [3],
HIV [4], [5], Influenza A (H1N1) [6], and more recently for
COVID-19 antibody testing [7]–[10]. Despite the widespread
applications of LFA in PoC diagnostics, the sensitivity of LFA
testing is limited and the conventional LFA tests based on
semi/quantitative methods face the challenges to detect high-
sensitivity C-Reactive Protein (hsCRP), which are normally
present in low concentration in blood [11]. CRP is a protein
that increases in the blood with inflammation or infection as
well as following a heart attack, surgery, or trauma. Accord-
ing to the National Institute of Health and Care Excellence’s
(NICE) guidelines measuring CRP quantitatively over con-
centration levels between 10mg/L to 100mg/L can assess the
severity of bacterial infection. The hsCRP tests performed
over a lower range (from 0.5mg/L to 10mg/L) can be used
for early risk assessment of CVD [12]. The level of CRP can
be an early indicator of that a person is developing a car-
diovascular problem and a high level of hsCRP in the blood
has been linked to an increased risk of heart attacks [13].
The value of knowing CRP levels depends on whether you
fall into one of three cardiovascular risk groups, as suggested
by Ridker [11] where the hsCRP level < 1mg/L (low risk),
1-3 mg/L (moderate risk) and >3 mg/L (high risk) are com-
monly used for cardiovascular risk discrimination.

Although LFA has been developed to exploit their capa-
bility over clinically useful biomarker ranges, enabling rapid
semi- or fully- quantitative analyses of samples at PoC [14],
quantitative LFA analysis still faces some challenges. One
limitation is that visual interpretation of results becomes
subjective, particularly when relying on the end-user to inter-
pret multiple test lines or perceive variable gradients in line
intensity [15]. The difficulties in interpreting results appear to
be one of the common issues reported in the usability studies
for LFA testing [4], [5], [7], [9]. Recent user experience study
of LFA rapid testing kit for SARS-CoV-2 antibody testing [9]
show that ambiguous test lines with low signal intensity may
occur with very low levels of antibodies being present in the
test result, which may confuse the users to determine whether
the result corresponded to a positive result. These limitations
can be overcome by analysing the line intensities of the LFA
test using suitable calibrated sensors such as photodiodes or
optical linear array. Such a system could either measure the
absorbance or reflectance of light from a source as it passes
through or reflected by the LFA to the sensor respectively.

A more recent approach is direct imaging using CMOS
imaging sensor. For example, a study [16] used a smartphone
camera to quantify cortisol levels in human saliva. Luminol-
based substrates were used and the ratio ofmean photon emis-
sion intensity between the control line and the test line were
calculated and calibration curves were created. They reported
that the detectability offered by the CMOS smartphone cam-
era was adequate for measuring the light signal from the

LFA strip at the clinically relevant cortisol concentration.
Other approaches use a CMOS camera either integrated into a
standalone reader device [17], [18], or use the camera module
integrate to smartphone devices [19]. The smartphone-based
system is flexible, however, the disadvantage of the system
is the difficulty to achieve a well-controlled illumination and
orientation of the LFA strip for image analysis. Both can be
difficult to achieve in the wide range of PoC scenarios that
may be encountered [20]. Both these issues can introduce
variations between the images taken for the analysis and
hence impact the generation of a calibration curve or an
inaccurate analysis result. Alternatively, a CMOS camera can
be designed into a suitable stable platform that reduces the
unwanted variations in both the orientation and the lighting
and produce consistent results. In addition, since the test-line
generated by lower biomarker concentration level is difficult
to detect directly by the naked eye, a dedicated LFA reader
for quantitative analysis is desirable, which was one of the
focuses of this study.

Detection of high-sensitivity biomarkers via LFA test-
ing is a challenging task. Studies have been carried out
to improve the detection sensitivity to allow the develop-
ment of high sensitivity assays [21], improve the labeling
strategies, enhance the optical and electrochemical trans-
ducers and explore the evolution of recognition [18]. How-
ever, these approaches require either external equipment,
high-cost reagents, or complicated fabrication with multistep
procedure. Smartphones provide a promising digital plat-
form for mobile PoC diagnostics, as they are equipped with
inbuilt high-definition cameras, computation power for image
processing, wireless connectivity to the internet and other
Internet of Things (IoT) devices [15], [19], [22]. Smartphone-
based LFA testing approaches have been reported recently
for binary classification via Support Vector Machine
(SVM) [15], [22]. Few studies [23]–[26] have applied the
neural networks to LFA scenarios. The Cellular Neural Net-
work (CNN) [23] and Deep Belief Networks (DBN) [24]
were applied in for LFA testing based on human chorionic
gonadotropin, but the purpose of using neural network was to
improve the ROI detection rather than classification. AMulti-
Layer Perceptron (MLP) neural network was used in [25]
for drugs-of-abuse detection based on image intensity to
assess saliva content. There are several limitations in com-
mon smartphone-based LFA testing: 1) most studies were
for binary/qualitative testing not for multilevel biomarkers;
2) the quality of the LFA images from smartphone camera
varies depending on the ambient lighting, which can affect
the performance; 3) most studies were based on the average
of image intensity from the detected ROI around the LFA test
line area, therefore the performance can be affected by the
accuracy of ROI detection.

