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A B S T R A C T

By means of an ultrafast optical technique, picosecond acoustic strain pulses in a transparent medium are
tomographically visualized at GHz frequencies. The strain distribution in BK7 glass is reconstructed from
time-domain reflectivity changes of 415-nm probe light as a function of the optical incidence angle with
1 ps temporal and 120 nm spatial resolutions, enabled by automated angle scanning. The latter resolution is
achieved owing to the commensurate acoustic wavelength. Applications include imaging strain, carrier and
temperature distributions on ultrashort timescales.
. Introduction

Imaging of ultrasonic wave propagation in the interior of mate-
ials is useful for probing structures therein. In general, photoelastic
ethods [1–5] for solid materials and Schlieren methods [1,6–16]

r shadowgraphy [8,11,17–19] for liquids and gases can be used for
ltrasonic field imaging. These are often combined with stroboscopic
ethods or high-speed video camera detection to make a time-resolved
ovie. However, GHz ultrasonic frequencies, corresponding to submi-

ron wavelengths, cannot be investigated with these types of detection.
icosecond laser ultrasonics, which makes use of acoustic waves in
he frequency range 10–1000 GHz, provides new opportunities to
nvestigate internal structures or physical properties of thin films,
icrostructures or nanostructures [20,21]. In the conventional setup,
ltrashort pump light pulses generate GHz longitudinal strain pulses
n thin opaque films, and delayed probe light pulses detect the strain
ulses that return to the surface after reflection at some internal in-
omogeneity. To understand the strain propagation, analytical theory
r numerical simulations have been used. However, no existing ex-
erimental method had been able to visualize picosecond ultrasonic
ulses continuously during their propagation inside media. We previ-
usly developed an ultrafast tomographic optical technique that allows
icosecond strain pulses to be profiled during propagation with infrared
robe light in a homogenous and isotropic transparent medium through
he photoelastic effect, by use of different probe angles of incidence at
30-nm wavelength [22]. We extend this approach to shorter optical

∗ Corresponding author.
E-mail address: mtomoda@eng.hokudai.ac.jp (M. Tomoda).

wavelength probing at 415 nm with automated angle scanning, allow-
ing for a spatial resolution ∼120 nm, i.e., ∼30% of the incident probe
wavelength. This enhancement is facilitated by the smaller acoustic
wavelength compared to the optical wavelength, enabling us to resolve
GHz ultrasonic strain propagation in glass with roughly twice the
spatial resolution previously attainable using this method.

2. Principle of the tomographic strain profiling technique

2.1. Outline of the technique

Consider the optical-incidence geometry of Fig. 1(a). The sample
takes the form of a transparent hemisphere with an opaque film de-
posited on its flat surface to act as an optoacoustic transducer. Probe
light is incident at an angle 𝜃 on its curved surface, and focused onto the
opaque film. The tomographic picosecond strain-pulse profiling tech-
nique is based on Brillouin scattering of the probe light by the acoustic
waves transmitted to the transparent medium [23–30]. When quasi-
monochromatic plane-wave probe light is reflected from a plane-wave
longitudinal ultrasonic pulse in a photoelastic medium, the amplitude
of the reflected light is proportional to the amplitude of the acoustic
strain component at the Bragg scattering condition for the acoustic
wavelength in question:

𝛬 = 𝜆∕(2𝑛 cos 𝜃), (1)
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where 𝛬 is the wavelength of the acoustic wave, 𝜆 is the wavelength of
the probe light in air (or, strictly speaking, in vacuum), 𝜃 is the angle
between the wave vector of the probe light in the medium and that
of the acoustic wave, and 𝑛 is the refractive index of the medium at
the probe optical wavelength [31]. The reflected probe light scattered
from the strain pulse interferes with reflected light components from
surfaces and interfaces in the sample. The detected light includes in-
formation on the amplitude and phase of the acoustic wave component
at wavelength 𝛬 appropriate to angle 𝜃. At this acoustic wavelength,
time-domain Brillouin oscillations in optical reflectivity occur at the
Brillouin oscillation frequency 𝑓𝐵 :

𝑓𝐵 = 2𝑛𝑣 cos 𝜃
𝜆

, (2)

here 𝑣 is the longitudinal sound velocity. We measure the optical
eflectivity changes containing these oscillations as a function of 𝜃,
nd thereby reconstruct the strain pulse shape as a function of the
epth 𝑧 by use of an inverse method known as singular value decom-
osition [32–37]. By repeating the inversion process for a sequence of
elay times between the pump and the probe optical pulses, a strain
ropagation movie can be built up.

