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Abstract

Background: Modern medicine is rapidly moving towards a data-driven paradigm based on comprehensive
multimodal health assessments. Integrated analysis of data from different modalities has the potential of
uncovering novel biomarkers and disease signatures.

Methods: We collected 1385 data features from diverse modalities, including metabolome, microbiome, genetics,
and advanced imaging, from 1253 individuals and from a longitudinal validation cohort of 1083 individuals. We
utilized a combination of unsupervised machine learning methods to identify multimodal biomarker signatures of
health and disease risk.

Results: Our method identified a set of cardiometabolic biomarkers that goes beyond standard clinical biomarkers.
Stratification of individuals based on the signatures of these biomarkers identified distinct subsets of individuals
with similar health statuses. Subset membership was a better predictor for diabetes than established clinical
biomarkers such as glucose, insulin resistance, and body mass index. The novel biomarkers in the diabetes signature
included 1-stearoyl-2-dihomo-linolenoyl-GPC and 1-(1-enyl-palmitoyl)-2-oleoyl-GPC. Another metabolite,
cinnamoylglycine, was identified as a potential biomarker for both gut microbiome health and lean mass
percentage. We identified potential early signatures for hypertension and a poor metabolic health outcome.
Additionally, we found novel associations between a uremic toxin, p-cresol sulfate, and the abundance of the
microbiome genera Intestinimonas and an unclassified genus in the Erysipelotrichaceae family.

Conclusions: Our methodology and results demonstrate the potential of multimodal data integration, from the
identification of novel biomarker signatures to a data-driven stratification of individuals into disease subtypes and
stages—an essential step towards personalized, preventative health risk assessment.
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Background

Despite the enormous US healthcare spending of $3.3
trillion in 2016 [1], one in three individuals aged 50-74
years die prematurely from major age-related chronic
diseases [2—4]. Challenging the status quo of our reactive
healthcare, preventative medicine offers an alternative
means to better health for lower cost [5]. One approach
to move beyond traditional medicine to more predictive,
preventive practices is via systems medicine. As defined
by Hood and Flores [6], systems medicine is the applica-
tion of systems biology to the challenges of human
health and disease. An interdisciplinary approach that
measures, integrates, analyzes, and interprets a variety of
clinical and non-clinical data is critical for a deeper un-
derstanding of the mechanisms that determine health
and disease states. Significant computation and statistical
analysis are essential to sift through large, diverse data-
sets and search for patterns, whether related to specified
biological processes or to stratify complex diseases into
distinct subsets for health assessment.

Recent studies have shown the utility of collecting and
analyzing diverse high-throughput data using unsupervised
computational methods for more comprehensive insights
into biological systems. Argelaguet et al. [7] showed a need
for such integrated analysis by introducing a computational
framework of unsupervised integration of heterogeneous
data and showed its utility by identifying major drivers of
variation in chronic lymphocytic leukemia. Price et al. [8] re-
vealed communities of related analytes associated with dis-
eases using unsupervised network analysis on a multimodal
dataset.

In our previous work [4], we introduced a platform of
deep quantitative multimodal phenotyping that seeks to
provide a comprehensive, predictive, preventative, and per-
sonalized assessment of an individual’s health status. The
offered multimodal assays include whole genome sequen-
cing, advanced imaging, metagenomic sequencing, metabo-
lome, and clinical labs. In addition, medical history and
family history were also collected from the individuals. The
collected data is used to screen individuals for precision
medicine. This includes identification of clinically signifi-
cant pathogenic variants and clinical summaries from ad-
vanced imaging and other clinical testing [4]. This platform
provides critical data not only to identify previously undiag-
nosed disease states but also to identify early disease bio-
markers. Here, we present an analysis of the multimodal
datasets that were collected for 1253 self-assessed healthy
adults and an independent validation dataset consisting of
1083 adults with longitudinal data. To the best of our
knowledge, this is the largest cohort with such a wide range
of data modalities analyzed to date.

In this study, expanding on the unsupervised ap-
proaches described above, we perform a comprehensive
analysis with the aims to not only find novel patterns in
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disease risk but also to stratify individuals into health
states using newly identified biomarker signatures. We
performed a combination of machine learning analyses,
including cross-modality associations, network analysis
to identify modules and their key biomarkers, and strati-
fication of individuals into distinct health risk groups
and their longitudinal outcomes. By doing so, we show-
case a framework to assess an individual’s disease risk by
identifying signatures of health and disease through un-
supervised learning on multimodal data.