This paper extended a preliminary version that has been
reported in [26] and presents the development of an end-
to-end based PoC platform, which enhances the categori-
sation of LFA via neural networks for multilevel hsCRP
biomarkers with potential for early risk assessment of CVD.
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FIGURE 1. Overview of the proposed system architecture: (a) the external view of the designed CMOS reader, in which the LFA image was taken by a
CMOS camera with the control line (C-Line) and test line (T-line); (b) data were transmitted to a secured internal server for data storage, analysis and
results viewer; (c) half of LFA image containing the T-line only was selected for further analysis in which the concentration level-4 was used as an
example; (d) DTW was applied to level-4 LFA and a reference LFA from level-8; (e) feature extraction from DTW distance map or histogram bin counts;
(f) classification via the LSTM networks; (g) a web viewer user interface where the end-users can view and query the results of classification.

As a proof of concept, the contribution of this study covers
the following aspects: 1) A device with a CMOS camera
integrated with custom illumination and optics has been
designed, which enhanced the sensitivity of data at hsCRP
concentration levels. The novel end-to-end system enables
the CMOS reader to communicate with a back-end server
system for data storage, transmission, analysis and web view-
ing; 2) Unlike most image classification based on aver-
aging image intensity from ROI, this study explored the
rich temporal information in LFA by considering the sig-
nal along the sample’s flow direction as the time series
data, therefore no detection of ROI is needed; 3) Recurrent
Neural Networks (RNN) was applied to LFA time series
for categorisation of multilevel hsCRP via incorporating
Dynamic Time Warping (DTW) [27]. New features based
on DTW distance map and the histogram bin counts (HBC)
were developed and performance based on different features
was evaluated; 4) Eight concentration levels for biomarker
hsCRP in the range under 5mg/L were applied to gen-
erate the LFA datasets for multilevel classification. The
range was aligned with clinically actionable categories with
potential for early risk assessment of CVD. The proposed
method was further applied to real human plasma reference
material, which demonstrated the potential for real-world
applicability.

The remainder of this paper is structured as follows:
Section II presents the system overview; Section III details
the development and fabrication of the LFA dataset, and the
design of the CMOS LFA reader system. Section IV explains
the classification framework via incorporation of RNN and
DTW and construction of new HBC features; Section V eval-
uated the performance of CMOS reader, compared the classi-
fication based on different features with traditional machine
learning approaches, together with application to LFA images
from human plasma. Section VI provided the discussion
before concludes in Section VII.

II. PROPOSED SYSTEM ARCHITECTURE
The overview of the architecture for the proposed system
is illustrated in Fig. 1, which includes the CMOS reader
designed for LFA image data acquisition, an internal server
for data storage, image processing, classification and end-
user web viewer. (a) a CMOS-based LFA reader was devel-
oped in house, in which a CMOS sensor captured the image
data of LFA strip containing the control line (C-line) and test
line (T-line); (b) the Particle Photonmicroprocessor transmit-
ted the data to a secured internal server [28], which not only
stores the data received from the reader but also contains the
algorithms for further data processing and analysis; (c) the
LFA image was cropped to have half of the image containing
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T-line only. One LFA at concentration level-4 was used as
an example together with the LFA at level-8 as a reference;
(d) DTW was applied to align the LFA time series at level-
4 with the reference at level-8; (e) the features can be con-
structed based on the DTW distance map and its histogram
bin counts. Alternatively, the histogram bin counts for the
raw LFA time series can also be extracted as the feature;
(f) classification was performed based on the Long Short-
Term Memory (LSTM) networks [29]; (g) the server hosts
a cross-platform web server, which provides the end-user
with an accommodating user interface to view and query the
results of classification. The details for each development are
explained in following sections.

III. DATA ACQUISITION
A. LFA STRUCTURE
LFA are operationally intuitive with a long shelf life and by
virtue of a paper-based construction, can facilitate passive
sample and reagent processing via capillary flow. Most con-
ventional lateral flow tests use the ‘sandwich’ assay format,
in which a biomolecule of interest (located in the sample)
is simultaneously bound (sandwiched) between two different
antibodies - one attached or conjugated to the detection label,
and the other immobilised on a T-line zone on the reaction
membrane. A schematic illustration of LFA is given in Fig. 2,
which shows the sample pad, sample flow direction, conju-
gate pad, T-line, C-line and absorbent pad. The conjugate pad,
containing colloidal gold, is labelled with antibodies specific
to the target analyte (conjugate). When the sample is placed
on the sample pad, it flows by capillary action to the conjugate
pad where the target analyte can interact (bind) with these
labelled conjugate antibodies. Conjugate and any conjugate-
sample complexes then travel laterally along the strip. Upon
reaching the T-line, any formed conjugate-sample complexes
are captured and may begin to accumulate over the remainder
of the assay time. Once these reach sufficient density a visual
change occurs on the T-line. The qualitative indication of the
presence/absence of a biomarker can be achieved through the
presence/absence of a T-line. T-line label accumulation can
occur in a manner proportional to biomarker concentration.
The purpose of the C-line is to capture remaining colloidal
gold conjugate, regardless of presence of the target analyte,
therefore C-line acts as a quality control to assess whether the
system is working correctly.