.2. Forward problem

When strain 𝜂33(𝑧) is distributed in the depth (𝑧) direction in a
ransparent material, the relative reflectivity change of 𝑠-polarized
robe light pulse incident at angle 𝜃 inside the transparent medium on
he opaque film is given by
𝛿𝑅
𝑅

= 2Re
( 𝛿𝑟
𝑟

)

= Im

{

2𝜋𝑃12
√

𝜀1𝜆 cos 𝜃 ∫

∞

0
𝜂33(𝑧)

×

[

exp

(

−𝑖
2𝜋

√

𝜀1𝑧 cos 𝜃
𝜆

)

+ 𝑟 exp

(

𝑖
2𝜋

√

𝜀1𝑧 cos 𝜃
𝜆

)]2

𝑑𝑧

⎫

⎪

⎬

⎪

⎭

,

(3)

here

=
cos 𝜃 −

√

𝜀2∕𝜀1 − sin2 𝜃

cos 𝜃 +
√

𝜀2∕𝜀1 − sin2 𝜃
(4)

is the reflection coefficient of 𝑠-polarized light at the interface, 𝜀1 and 𝜀2
re the complex dielectric constants of the transparent medium and the
paque film, respectively, 𝜆 is the central wavelength of the probe light
n air, 𝑃12 = 𝜕𝜀1∕𝜕𝜂33 is the photoelastic constant of the transparent
edium, and 𝑧 = 0 is set at the interface [21,38,39]. Changes in 𝜀2

nd any effects of finite substrate thickness are ignored. The reflectivity
and the amplitude reflection coefficient 𝑟 are related by 𝑅 = |𝑟|2.

imilar equations for 𝑝-polarized light exist, but lead to more complex
nalysis owing to their dependence on two photoelastic constants [21].

.3. Inverse problem

Equation (3) represents an integral transformation from the strain
epth profile 𝜂33(𝑧) to the relative reflectivity change 𝛿𝑅∕𝑅 at probe
ncident angle 𝜃; this transformation can be categorized as a 1st-kind
redholm integral equation. We regard this integral as the forward
roblem and solve the inverse problem that outputs the strain distribu-
ion 𝜂33(𝑧) from the input relative reflectivity change 𝛿𝑅(𝜃)∕𝑅(𝜃) by use
f singular value decomposition, which is widely used to solve inverse
roblems.

We rewrite the forward problem integration of Eq. (3) as

(𝜃) =
𝐿
𝐺(𝑧, 𝜃) 𝜂(𝑧) 𝑑𝑧, (5)
2

∫0 a
here the data vector 𝑝(𝜃) corresponds to the relative reflectivity
hange 𝛿𝑅(𝜃)∕𝑅(𝜃), 𝐺(𝑧, 𝜃) is the detection kernel of this transforma-
ion, 𝜂(𝑧) is the object vector corresponding to the strain distribution
33(𝑧), and 𝐿 is set to a finite length for 𝜂(𝑧 > 𝐿) = 0. This type
f integral transformation does not have an inverse transformation in
eneral. A discrete approximation can be implemented in Eq. (5):

(𝜃𝑗 ) =
𝑁
∑

𝑖=1
𝐺(𝑧𝑖, 𝜃𝑗 ) 𝜂(𝑧𝑖)𝛥𝑧𝑖, (6)

here 𝑝(𝜃𝑗 ) is a vector of order 𝑀 , 𝜂(𝑧𝑖) is a vector of order 𝑁 , and
(𝑧𝑖, 𝜃𝑗 ) is a matrix of order 𝑀 ×𝑁 .

The Kernel is decomposed to the unique form

(𝑧, 𝜃) =
∑

𝑖
𝑈𝑖(𝜃)𝜇𝑖𝑉𝑖(𝑧), (7)

here 𝑈𝑖(𝜃) and 𝑉𝑖(𝑧) represent orthonormal bases in the 𝜃 and 𝑧
omains, respectively, and 𝜇𝑖 are singular values (𝜇𝑖 ≥ 0). The singular
unctions are chosen so that

𝜃
𝑈𝑘(𝜃)𝑈𝑖(𝜃) 𝑑𝜃 = (𝑈𝑘, 𝑈𝑖)𝜃 = 𝛿𝑖,𝑘, (8)

𝐿

0
𝑉𝑘(𝑧)𝑉𝑖(𝑧) 𝑑𝑧 = (𝑉𝑘, 𝑉𝑖)𝑧 = 𝛿𝑖,𝑘, (9)

here the form (𝜑, 𝜗) represents an inner product (𝜑, 𝜗)𝜉 ≡ ∫ 𝜑(𝜉)𝜗(𝜉)𝑑𝜉,
nd 𝛿𝑖,𝑗 is Kronecker delta. If the set of functions 𝑉𝑘(𝑧) is complete, then

(𝑧) =
∑

𝑘
𝐴𝑘𝑉𝑘(𝑧), (10)

here the weighting coefficients 𝐴𝑘 have to be found. By combining
qs. (5)–(10), one obtains

(𝜃) = ∫

𝐿

0
𝐺(𝑧, 𝜃)𝜂(𝑧) 𝑑𝑧 =

∑

𝑖
𝑈𝑖(𝜃)𝜇𝑖

∑

𝑘
𝐴𝑘 ∫

𝐿

0
𝑉𝑖(𝑧)𝑉𝑘(𝑧)𝑑𝑧

=
∑

𝑖
𝐴𝑖𝜇𝑖𝑈𝑖(𝜃).