Methods

Data collection and data features

For the study, we collected data from 1253 self-assessed
healthy individuals in our clinical research facility. We
used several tools and techniques referred to as modal-
ities to collect the data. The modalities included whole
genome sequencing (WGS), microbiome sequencing,
global metabolome, insulin resistance (IR as defined by
Cobb et al. [9]) and impaired glucose intolerance (IGT
as defined by Cobb et al. [10]), laboratory developed
tests (Quantose™), whole body and brain magnetic res-
onance imaging (MRI), dual-energy x-ray absorptiometry
(DEXA), computed tomography (CT) scan, routine clin-
ical laboratory tests, personal/family history of disease
and medication, and vitals/anthropometric measure-
ments. Data collection has been described in detail in
our previous manuscript on the first 209 individuals en-
rolled in a precision medicine study [4]. In addition to
the modalities described in the previous study, we have
now included CT scan and microbiome sequencing [11].
Not all data was collected on all individuals. The num-
ber of individuals and the number of features per modal-
ity are summarized in Additional file 1: Table S1.

We performed CT scans on individuals over the age of
35 years. Patients were scanned during a single breath-
hold using a 64-slice GE Healthcare EVO Revolution
scanner (GE Healthcare, Milwaukee, Wisconsin). Gated
axial scans with 2.5 mm slice thickness were performed
using a tube energy of 120 kVp and the tube current ad-
justed for individuals’ body mass index. Images were
subsequently analyzed using an AW VolumeShare 7
workstation (GE Healthcare, Milwaukee, Wisconsin),
and regions of coronary calcification were manually
identified in order to compute Coronary Artery Calcium
(CAC) Agatston scores [12]. We used Multi-Ethnic
Study of Atherosclerosis (MESA) [13] reference CAC
values to calculate the percentile of calcification for each
individual matched for age, sex, and ethnicity.

For microbiome sequencing, we performed whole gen-
ome sequencing on stool samples to analyze the micro-
bial communities [11]. For this modality, the features
included species richness, species diversity, the fraction
of human DNA, Proteobacteria, and the abundance of
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72 genera [11, 14]. Microbiome species richness was de-
fined as the number of species present at a relative
abundance greater than 10™*. Microbiome species diver-
sity was defined as the Shannon entropy of the taxon
abundance vector [15].

Whole genome sequencing data was used to compute
the following features: polygenic risk scores (PRS) [16] for
51 diseases and traits, HLA type [17], 30 known short tan-
dem repeats (STR) disease loci [18], and known rare
pathogenic variants from ClinVar (set 1 and set 2 from
Shah et al. [19]). We also computed ancestry using the
method described by Telenti et al. [20] from WGS data.

Data pre-processing

To satisfy the normality assumption of the statistical tests
used in the analysis, we first performed data transform-
ation on certain features (described below) and then ad-
justed for covariates. This order of data pre-processing
has been shown to avoid introducing bias [21]. To address
the non-Gaussian distributions of various features from
several modalities, we utilized a rank-based inverse normal
transformation [22]. We applied this transformation to all
microbiome abundance data, as these features exhibit
non-Gaussian distributions. The transformation was also
applied to other features where more than 40% of the
samples had the same value. Several features were corre-
lated with age, sex, and/or ancestry. To remove this cor-
relation, we used multiple linear regression to identify the
significantly associated (p <0.01) covariates among age,
sex, and the first four principal components representing
the ancestry. The feature values were corrected by regres-
sing out the significantly associated covariates.

Network analysis

We used a combination of methods to build a cross-
modality association network, identify densely connected
modules within the association network, and then ex-
tract the key biomarkers representing each module.
More precisely, we first used Spearman’s correlation to
identify statistically correlated pairs of cross-modality
features. Second, we used the Louvain community detec-
tion method to identify distinct modules reflective of
biologically functional subnetworks. Third, to identify
the key features within a densely connected module, we
constructed a sparse network (also known as Markov
network) using the Graphical Lasso method. Below, we
describe these steps in more detail.

We point out that technically one could apply the
Graphical Lasso method to the entire dataset in order to
produce a Markov network with all the features. How-
ever, since within-modality associations tend to be stron-
ger than cross-modality associations, features from each
modality have a tendency to cluster together. A resulting
network using all features is shown in Additional file 1:
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Figure S9. Additionally, the Graphical Lasso method re-
quires a complete data matrix, which will lead to imput-
ing values for the missing data for all features (vs. a
smaller subset of features in our multistep approach).
This can make the results less reliable. By first con-
structing an association network based only on cross-
modality associations (following the approach from Price
et al. [8]) and running a community detection algorithm,
the resulting communities tend to be multimodal. Thus,
we opted to use a combination of network methods to
obtain more informative modules with multimodal
features.

Constructing multimodal correlation modules

We performed Spearman’s correlation analysis and cal-
culated p values for each cross-modality pair of features.
The correlation was computed on individuals for which
both features were present. The correlation was calcu-
lated only if at least 30 individuals had data for the pair
of features. We selected statistically significant associ-
ation using the Benjamini-Hochberg [23] approach to
limit the false discovery rate to 5%.