FIGURE 2. The schematic illustration of the LFA structure.

B. MANUFACTURING AND ASSEMBLY OF LFA STRIPS
The LFA strips were manufactured by dispensing the
anti-CRP antibody (1mg/ml) onto nitrocellulose membrane

(Sartorius AG) at a flow rate of 1µl/cm using a front-line
dispenser (Biodot, ZX1010). This line of reagent will be
referred to as the T-line. A second separate and parallel C-line
was dispensed exactly 5.5mm from the T-line. The C-line
comprised of goat anti-mouse Immunoglobulin G (IgG) anti-
body (1mg/ml). Printed nitrocellulose membranes were dried
at 37◦C for 1 hour and then laminated onto a polystyrene
backing card (Lohmann Technologies) along with absorbent
wicking pad (Ahlstrom-Munksjo) with a 5mm overlap. This
laminated card was cut into 5mm half dipsticks for wet assay
testing. Assembled dipsticks were stored in foil pouches with
desiccant until immediately prior to use. Gold nanoparticles
(40nm, OD10, Expedeon) were conjugated to anti-CRP anti-
body at 0.1mg/ml via covalent bonding and used in a liquid
format.

Eight concentrations of CRP solutions (0, 0.05, 0.1, 0.2,
0.5, 1, 2.5 and 5 mg/L) were prepared in a Phosphate-
buffered saline (PBS) solution to demonstrate proof of con-
cept of LFA. The prepared sample of CRP standard solutions
(10µl) were applied to the lateral flow assay with Gold-CRP-
nanoparticles (5µl) and running buffer (45µl) as a 10 minute
wet assay. A ‘sandwich’ assay was employed with the colour
intensity at the T-line relating to concentration of CRP in the
sample.

C. IMAGE ACQUISITION VIA CMOS SYSTEM
Proper illumination is critical to produce precise analysis of
the LFA. Since external ambient light sources can affect the
image quality, the designed CMOS reader was placed in an
opaque 3D printed casing to control the lighting on LFA strip.
The box was constructed to be intuitive and user-friendly,
which can be operated with only one push button switch
installed onto the device and two external LED lights (green
and blue) indicating state of data transmission (as shown in
Fig. 1 (a)). The LFA strip was inserted into the small inlet
near the base of the reader. Once switched on, the green LED
will illuminate to indicate that the strip data was processed
and sent to the cloud for analysis. Once the image acquisition
was over, the green LED will turn off. However, if there were
connectivity problems the blue light will turn on and stay
on until a reliable and stable connection to the cloud was
established.

For most LFA readers, T-line and C-line alignment with
the sensors is critical to avoid major discrepancies in the
result. Some systems use different sensors and light sources
to measure the intensity changes at the test and control line
independently. Other method (such as flatbed scanner) uses
a single sensor and light attached to a mechanical arm to
scan the LFA strip, which increase hardware costs, power
consumption and complexity of the overall system. This study
used a single CMOS camera to take an image of the LFA
containing both T-line and C-line areas. The inner struc-
ture of the designed CMOS reader light box is shown in
Fig. 3. The CMOS camera was aligned directly above the
LFA in a stationary position, removing the requirement of a
mechanical arm and issue related to poor alignment with the
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sensor. Four green diffused Surface-Mounted LEDs with
large viewing angles were positioned evenly around the
CMOS camera lens to provide an even distribution of light
across the testing region of the strip. Since the gold nanopar-
ticles used in this study have a diameter of 40nm, the light
of wavelength 530nm (green) was used [30] to increase the
level of absorption which in turn increases the amplitude of
the signal-to-noise ratio.

FIGURE 3. Inner structure of the designed CMOS reader light box:
1) CMOS lens point downwards onto the LFA strip; 2) four green LEDs
evenly distribute light onto the LFA; 3) T-line and 4) C-line on LFA strip.

Arducam’s OV5642 CMOS 5-megapixel camera module
was used for image acquisition due to its low power con-
sumption and high performance, which makes it ideal for
a battery powered PoC devices. The Particle Photon WiFi
development board, with a Cypress BCM43362 WiFi chip
and STM32F205 120Mhz ARM Cortex M3 microcontroller,
was used to send the images to the cloud as well as controlling
the Arducam’s CMOS sensor timings and LED controls.

FIGURE 4. Examples of LFA strip images at eight hsCRP concentration
levels captured by the designed CMOS system.

D. LFA IMAGE DATA
Fig. 4 gives examples of a set of LFA strip images obtained at
eight hsCRP concentration levels using the designed CMOS
reader system. The eight levels (in mg/L) are: 0, 0.05, 0.1,
0.2, 0.5, 1, 2.5 and 5. It can be seen that each strip contains the
C-line and T-line, in which the intensity of the T-line changes
according to the concentration levels. It is also noticed that
the position of the T-line is not fixed in each image. For
those approaches based on averaging the image intensity from

T-line area (ROI), the performance can be affected by the
accuracy of ROI detection. Feature based on intensity may
work for simple binary classification but a more sophisticated
approach is needed for detection of high-sensitivity biomark-
ers, especially for the LFA at low concentration level that can
have a very faint T-line. The length of an LFA strip image
along the sample’s flow direction is 1600 pixels, which was
also considered as the time steps in this study. The width of
LFA strip is 450 pixels. In this paper, the number of row of
an LFA image is defined by the width of strip and the number
of column is the length of LFA strip along the flow direction.
Only half of LFA image containing the T-line (size 450 ×
800 pixels) was used for further analysis.