(11)

ultiplying by 𝑈𝑘(𝜃) and integrating the result with respect to 𝜃, one
btains

𝜃
𝑝(𝜃)𝑈𝑘(𝜃)𝑑𝜃 =

∑

𝑖
𝐴𝑖𝜇𝑖𝛿𝑖,𝑘 = 𝐴𝑘𝜇𝑘. (12)

he weighting coefficients become

𝑘 = 1
𝜇𝑘 ∫𝜃

𝑝(𝜃)𝑈𝑘(𝜃)𝑑𝜃 =
(𝑝, 𝑈𝑘)𝜃

𝜇𝑘
. (13)

Finally, the depth profile can be found as follows:

𝜂(𝑧) =
∑

𝑘
𝐴𝑘𝑉𝑘(𝑧) =

∑

𝑘

1
𝜇𝑘 ∫𝜃

𝑝(𝜃)𝑈𝑘(𝜃)𝑑𝜃 ⋅ 𝑉𝑘(𝑧) =
∑

𝑘

(𝑝, 𝑈𝑘)𝜃
𝜇𝑘

𝑉𝑘(𝑧).

(14)

his equation shows that the strain profile 𝜂(𝑧) can be expressed as
linear superposition of orthonormal functions 𝑉𝑘(𝑧) weighted by the

oefficients 𝐴𝑘.
The above equations can be rewritten in matrix form: Eq. (6)

ecomes

= 𝐆 ⋅ 𝒒, (15)

here 𝒑 is a column vector containing the discrete values of the input
ata, 𝒑 = [𝑝(𝜃1), 𝑝(𝜃2),… , 𝑝(𝜃𝑀 )]𝑇 , 𝒒 is a column vector containing the
iscrete values of the object data, 𝒒 = [𝜂(𝑧1), 𝜂(𝑧2),… , 𝜂(𝑧𝑁 )]𝑇 , and 𝐆
s an 𝑀 ×𝑁 matrix approximating 𝐺(𝑧, 𝜃). By singular decomposition
Eq. (7)), 𝐆 may be expressed as

= 𝐔 ⋅𝐖 ⋅ 𝐕𝑇 , (16)

here 𝐕 and 𝐔 are symmetric orthogonal matrices of order 𝑁 × 𝑁
nd 𝑀 ×𝑀 , respectively, and 𝐖 is an 𝑀 ×𝑁 matrix whose diagonal
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elements are singular values 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑁 ≥ 0, under the
condition 𝑁 ≤ 𝑀 :

𝐖 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜇1
𝜇2

⋱
𝜇𝑁

0

⎞

⎟

⎟

⎟

⎟

⎠

. (17)

Here, the object vector 𝒒 is expressed in the form

𝒒 =
(

𝐕 ⋅𝐖−1 ⋅ 𝐔𝑇 ) ⋅ 𝒑, (18)

which corresponds to Eq. (14).
The weighting coefficients 𝐴𝑘 in Eq. (13) are strongly dependent on

𝜇−1
𝑘 . If 𝜇𝑘 takes an extremely small value, the 𝑘-th term contributes as

a reciprocal to large amplification factors in the solution profile 𝜂(𝑧).
Noise, experimental errors, and systematic errors including discretiza-
tion and rounding cause fluctuations in the internal product (𝑝, 𝑈𝑘)𝜃 ,
which can catastrophically change the solution profile 𝜂(𝑧) in the case
of extremely small 𝜇𝑖. To avoid these ill-conditioned terms, we simply
use a suitable number 𝐾 of ‘good’ singular functions. We arrange all 𝑁
singular values in order from the top to the bottom values, 𝜇1 ≥ 𝜇2 ≥
⋯ ≥ 𝜇𝐾 ≥ 𝜇𝐾+1 ≥ ⋯ ≥ 𝜇𝑁 ≥ 0, and set 𝜇𝐾+1 = 0, ..., 𝜇𝑁 = 0 (rank
truncation). The rank truncation reduces errors, but imposes a limit on
spatial resolution. There are several criteria used to select a suitable
number of singular functions 𝑉𝐾 [33]. To do this we plot the residual

𝑦 =
{

∫𝜃

[

𝑝𝐾 (𝜃) − 𝑝(𝜃)
]2 𝑑𝜃

}1∕2

=

{

∫𝜃

[

∫

𝐿

0
𝐺(𝑧, 𝜃)𝜂trunc𝐾 (𝑧)𝑑𝑧 − 𝑝(𝜃)

]2

𝑑𝜃

}1∕2 (19)

as a function of the modulus of the reconstructed strain

𝑥 = |𝜂trunc𝐾 (𝑧)| =
{

∫

𝐿

0
[𝜂trunc𝐾 (𝑧)]2𝑑𝑧

}1∕2

(20)

for all 𝐾. Here, 𝑝𝐾 (𝜃) is the solution of the forward problem of Eq. (3)
using 𝜂trunc𝐾 (𝑧), which is the reconstructed solution up to the truncated
𝐾th term. A typical ‘‘L’’ shape arises (see Appendix). The optimum 𝐾
can be found at the edge of the ‘‘L’’, which corresponds to the maximum
of 𝑑2𝑦∕𝑑𝑥2.

We execute the inverse-problem process for each delay time inde-
pendently, and then adopt the most commonly attained maximum 𝐾
value for the full set of angle-time scan data 𝑝(𝜃, 𝑡) = 𝛿𝑅(𝜃, 𝑡)∕𝑅(𝜃).