Note that the purpose of this study was not to analyse
the LFA strip at discrete or continuous time points as the
assay proceeds. Instead, the LFA images were captured at a
fixed time point (also known as an endpoint assay), following
‘completion’ of the lateral flow assay. The LFA image is
a final snapshot of the assay containing a particular spa-
tial phenomenon, i.e., the leading edge is stronger than the
trailing edge, which also contains valuable time-dependent
information that can help to enhance the classification
performance.

IV. MULTILEVEL CLASSIFICATION
This study developed a novel approach considering the LFA
data along the sample’s flow direction as time series sig-
nals (hence no need for ROI detection), which provided a
new perspective to analyse the LFA image data and explore
richer information than image intensity. For classification, the
LSTMnetworks can be directly applied to the LFA time series
signals (as in our pilot study [31]) however the performance
can be improved with additional features. Here, the temporal
features were constructed from DTW [27] and histogram
bin count. LSTM networks [29] are a special kind of RNN
that are able of exhibiting dynamic behaviour and learning
the long-term dependencies along a temporal sequence and
have been successfully applied to speech recognition [32],
language modelling [33] and ECG arrhythmia detection
[34], [35]. DTW [27] developed an optimum dynamic pro-
gramming (DP) based time-normalisation algorithm for spo-
ken word recognition, which has been widely used in many
applications such as to find patterns in time series [36], word
recognition [37], brain signal processing [38] and motion
capture [39].

A. FEATURES VIA DTW DISTANCE MAP
A block diagram of the framework incorporating LSTM and
DTW for classification of eight hsCRP concentration levels is
given in Fig. 5. Since C-line worked as a quality control, only
the half of LFA image containing the T-line was selected for
classification. Because LFA time series reveal the change of
intensity with time steps (as in the example given in Fig. 8(a)),
DTW was applied to align the LFA time series from each
concentration level to one reference LFA image from level-8.
The distance maps obtained from DTW capture the feature
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FIGURE 5. The block diagram for the proposed framework for multilevel
hsCRP classification via incorporation of LSTM and DTW.

of alignment, which are arranged as the input sequences for
LSTM, followed by a fully connected layer, a softmax layer
and an output layer for sequence classification. Alternatively,
the features can also be formed based on the histogram bin
counts from the distance maps or the LFA time series (as
explained in section B), which can be used as the input
sequences for LSTM.

For half LFA image with size 450 × 800 pixels, in which
450 is the width of LFA strip and 800 is the length across
the strip (along the flow direction). Each row of images is
considered as a time series (with 800 time-steps) since they
contain the information that arises as a result of temporo-
spatial interactions throughout the assay time via the gradual
accumulation of label conjugate particles. To apply DTW,
each row of LFA images at different concentration levels was
aligned to the corresponding row in a reference LFA (from
level-8), therefore, the distance map is a matrix with dimen-
sion of 450 × 450. One fixed LFA image from level-8 was
used so that all data were compared with the same reference.

B. FEATURES VIA HISTOGRAM BIN COUNTS
To explore the temporal features that capture the differences
across all CRP levels, the feature of histogram was inves-
tigated. After aligning eight CRP levels to the reference
by DTW, each distance map was rescaled to a range of
[0, 1]. Fig. 6 presents the image histogram for the rescaled
distance map, which clearly shows the differences in eight
CRP levels. A new feature was formed via the histogram bin
counts (HBC) for each row of the rescaled distance map. The
number of bin was set as 100 (hence all features have the fixed
length of 100). The histogram bin counts were normalised by
probability to make the sum of the bin values to be less than or
equal to 1. Therefore, for each distance map (size 450×450),
the feature of HBC has a size of 450× 100.
The same approach was applied to obtain the HBC features

from the LFA time series data (without DTW). For each level
LFA (size 450 × 800) the HBC feature has the same size as

that from distance map (450× 100). The performance based
on the distance map and HBC features were evaluated and
compared in the experiments.

C. ARRANGEMENT FOR LSTM INPUT SEQUENCES
It was noticed that the performance of LSTM can be affected
by different feature dimensions or input sequences. Given
an input sequence for LSTM sequence X, which can be
presented in a matrix form:

X =


x11 x12 . . . x1N
x21 x22 . . . x2N
...

...
. . .

...

xk1 xk2 . . . xkN

 (1)

where k is the feature dimension and N is the feature length.
For the feature based on the DTW distance map, N = 450,
and for HBC features N = 100. It was noticed that by
changing the feature dimension we can have different number
of input sequences, such as by dividing the original features
into a number of smaller-size feature sets. For example, with
the maximum dimension k = 450, number of input sequence
is 1; if k = 45, the number of sequences from original
feature becomes 450/45 = 10, which may have impact on
the performance of LSTM. In the experiment, the different
combinations of k and the number of sequences were inves-
tigated and performance was compared.