3. Experimental setup

We have implemented three major changes compared to the previ-
ous investigation using this tomographic approach in order to enhance
both the spatial resolution and the ease of measurement [22]:

• We use automated angle scanning. Previously it was necessary
to realign the optics after every incidence-angle change. This
allows us to increase the number of probed angles, reduce the
measurement time and keep the optical beams focused at a single
unique point on the sample. Subtraction of a constant background
before the inverse calculation is unnecessary. (In our previous
work, variation in this background with angle required such
subtraction.)

• We use visible light at wavelength 415 nm for the probe, whereas
previously we used infrared light at 830 nm. This improves the
spatial resolution.

• We make use of coaxial pump and probe beams focused at the
centre of the sample from the same side. Previously the pump
beam was focused from the transducer film side. This facilitates
the alignment.
3

Fig. 1. (a) Optical setup. The sample is an Al-coated BK7-glass hemisphere. The sample
and photodetector are set on automated 𝜃-2𝜃 rotation stages. SHG: second harmonic
generation crystal, AOM: acousto-optic modulator. (b) Photo of the samples and stages.

3.1. Sample

The sample is an isotropic BK7 glass hemisphere of radius 5 mm
coated on its flat face with a polycrystalline Al film of thickness
𝑑2 = 400 nm. Aluminum is a widely used transducer film in picosecond
ultrasonics, with an acoustic impedance close to that of BK7 glass. A
broad spectrum of acoustic frequencies up to and above ∼100 GHz is
generated [40]. The 5-mm radius of the glass hemisphere is chosen to
be smaller than the focal length of the focusing lens (𝑓 = 20 mm).

3.2. Measurement

We use a conventional picosecond ultrasonics technique involving
a femtosecond pulsed laser and a mechanical delay stage, as shown
schematically in Fig. 1(a). The pump and probe pulses originate from
a Ti:sapphire mode-locked laser, whose centre wavelength is 830 nm,
pulse duration (full width at half maximum; FWHM) ∼100 fs and
repetition rate 76 MHz. The pump pulses at wavelength 830 nm are
modulated at 1 MHz with an acousto-optic modulator for lock-in de-
tection. The probe beam, frequency-doubled by a second harmonic
generation crystal (𝛽-BaB2O4), is reflected by a corner-cube set on
a linear, automated mechanical stage to provide a variable delay.
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The pump and probe beams are overlapped at a dichroic mirror and
focused by the same lens (𝑓 = 20 mm) onto the Al-glass interface
from the hemisphere-glass side with 𝑠-polarized optical incidence. The
pump beam incident pulse energy is 𝑄 = 1.0 nJ, and the FWHM spot
size is ∼20 μm for the case of normal incidence. This produces an
instantaneous maximum temperature rise of ∼10 K and a maximum
steady state rise of ∼50 K in the sample [20,21,41]. The probe beam
pulse energy is 0.01 nJ, and the FWHM spot size is ∼10 μm at normal
incidence. The hemisphere sample is set on automated coaxial 𝜃-2𝜃
rotation stages: when angle scanning, the sample rotates by 𝜃 and the
detector by 2𝜃, as shown in Fig. 1(b). The pump and probe beam spots
are carefully aligned to focus on the centre of the hemisphere sample,
which is also aligned to lie on the rotational axes of the 𝜃-2𝜃 stages.
After reflection from the sample, the probe light passes through a lens
(𝑓 = 40 mm) and a blue color filter that blocks the reflected pump
beam. It is then detected at a photodetector (a Si PIN photodiode).
The output of the photodetector is connected to a lock-in amplifier
synchronized to the chopping frequency, and its output is monitored.
Relative reflectivity changes 𝛿𝑅(𝜃, 𝑡)∕𝑅(𝜃) are recorded as a function of
𝜃 and 𝑡. For a fixed 𝑡, the rotational stage is scanned in the range 𝜃 = 10◦

to 75◦ at 2◦/s with a step of 0.2◦. The lower angle of 10◦ is chosen to
avoid blocking the reflected probe beam with the focusing lens. The
upper angle of 75◦ is determined by the low reflectivity change above
this value and by alignment considerations. The delay time increment
is chosen to be 5 ps. One complete measurement over all delay times
takes 8.5 h.

The pump and probe laser intensities on the sample vary with the
angle of incidence: for larger angles the reflectivity increases, and the
major axis of the elliptical spot becomes longer. Before the inversion
process to calculate the strain distribution, we normalize the reflectivity
change as follows: the absorbed intensity at the sample is given by
𝑃pump ∝ (1 − 𝑅pump) where 𝑅pump(𝜃) is the reflectivity of the sample
calculated from the Fresnel equations (making use of refractive indices
of BK7 glass, 𝑛1,pump = 1.51, and of the Al film, 𝑛2,pump = 2.75+8.31𝑖, for
the pump beam at 𝜆pump = 830 nm [42,43]), so we divide the measured
𝛿𝑅∕𝑅 by (1 − 𝑅pump) cos 𝜃, which in addition accounts for the angle-
dependent elliptical pump spot shape. The relative reflectivity change
𝛿𝑅∕𝑅 of the probe beam is obtained in experiment by making use of
the DC signal from the photodetector as well as by monitoring the lock-
in output. Before presenting the experimental results we will first give
the results of simulations for the same sample and conditions as in the
experiment in order to illustrate the analysis technique.