V. EXPERIMENTAL RESULTS
In the experiments, the evaluation of designed CMOS system
was carried out first followed by the classification of LFA
data obtained from eight hsCRP concentration levels. Each
level has 30 LFA images (hence 240 images in total). Each
image (size 450 × 800) contains 450 time series so the
total number of time series available is 450 × 30 × 8 =
108, 000. A holdout data partition was used, in which 70%
were randomly selected for training and the remaining 30%
for testing. The number of input sequences for training and
testing under different arrangements are given in Table 1,
in which the first column shows the number of feature dimen-
sions and input sequences that can be obtained from either
a distance map or the feature of HBC. The accuracy was
defined as: sum(Predict = Test)/(Number of Test). The num-
ber of epochs, batch size and iteration rate for LSTM were
empirically set to 30, 20 and 0.01, respectively. The distance
maps were rescaled to a range of [0, 1] before being nor-
malised by zscore and fed into the LSTMnetwork. All numer-
ical aspects of the experimentation were conducted using
MATLAB2019b.

A. PERFORMANCE FOR CMOS READER
The performance of CMOS reader was compared to a
commercial device from Lumos Diagnostic (lumosdiagnos-
tics.com), which is a well-developed product and has been
widely used in laboratories. The Lumos system is a reusable
LFA reader and analyser that provides high-resolution
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FIGURE 6. The image histogram for the distance map from DTW after aligning eight CRP levels to a reference at level-8.

TABLE 1. Size of input sequences for training and testing.

imaging of LFA strips for qualitative and quantitative appli-
cations, however it was not designed for the purpose of this
study (involving multilevel high-sensitivity biomarkers).

The original LFA images (RGB) were converted to the
grayscale first, then manually cropped to remove unwanted
sections of the image and keep the LFA strip. The change
in the pixel intensity shows the change from the background
of LFA to the two darker regions for T-line and C-line. The
pixel values of both regions were averaged to obtain the
mean intensity of the T-line and C-line regions. To mitigate
the variations that might be introduced by the LFA strips
and image lighting, the ratio of mean intensity from C-line
and T-line was calculated, which was expected to vary for
different concentration levels in biomarker sample used to
produce the LFA.

Fig. 7 presents the results on the comparison of the mea-
surements for mean intensity of Control-Test line ratio from
the designed CMOS reader and Lumos system using ten
commercial LFA strips (not for detection of CRP), with error
bar based on the standard deviation (SD). It can be seen that
the Lumos system has a steeper curve (indicating slightly
more sensitive) at the lower range of concentration levels
compared to the CMOS system, but the overall performance
from the two systems are comparable.

FIGURE 7. Comparison of performance from the designed CMOS reader
and Lumos reader based on ten LFA strips.

B. RESULTS FROM DTW
An example of one set of original LFA time series from
eight hsCRP levels is shown in Fig. 8 (a), which shows
that the intensity changes according to the concentration
levels. Fig. 8(b) shows the results after DTW, in which
the original signals from each level were aligned to the
one at level-8 (which remains itself as the reference). It is
noticed that the length of the signals changed as DTW
stretches the original data to match the reference. The exam-
ples of two distance maps from DTW by aligning LFA
level-1 and level-8 data with the reference (level-8) are
given in Fig. 9 (a) and Fig. 9 (b), respectively, in which
the distances are rescaled in the range of [0, 1]. It can be
seen in Fig. 9 (b) that the values along the diagonal line
are zeros when the rows from level-8 were aligned with
themselves.
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FIGURE 8. LFA time series from eight concentration levels: (a) original
signals; (b) signals after DTW.

FIGURE 9. Examples of two distance maps obtained from DTW by
aligning LFA data with the reference (level-8): (a) level-1 and (b) level-8.

C. FEATURES OF HBC
Fig. 10 presents two examples of the features from eight
concentration levels based on the histogram bin counts for
one row from (a) distance map and (b) LFA time series
data, respectively. It can be seen that the HBC features from
distance map appear to be better separated in terms of bin’s
locations (along x-axis) than those obtained from LFA time

FIGURE 10. The HBC features from eight concentration levels for one row
in: (a) DTW distance map and (b) LFA time series data.

series, but the latter appears to present the differences in the
number of counts (in y-axis).

D. RESULTS FROM CLASSIFICATION
The classification by the proposed method was compared to
fivewell-knownmachine learning classifiers including SVM,
K-Nearest Neighbours (KNN), Linear Discriminant Analysis
(LDA), Decision Tree (DT) and Naive Bayes (NB). For fair
comparison the same data partition was used to test all algo-
rithms and same size of sequences as shown in Table 1. The
multiclass models were trained based on the error-correcting
output codes (ECOC)model [40] and the hyperparameters for
each classifier were obtained via running the hyperparameter
optimisation process set in Matlab.

For LSTM the performance may be affected by different
settings for feature dimension and the number of hidden lay-
ers in LSTM. The experiments were carried out by changing
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TABLE 2. Classification based on DTW distance map.

TABLE 3. Classification based on HBC features for DTW distance map.