4. Simulations and tomographic strain-pulse reconstruction

4.1. Strain generation and propagation

We conducted a time-domain simulation of the strain pulse genera-
tion and its one-dimensional (1D) propagation to check the reconstruc-
tion process in the absence of experimental errors. For the simulation
we chose the pump beam spot size to be 20 μm (FWHM), with propa-
gation depths up to 4 μm. We solved the acoustic wave equations with
appropriate initial conditions by use of a finite-difference method [41].

Strain pulse generation is governed by a linear thermoelastic pro-
cess, given that the optical pulse energy is much lower than the sample
damage threshold. When the pump light, incident from the glass side, is
focused onto the Al-glass interface, optical energy is initially absorbed
in Al approximately within the optical penetration depth ∼8 nm (ob-
tained from the refractive index 𝑛2). Diffusing excited electrons then
transport this energy to a depth 𝜁𝑒 ≈ (𝜅∕𝑔)1∕2 ≈ 22 nm [44], before
he lattice is heated through electron–phonon coupling (described by
onstant 𝑔 = 4.9 × 1017 W m−3 K−1 [40] for Al with thermal conduc-

tivity 𝜅 = 237 W m−1 K−1 [45]) over a timescale ∼1 ps, producing an
pproximately exponential heating profile in the depth direction. All
4

he physical parameters used in this section are listed in Table 1.
Thermal stress then produces two strain pulses, one propagating
owards the Al-glass interface and the other propagating towards the
pposite Al-film free surface. The first pulse is partly transmitted to the
lass as a unipolar strain pulse, and the second, also unipolar, strain
ulse propagates towards and is reflected at the free Al surface. It is
hen in turn partially transmitted to the glass, and is again partially
eflected. The strain pulse reflectance and transmittance follow the
coustic Fresnel equations 𝑟𝑎𝑐 = (𝑍2 −𝑍1)∕(𝑍2 +𝑍1) ≈ 0.055 and 𝑡𝑎𝑐 =
𝑍1∕(𝑍2 +𝑍1) ≈ 0.945, where 𝑍2 = 𝜌2𝑣2 = 17.3 × 106 Pa s m−3 [45]
nd 𝑍1 = 𝜌1𝑣1 = 15.5 × 106 Pa s m−3 [42] are the acoustic impedances
f Al and BK7 glass, respectively.

The strain pulse propagating towards the Al-film free surface is
nverted on reflection because 𝑍air ≪ 𝑍2, and subsequently enters the

glass with a delay with respect to the first strain pulse equal to the
round-trip time 𝛥𝑡 = 2𝑑2∕𝑣2 ≃ 125 ps. The first and the second strain
ulses of respective amplitudes 𝐴1 and 𝐴2 have opposite signs, and the
atio of their amplitudes is 𝐴1∕𝐴2 = −1∕(1 + 𝑟𝑎𝑐 ) ≈ −0.95, ignoring
ltrasonic attenuation in the Al film. The shape of the first two strain
ulses in the absence of ultrasonic attenuation is shown in Fig. 2(a)
nd in the inset of Fig. 2(d), assuming an exponential heat deposition
rofile immediately following electron diffusion, as outlined above. The
ight-hand, negative pulse produces the first echo and the left-hand,
ositive pulse produces the second echo. The third pulse, which makes
wo round trips inside the Al film, is in contrast weaker by a factor
3∕𝐴2 = −𝑟𝑎𝑐 ≈ −0.055. Likewise for subsequent pulses.

With the above electron diffusion depth 𝜁𝑒, one can estimate the
aximum amplitude of the generated strain pulse in the Al film [21],

0 =
3𝐵2𝛽2(1 − 𝑅1)(1 − 𝑅2)𝑄

𝐴𝜁𝑒𝑐2𝜌22𝑣
2
2

∼ 4 × 10−4, (21)

here 𝑅1 = 0.04 and 𝑅2 = 0.81 are optical pump beam reflectivities
t the air-glass and Al-glass interfaces, respectively, 𝐴 is the effective
ump spot area (see below) and 𝑄 = 1 nJ is the pump pulse energy. The
hysical properties of Al are taken as follows: 𝑐2 = 931 J kg−1 K−1 is the
pecific heat capacity, 𝜌2 = 2690 kg m−3 is the density, 𝛽2 = 23.0 × 10−6

−1 is the linear thermal expansion coefficient, 𝐵2 = 77.7 GPa is the
ulk modulus, 𝑣2 = 6420 m s−1 is the longitudinal sound velocity [45].
he pump spot area is calculated as 𝐴 = 𝜋𝑤2

pump∕2 using a Gaussian
ump beam (1/𝑒2 intensity) half-width 𝑤pump=(20 μm)/

√

2 ln 2 = 17 μm
from the FWHM pump beam spot size of 20 μm. At these levels of strain,
the propagation of the strain pulses is expected to be linear.