TABLE 4. Classification based on HBC features for LFA.

the feature dimension as 10, 15, 30, 45 and 90 as set in Table 1.
For the HBC features for LFA time series, the number of
hidden layers were 10, 25, 50, 100, 150, 200, 250 and 300.
The results suggest the overall good performance for all input
dimensions is hidden layers 250. Similar experiments were
carried for HBC features obtained from distancemap, the best
setting for hidden layers was 150. For the distance map, the
best performance was found for hidden layer 25.

The results based on the DTW distance map, HBC features
for distance map and LFA time series are given in Table 2,
Table 3 and Table 4, respectively. For two features based on
DTW, the results fromLSTMbased on distancemap (Table 2)
appear to perform better than those based on their HBC fea-
tures (Table 3). Interestingly, the HBC features for LFA time
series data (Table 4) appear to achieve the best performance.
In addition, LSTM outperforms other classifiers for all three
cases (with or without DTW).

We further compared the performance at each concentra-
tion level of an LSTM model and three top ML algorithms
(ranked by their average accuracy) based on three features in
Table 2, Table 3 and Table 4, in which the feature dimen-
sion was 30. The results are further presented in Fig. 11

in confusion matrices. It can be seen that for all classifiers
the HBC features for LFA time series lead to the highest
accuracy, the higher errors are found for classifying level-5,
6, 7 and 8. For HBC features for LFA, the three ML classi-
fiers performed better than the LSTM model at level-5 and
level-6 and LDA appears to be better than SVM and KNN.
For the Distance Maps and their HBC features, the three
ML classifiers performed better than LSTM at level-2 and
KNN has higher accuracy than SVM and LDA. The overall
performance for classification suggest the ability to output of
the concentration of the target analyte with a high level of
accuracy by the proposed approach via applying LSTM to
different features obtained from LFA time series and DTW.

E. COMPARISON WITH ROI-BASED APPROACH
The proposed method has two advantages over the ROI-
based approach. First, ROI detection can be difficult when
the sample’s concentration level is very low and an advanced
method is needed as reported in some studies [23], [24].
Second, the proposed method treats the signal along the
sample’s flow direction (each row of the image) as a
time series, which captures the temporal information that
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FIGURE 11. Comparison of confusion matrix from classification based on LSTM, SVM, KNN and LDA using features of distance map, HBC
features for distance map and HBC features for LFA time series.

is usually ignored by averaging the intensity within the
ROI and therefore can potentially improve the classification
performance.

1) ROI DETECTION
To demonstrate the impact of T-line intensity on ROI detec-
tion, a visual score card was used as an example in Fig. 12(a),

which includes the T-lines at 10 intensity levels. Fig. 12(b)
presents the detected T-line area using the traditional Sobel
edge detection technique. It can be seen that the regions with
intensity lower than level-3 were hard to detect. Fig. 12(c)
plots the intensity values taken from the 700th column in
visual score card image (Fig. 12(a)). The x-axis is the number
of rows of the image and y-axis is the intensity, which shows
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FIGURE 12. (a) A visual score card showing the T-lines with 10 intensity
levels; (b) T-line regions detected by Sobel edge detection; (c) plot of
intensity values at the 700th column of visual score card; (d) define the
ROI from half of LFA image containing T-line.

the intensity values being captured at all 10 levels (as marked
in red).

2) CLASSIFICATION
The ROI-based approach was applied to the same LFA image
based on eight hsCRP levels. To extract the T-line area, firstly,
the minimum intensity value was found from the half of
the LFA image containing the T-line. The ROI was defined
by a rectangular region from the point of minimum value
plus 120 pixels along the flow direction (as illustrated in
Fig. 12 (d)). (Here the ROI width of 120 pixels was deter-
mined empirically, which could be wider to simplify the pro-
cess). Each image was divided into 15 mini strips each with
dimensions of 30 × 120 pixels. The intensity along the flow
direction was averaged so each mini strip provides the mean
of intensity (30 × 1), which were used for classification.

A holdout data partition was used, in which 70% of
available data were randomly selected for training and the
remaining 30% for testing. For comparison, the proposed
methods were also applied to the raw LFA time series based
on dimension 30 and sequence 15. The number of feature
vectors is 2520 for training and 1080 for testing. The results
based on accuracy are provided in Table 5, which show
that using the LFA time series achieved better performance
than the mean from ROI. In addition, the results from LFA
time series are not as good as those (with dimension 30 and
sequence 15) in Table 2, Table 3 and Table 4, because further
temporal feature extraction (by either DTW or HBC) helps to
improve the classification performance.

F. APPLICATION TO LFA IMAGES FROM HUMAN PLASMA
To demonstrate the application of the proposed method to
actual human samples, the LFA images for human plasma

TABLE 5. Classification accuracy (%) by the ROI-based and proposed
method.

were assembled based on dilution of the certified reference
material ERM-DA474/IFCC, which has been used as a refer-
ence material for CRP since 2012 [41]. The original sample
with concentration 42.1mg/L was diluted to produce six con-
centration levels (in mg/L): 42.1, 10.3, 5.15, 2.58, 0.64 and
0.32. Lumos reader was used to capture the LFA images since
the CMOS reader designed in this study (for hsCRP) was not
optimised for the plasma samples.

Fig. 13 shows one set of LFA imageswith six concentration
levels obtained from the Lumos reader, in which the T-line
area was cropped to a size of 100 × 300 pixels. It can be
seen that the intensity of T-line area changes according to the
concentration levels. Two sets of LFA images were acquired
by the Lumos initially. To increase the number of data points
for classification, each image was split into half (size 50 ×
300 pixels) first, then flipped vertically and horizontally,
finally produced 12 image sets in total for classification.
Flipping the image will not change the mean or variance
of time series, such as flipping LFA image vertically only
rearranges the order the time series. Flipping LFA image
horizontally does change the pattern of LFA time series since
it inverses the flow direction of time series, which can affect
the performance if one uses the raw LFA time series or DTW
for classification, but should not affect the HBC features
for LFA time series (since it is based on the histogram bin
counts). For comparison, the mean from the ROI, raw LFA
time series and the HBC features for time series were used
for classification.

The number of final plasma LFA image sets used for
classificationwere 12, in which 8 sets were randomly selected
for training and the rest of the 4 sets were used for testing.
The size of the image (after splitting the original image into
half) is 50 × 300. The feature dimension was set as 10 so
each image contains 5 sequences (or mini strip images). For
ROI-based approach, since size of each mini strip is relatively
small (10 × 300 pixels), we directly used it as ROI and the
mean of intensity along the flow direction was calculated
and each mini strip has a feature vector (10 × 1). The total
number for training and testingwas 240 and 120, respectively.
Since the data is too small to train LSTM network, only five
traditional ML classifiers were used in this experiment.

The results based on the mean from ROI, LFA time series
and HBC features for time series using five classifiers are
provided in Table 6. It can be seen that the performance by

VOLUME 9, 2021 1900415



M. Jing et al.: Novel Method for Quantitative Analysis of C-Reactive Protein Lateral Flow Immunoassays Images

FIGURE 13. The LFA images based on diluting the human plasma in six
concentration levels.

TABLE 6. Comparison of classification accuracy (%).

the proposedmethod using LFA time series andHBC features
are better the mean of the ROI. As expected, higher accuracy
was achieved by HBC features comparing to using the LFA
time series. The performance based on the LFA time series
can be affected due to flipping the image horizontally which
changed the flow direction of the time series. Despite this, the
overall performance from LFA time series is still better than
that from the mean of ROI.

The confusion matrices for the top three classifiers are
provided in Fig. 14. Overall, HBC features for LFA from
LDA appear to perform well at all levels. The errors from
the ROI-based approach are found at level-2, 3 and 4. But for
level-5 and level-6, the SVM and KNN based on the mean
of ROI appears to work better than the proposed methods.
Note the performance of classification is not the focus here,
instead, the purpose of this experiment was to demonstrate
the feasibility of the proposed method for actual human sam-
ples. The overall results suggest the possible potential of the
proposed system for real world applications.

VI. DISCUSSION
This study developed an easy-to-use LFA reader system,
which can provide the user with a more in-depth quantitative
analysis for LFA images than the conventional approaches.
The proposed approach for considering the LFA image data
along the sample’s flow direction as a time series of sig-
nals provided a new perspective to analyse the image data.

By capturing the temporal information from an image pro-
vides us with more opportunity for data exploration which
will potentially help to improve the system performance in
general. The presented idea can be useful for various image
analysis applications that involve the data containing both
spatial and temporal information.

An end-to-end system has been developed and imple-
mented whereby a light-box was constructed to control envi-
ronmental variables with an intuitive design allowing the user
to obtain the LFA image data at the press of a single button.
The data can be sent to a remote server via IoT device, where
the image data can be analysed and results are displayed on a
web application.

Unlike conventional semi-quantitative analysis methods,
the proposed approach encourages system calibration (model
training) using samples that are more reflective of those
encountered in real-world PoC system. This opens the door
to accurate, non-subjective biomarker analysis that can cope
with the challenge of the artefacts caused by use of hetero-
geneous samples and subsequential false positives/negatives
against a set threshold. The use of a back-end system can
ensure that the appropriate calibration in case with variability
in the sample matrix may lead to the necessity of recalibration
of readers.

CRP is a good predictor of heart disease, there’s a high cor-
relation between high CRP levels and the chances of having a
heart attack or cardiovascular problems. As reported in [12],
of the 12 biomarkers tested, the hsCRPmeasurement resulted
as the strongest univariate predictor for cardiovascular events.
Some studies [13] suggested using hsCRP as a discriminatory
tool through division of three or even five categories ranging
from<1mg/l to>5mg/l. Another study [42] shows that divid-
ing hsCRP levels into five categories (<0.5mg/l, 0.5-1mg/l,
1-3mg/l, 3-5mg/l, and>5mg/l) could provide further discrim-
ination. Therefore, to investigate the capability of analysis in
the CRP range associate to CVD risk assessment, we analysed
the hsCRP at eight concentration levels in a range of 0-5mg/L,
which were aligned with clinically actionable categories for
early risk assessment of CVD. The developed method needs
to be highly sensitive, which is crucial due to the minor vari-
ance at those low CRP levels that will importantly determine
cardiovascular risk. The positive outcomes for classification
of multilevel hsCRP in this study demonstrated the real-world
applicability for the proposed approaches.