For the propagation in the hemisphere, the longitudinal sound
velocity for BK7 glass 𝑣1 = 6048 m s−1 is calculated from the Young’s
modulus 82 GPa, Poisson’s ratio 0.206, and density 𝜌1 = 2510 kg m−3

42]. Frequency-dependent ultrasonic attenuation distorts this strain
ulse as it propagates, so we take this into account by use of the fol-
owing literature 𝑓 -dependent attenuation constants: 𝛼1 = 140⋅𝑓 2 m−1

nd 𝛼2 = 860⋅𝑓 2 m−1, where 𝑓 is the frequency in GHz [46]. Since
he ultrasonic attenuation of Al is not negligible at the frequencies in
uestion, the amplitude of the first pulse becomes significantly higher
han that of the second, as shown by the image plot of Fig. 2(a) as
ell as by the example of the green solid line in Fig. 2(d) for a delay

ime of 𝑡 = 300 ps. As the pulses propagate they become broadened by
he frequency-dependent ultrasonic attenuation (see the Supplementary
ovie).

.2. Reflectivity changes

The predicted normalized reflectivity variation is shown by the
mage plot in Fig. 2(b) as a function of delay time and angle, exhibiting
haracteristic Brillouin oscillations at frequencies 𝑓𝐵 in the range 11.5–
3.9 GHz. This variation is calculated using the refractive indices 𝑛1 =
𝜀1 = 1.529 and 𝑛2 =

√

𝜀2 = 0.523+5.024𝑖 for the probe beam at
𝜆 = 415 nm by use of Eqs. (3) and (4) [42,43]. The photoelastic
constant of BK7 glass is assumed to be positive [47].
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Fig. 2. (a) Simulated strain 𝜂33(𝑧, 𝑡). (b) Image plot of the simulated relative reflectivity change 𝛿𝑅(𝜃, 𝑡)∕𝑅(𝜃). (c) Reconstructed normalized strain 𝜂33(𝑧, 𝑡). (d) Normalized simulated
(green solid line) and reconstructed (black solid line) strain distributions at 𝑡 = 300 ps. Inset: the red curve shows the analytically calculated normalized strain pulse shape in the
absence of ultrasonic attenuation, plotted with the same scale in the depth direction. (e) Frequency spectrum of the simulated (green solid line) and reconstructed (black solid
line) first strain pulse when it reaches a depth of 1.8 μm, corresponding to 𝑡 ∼ 300 ps, plotted on the same scale. The shaded region corresponds to the tomographically probed
frequency range 11.5–43.9 GHz. The scales for strain in (a), (c) and (d) are identical.
Table 1
List of physical parameters used in the strain propagation and reflectance change
simulations and strain-pulse reconstructions.

𝜆pump 830 nm wavelength of pump light
𝜆 415 nm wavelength of probe light
𝑑2 400 nm thickness of Al film
𝑣2 6420 m s−1 longitudinal sound velocity of Al [45]
𝜌2 2690 kg m−3 mass density of Al [45]
𝑐2 931 J kg−1 K−1 specific heat capacity of Al [45]
𝛽2 23.0 × 10−6 K−1 linear thermal expansion coefficient of Al [45]
𝐵2 77.7 GPa bulk modulus of Al [45]
𝑔 4.9 × 1017 W m−3 K−1 electron–phonon coupling constant of Al [40]
𝜅 237 W m−1 K−1 thermal conductivity at 300 K [45]
𝛼2 860 ⋅ 𝑓 2 m−1 ultrasonic attenuation coefficient of Al,

where 𝑓 is frequency in GHz [46]
𝑛2 0.523 + 5.024𝑖 complex refractive index of Al at 415 nm [43]
𝑛2,pump 2.75 + 8.31𝑖 complex refractive index of Al at 830 nm [43]
𝑣1 6048 m s−1 longitudinal sound velocity of BK7 [42]
𝜌1 2510 kg m−3 mass density of BK7 [42]
𝛼1 140 ⋅ 𝑓 2 m−1 ultrasonic attenuation coefficient of BK7,

where 𝑓 is frequency in GHz [46]
𝑛1 1.529 refractive index of BK7 at 415 nm [42]
𝑛1,pump 1.510 refractive index of BK7 at 830 nm [42]

The reflectivity change shows an abrupt transformation at delay
time 𝑡 = 125 ps when the second strain pulse enters the glass. After this
time the amplitude of the reflectivity changes depend on incident angle
because of the optical interference between the probe light reflected
from the first and second strain pulses. The effect of the much smaller
third and higher-order strain pulses is negligible on the reflectivity.
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4.3. Tomographic strain-pulse reconstruction

The reconstruction method is based on Eqs. (14) and (18). We
used 326 angles (10◦-75◦ with a step of 0.2◦) to calculate 326 points
in space over 5 μm with a step of 15.385 nm, taking the required
physical parameters as in the simulation described above. The number
of singular values 𝜇𝑖 used in the calculation is 𝐾 = 55. This value was
chosen by inspecting the value of 𝑑2𝑦∕𝑑𝑥2 in Eq. (19).