As a proof of concept, the major work in this study used
CRP as a model assay in a buffer system. To demonstrate
the proposed method works on actual samples of blood or
plasma, the additional LFA images from human plasma were
assembled by using the certified CRP reference material (as
in Fig. 13). We analysed LFA from plasma as the sample
matrix and results for classification are given in Table 6.
The performance could be limited due to only small plasma
image data was available for the experiment. Due to the com-
plexity of real samples, more consideration will be needed
when apply the proposed methods to real-world problems.
(1) In term of data generation, within a biological context,
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FIGURE 14. Comparison of confusion matrix from classification based on SVM, KNN and LDA based on different features: mean from ROI, LFA time
series and their HBC features.

blood and plasma matrix compositions are often complex and
contain many small compounds of varied character, proteins,
and other small to large cellular components. These many
components in biological matrices can influence the result
of an analysis; (2) In terms of data acquisition, the design
of CMOS reader may need to be adaptive for LFA with
different targets (or antibodies); (3) For data analysis, the LFA
images from real samples may contain the stains (as noticed
in Fig.13 for plasma sample level-2, which can simply be dust
or contaminants). Also as pointed out in [23], when the user
adds the sample to LFA device some interference noises can
be inevitable on the strip due to variations in sample matrix
(e.g. urine, blood, serum) or the actual differences in the
constituents of the individual sample. The stains (or noises)
on LFA image can affect the analysis performance therefore
additional prepossessing (either manual or automatic) are

needed to detect and ‘clean’ such artefacts before further
image analysis.

The limitation of the study includes the following aspects.
(1) Despite the ability of antibodies to detect target antigens
in complex matrices, immunoassays have their limitations.
Different LFAmay be difficult to implement with the existing
system due to different affinities of antibodies. This would
mean that each LFA for different targets (or antibodies) would
have to be optimised and validated each time via a calibration
curve which is standard practice where quantitative results
are required. For hardware settings, to achieve the best per-
formance, the design of a CMOS reader may need to be
adapted and optimised for LFAwith different targets. Current
setup using the green LEDs was designed specifically for
LFA (hsCRP) used in the paper as to maximise the absorption
of light photons by the gold nanoparticles at 530nm. The same
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setup (with green lights) can still be used with other LFA
strips not using gold nanoparticles (such as in our study based
on LFA with NT-proBNP for heart failure [43]), but may
result in some reduced sensitivity. Alternatively, the LEDs
can be changed from green to white light source to have
uniform lightning throughout the visible spectrum, allowing
the system to be used for multiple strips, which is currently
under development. (2) CRP is a general nonspecific marker
of inflammation, it is useful in helping predict the risk of
heart disease. However, analysing CRP on its own may not
be totally beneficial. Instead analysing CRP along with other
biomarkers (e.g. cholesterol) may give a better indication of
the risk of cardiovascular issues and help to evaluate dis-
ease progression and prognosis in those who already have
cardiovascular disease. (3) The overall results from hsCRP
suggest that LSTM has the advantages over traditional ML
classifiers. For small data sets (for plasma samples), LSTM’s
performance was not stable (so not reported) since it needs
large data to train the network, but the traditional ML clas-
sifiers with feature extraction performed better than LSTM.
(4) The performance based on human plasma samples could
be limited due to only small plasma image data was avail-
able, because this study was conducted during COVID-19
pandemic and it was difficult to collect the human blood or
plasma samples. A full clinical trial using human blood or
plasma to validate the system will be considered in the next
stage of this research. Nevertheless, the experimental results
have demonstrated the applicability of the proposed method
to real human samples.

Future development may consider to improve the image
quality by having uniform controlled lightening in the casing,
using a higher resolution CMOS camera and suitable lens to
better focus on the ROI of the LFA. A fully integrated anal-
ysis system may also include a quality control to ensure the
assay has performed correctly via detection of C-line before
analysis of T-line. Future work may also include the image
quality check during data acquisition stage, which helps to
identify and exclude the images containing the stains on LFA
strips thereby improve the quality of features. Ultimately, the
system will be embedded into a chip (Lab-on-a-Chip), where
the results can be displayed on the lightbox without transmit-
ting to and from the cloud. More future work may conduct
analysis on wet strips, variation of LFA strips, together with
exploring other options of neural networks.

VII. CONCLUSION
This study developed a portable LFA analyser device con-
taining a CMOS camera integrated with custom illumina-
tion and optics, in which the device was integrated with a
back-end server system for data aggregation, analysis and
results displaying. The development for LFA data genera-
tion, image data capture and data analysis were described in
detail. A novel classification framework is presented, which
enhances the detection ofmultilevel hsCRP biomarker in LFA
testing via considering LFA image as the time series, which
provides a new perspective for LFA analysis and potential

to capture valuable temporal information richer than image
intensity alone. Features based on DTW and HBC were
investigated with different arrangement for input sequences
for LSTM. The outcomes based on multilevel hsCRP with
concentration below 5 mg/L are encouraging, which suggest
the potential of the proposed system for early risk assessment
of CVD. Furthermore, the results based on human plasma
suggest the feasibility of the proposed system for real-world
applications.
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