The spatiotemporally reconstructed strain distribution, shown on
the normalized plot of Fig. 2(c), shows the expected propagation at
the constant velocity 𝑣1, similar to the predicted behavior in Fig. 2(a)
(see also the Supplementary Movie). The amplitude of the first two
reconstructed strain pulses are opposite to one another, as expected,
as shown by the black curve in Fig. 2(d). Although the predicted
pulse shapes are unipolar, the reconstructed shapes show some spatial
oscillations because of the restricted range of optical incidence angles:
the acoustic wavelength measured by the probe beam at an incident
angle 𝜃 is 𝛬 = 𝜆∕(2𝑛 cos 𝜃) (see Eq. (1)), and the implemented angle
range 𝜃 = 10◦-75◦ corresponds to 𝛬 = 138–524 nm or 𝑓𝐵 = 11.5–
43.9 GHz. The lack of higher-angle components degrades the spatial
resolution, and the lack of lower-angle components leads to the spatial
oscillations [22]. The spectrum of the first reconstructed strain pulse
when it reaches a depth of 1.8 μm, corresponding to 𝑡 ∼ 300 ps, is
shown in Fig. 2(e) by the black curve, exhibiting a broad frequency dis-
tribution centred around 10–40 GHz. In comparison with the equivalent
spectrum of the calculated first strain pulse, shown by the green curve,
there is significant amplitude reduction and spectral narrowing owing
to the limited range of tomographically probed frequencies (shaded
area).
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Fig. 3. (a) Input top-hat strain pulse (dotted green line) with a width of 100 nm,
centred at a position of 1.0 μm, plotted together with its reconstructed pulse (black solid
line) as a function of depth in BK7 glass. (b) Reconstructed strain pulse width (shown
by crosses), sampled at the zero-strain level, plotted as a function of the input top-hat
strain pulse width. The dotted green line shows the case of an ideal reconstruction.

4.4. Strain resolution

To check the spatial resolution of the method, the width of the
reconstructed strain pulses is calculated for a series of top-hat shaped
strain pulses of different spatial widths, and the reconstructed pulses
are calculated using the same forward and inverse problem parameters
as in the simulations of Section 4. Single top-hat strain pulses centred
at 1.0 μm are set in the BK7 glass, as shown by the example of a
100 nm width in Fig. 3(a). We record the width of each reconstructed
pulse at the zero-strain level. When the top-hat pulse width is wider
than ∼150 nm, the reconstructed pulse width takes on a similar value.
But when the top-hat pulse width becomes progressively less than
150 nm, the reconstructed pulse width tends to ∼120 nm. This 120-nm
value therefore represents a reasonable measure of the limiting spatial
resolution for strain, which is slightly less than the minimum acoustic
wavelength, ∼138 nm, probed, and equal to ∼30% of the optical probe
wavelength 𝜆 in air (or ∼45% of the probe wavelength 𝜆∕𝑛 in BK7
glass).1 The corresponding resolution in Ref. [22] is 250 nm.

5. Experimental results and discussion

5.1. Experimental results

The measured normalized reflectivity change as a function of the
incident angle 𝜃 and delay time 𝑡 is shown in Fig. 4(a), which is very

1 Since strain is an amplitude and not an intensity, it can take positive or
negative values, so the discussion of spatial resolution is distinct from that of
the more common case of intensity resolution.
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Fig. 4. (a) Image plot of the measured relative reflectivity change 𝛿𝑅(𝜃, 𝑡)∕𝑅(𝜃),
normalized by 𝐴0 ∝ (1 − 𝑅pump) cos 𝜃, where 𝑅pump is a reflectivity of pump light
and the term cos 𝜃 is included to compensate for the elliptical shape of the pump
spot. (b) Reconstructed normalized strain 𝜂33(𝑧, 𝑡). (c) Reconstructed normalized strain
distribution at 𝑡 = 300 ps. (d) Frequency spectrum of the reconstructed strain when it
reaches a depth of 1.8 μm, corresponding to 𝑡∼300 ps. The shaded area corresponds to
the tomographically probed frequency range 𝑓 = 11.5–43.9 GHz. The scales for strain
in (b) and (c) are identical.

similar to that calculated in Fig. 2(b). Background signals caused by
temperature changes are subtracted before analysis. The spatiotem-
porally reconstructed strain as a function of delay time is shown by
the image plot of Fig. 4(b) (see also the Supplementary Movie). The
number of singular values 𝐾 = 55 is chosen by the same protocol as
for the simulation, and gave the same result for 𝐾. This reconstructed
strain distribution at 𝑡 = 300 ps is shown in Fig. 4(c). The general
agreement with the simulation in Fig. 2(d) is reasonable considering the
presence of experimental noise. The experimental amplitude spectrum
of the first reconstructed strain pulse when it reaches a depth of 1.8 μm,
corresponding to 𝑡 ∼ 300 ps, is shown in Fig. 4(d) by the black curve,
exhibiting a broad frequency distribution centred around 10–40 GHz
similar to that previously reconstructed by simulation in Fig. 2(e). The
sound velocity of the substrate glass measured from the reconstructed
images, 6080 ± 30 m s−1, is similar to the literature value of 6048
m s−1 used in the simulation. The sound velocity 𝑣1 is not used in the
reconstruction process, although the refractive index is necessary. The
derived value of 𝑣 is different from that, 5860 ± 30 m s−1, reported
1
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Fig. 5. (a) An example of the inverse calculation when the number of singular functions
is 𝐾 = 56 (optimum value). The input top-hat strain pulse (dotted green line) of width
100 nm and centred at a depth of 1.0 μm is plotted together with its reconstructed
pulse (black solid line) as a function of depth. (b) Plot of the modulus of the residual
𝑦 vs the modulus of the strain 𝑥. The edge of the ‘‘L’’ shape corresponds to the point
with optimum 𝐾. Inset: zoomed-in view around the edge of the ‘‘L’’ shape. (c) Some
examples of reconstructed pulse shapes when changing the number of singular functions
𝐾.

in our previous publication [22], presumably because of the different
substrate glass used.

5.2. Discussion

Although we have included ultrasonic attenuation in our simulation,
there are other forms of possible attenuation. Acoustic diffraction is
not included in the 1D simulation shown in Fig. 2(a). In the present
geometry, the acoustic wavelength, 𝛬 ∼ 100 nm, on the order of the
spatial extent of the acoustic pulse in the depth direction, is small
compared to its lateral extent ∼2𝑤pump = 34 μm. The corresponding
acoustic diffraction angle is 𝜙 = 𝛬∕(𝜋𝑤pump) ∼ 2 × 10−3 rad ∼
0.1◦, which has a negligible influence over the range of delay times
used in our experiment. Another attenuation effect not included in
7

the 1D simulation is the limited spatial overlap between the reflected
and scattered probe light. This effect, arising from the finite spot-size,
becomes larger at higher angles of incidence and as the strain pulse
becomes further away from the Al-glass interface. A final attenuation
effect not included in the 1D simulation is the effect of the finite optical
coherence length of the probe pulse [23,29,48]. Simple estimates of
these latter two effects suggest that they should not have a particularly
large influence (≲15%) in the present experimental geometry at the
maximum depth, ∼4 μm, probed. A more detailed analysis of these
effects is beyond the scope of this work. The ultrasonic attenuation
observed in experiment is significantly larger than that predicted in
the simulation, as can be understood by comparing Figs. 2(c) and 4(b).
Differences in the detailed composition of the glass may be responsible
for this, since the attenuating effects of acoustic diffraction, beam
overlap and optical coherence are all expected to be relatively small.

6. Conclusions

In conclusion, we have described an automated tomographic mea-
surement technique for visualizing GHz longitudinal ultrasonic strain
pulse propagation with improved spatial resolution and measurement
speed. Simulations were used to check the quality of the reconstruction,
and gave fair agreement with experiment.

At present the technique is restricted to 1D probing of longitudinal
strain in homogeneous, isotropic and transparent solids, making use of
a hemispherical substrate. This need could be circumvented by means
of an automated angle-scan technique based on a lateral beam scan
over a high numerical-aperture objective lens [30]. This would open up
the possibility of extending the technique to 3D strain-pulse imaging
in plate-shaped samples by combination with probe-beam 2D lateral
scanning. It may also be possible to apply the method to imaging
picosecond shear strains in solids by use of similar angle scanning and
suitable optical polarization [21]. If the spatial distribution of the sound
velocity is known it may also be possible to probe 3D distributions of
optical refractive index. Finally, this tomographic technique extended
to sub-picosecond temporal resolution could be used to reconstruct
other ultrafast transient fields that couple to the dielectric constant,
such as carrier or temperature distributions, or to image nonlinear
optical pulse propagation.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Motonobu Tomoda reports financial support was provided by the Japan
Society for the Promotion of Science. Osamu Matsuda reports financial
support was provided by the Japan Society for the Promotion of Sci-
ence. Roberto Li Voti reports financial support was provided by the
Japan Society for the Promotion of Science. Oliver B. Wright reports
financial support was provided by the Japan Society for the Promotion
of Science.

Data availability

Data will be made available on request.

Acknowledgment

We acknowledge Grants-in-Aid for Scientific Research from the
Japan Society for the Promotion of Science.



Photoacoustics 34 (2023) 100567M. Tomoda et al.
Appendix A. Number of singular functions

This Appendix shows how the singular function number 𝐾 affects
the reconstructed strain shape, providing supplementary information
to that in Section 2.3. Figure 5 shows the results of calculations when
choosing a top-hat strain pulse of width 100 nm and centred at a depth
1.0 μm as a test input function (the green dotted line in Fig. 5(a)). The
parameters used in the calculations of the forward problem (Eq. (3))
and the inverse problem (Eqs. (14) or (18)) are listed together with
other parameters used in this paper in Table 1. The reconstructed
strains are expressed as a superposition of singular functions. Fig-
ure 5(b) shows a plot of the modulus of the residual 𝑦 vs the modulus of
the strain 𝑥 for different 𝐾, where 𝑦 and 𝑥 are defined in Eqs. (19) and
(20), respectively. The form the reconstructed strain for optimum 𝐾 =
56, corresponding to the maximum of 𝑑2𝑦∕𝑑𝑥2, is shown in Fig. 5(a).
If 𝐾 is less than the optimal value, the reconstructed strain does not
reproduce the input function as well. If 𝐾 is greater than the optimal
value, the reconstructed strain includes components with higher spatial
frequencies, and the amplitude of the reconstructed strain increases,
although the reconstruction does exhibit smaller residuals. Examples
of the reconstructed strain at representative values of 𝐾 are shown in
Fig. 5(c).

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.pacs.2023.100567.
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