The significant associations were used to construct a
network where each feature is a node, and the associ-
ation between two feature nodes is an edge. The weight
of an edge is defined as -log(p), where p is the p value
of the corresponding Spearman correlation. Metabolome
and clinical lab measured several of the same or similar
metabolites. To avoid having the structure of the net-
work mainly driven by strong associations between the
metabolome and clinical lab features, we ignored those
edges for the identification of the initial modules. To
identify densely connected sets of nodes, i.e., “modules”
in the network, we used the Louvain algorithm for com-
munity detection [24]. The Louvain method is a widely
used tool for uncovering community structure from
large networks. It seeks to maximize the network modu-
larity in a greedy fashion. Initially, each node is seen as
its own community. Nodes are then iteratively merged,
such that it maximizes the gain in modularity until the
modularity can no longer be increased. The resulting
“super-nodes” are the communities. For a true represen-
tation of molecular features involved in multiple bio-
logical functions, we allowed for nodes to belong to
multiple modules. More precisely, when a node assigned
to a module had at least 20 more significant associations
with nodes from another module than it had with its
assigned module, then the node was placed in both the
modules.

The robustness of the resulting modules was assessed in
the following ways (additional details in Additional file 3:
Supplementary Notes). The Louvain community detection
algorithm was run 300 times with different seeds, which is
used to order the nodes for community expansion. We
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examined the modularity score for each of the runs. Next,
we built a consensus matrix [25] by calculating the num-
ber of times the same pair of nodes are grouped together
in a module, across the 300 runs. Additionally, we calcu-
lated consistency score for both sets of key biomarkers
identified in the two modules, by counting the average
number of times a pair of features were grouped in the
same module.

Key biomarker selection and Markov network construction
We performed a deeper analysis of the two largest modules
identified using the community detection method. Firstly, a
list of module-representative features was identified. Specif-
ically, for each module, we ranked the nodes by their eigen-
vector centrality score to identify the topmost central
features. Secondly, a conditional independence network for
each of the selected modules was derived. Specifically, we
used the central features to construct a sparse network
using the Graphical Lasso method [26]. This method esti-
mates the inverse covariance matrix of the selected features
using a lasso penalty to induce sparsity. The method does
not allow for missing values in the data matrix and assumes
a normally distributed data. Thus, the central features used
in this method were mean-imputed (only 10% of the matrix
required imputation) and converted to Gaussian distribu-
tions using the rank-based inverse normal transformation
as described in the “Data pre-processing” section. In the
resulting conditional independence network (also known as
a “Markov network”), the absence of an edge between two
features implies that they are conditionally independent
given the remaining features in the network. Additional in-
formation on Markov network is provided in Add-
itional file 3: Supplemental Notes.

In the Markov network, features that had a connection
with at least one cross-modality feature were selected as
key biomarkers for the downstream analysis. This pro-
cedure of selecting key biomarkers ensures that the in-
herently stronger associations within each modality do
not overpower associations that are cross modal, thus
avoiding biased representation. Unlike the cross-
modality correlation network, in the Markov network,
the edges between features from the same modality were
included. This allowed for identification of key bio-
markers of the underlying biological mechanism regard-
less of the modality origin.

Stratifying individuals with similar biomarker signatures

For each selected module, we used the identified key
biomarkers to stratify the individuals. Each feature was
scaled to have zero mean and unit variance. The missing
values were imputed using softImpute [27]. Then, we
performed hierarchical clustering on the individuals
based on complete linkage and a correlation distance
metric. We selected the lowest cutting point of the
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hierarchical cluster tree such that the resulting clusters
would have at least 50 individuals. To access the cluster-
ing, we computed for each individual the median dis-
tance to each of the seven subsets and identified the
closest subset to each individual.

Statistical associations between clusters and other traits
We compared the rates of disease diagnosis and medica-
tion use across the seven cardiometabolic and the seven
microbiome richness subsets. Fisher’s exact test was
used (using a Monte Carlo simulated p value with 1E6
replicates) to test for statistical significance after the
Bonferroni correction for multiple tests.

We also compared the individuals in each subset to all
individuals not in that subset for each of the 1354 fea-
tures using a logistic regression. There was thus a separ-
ate analysis performed for subset 1 vs. everyone else,
subset 2 vs. everyone else, etc. Significant associations
were those that survived the Bonferroni correction for
multiple tests.

Validation cohort

For validation of our findings, we utilized 1083 individ-
uals from a study cohort (referred to here as “TwinsUK”)
of largely European ancestry female twins enrolled in the
TwinsUK registry, a British national register of adult
twins [28]. The cohort included data from WGS, metab-
olome, microbiome, DEXA, clinical blood laboratory
tests, and personal history of disease and medication.
The data from the modalities was collected from three
longitudinal visits over the course of a median of 13
years. To capture a population with adequate sample
sizes for the overlapping modalities used in the present
study, we restricted our analysis to data from visit 2 (re-
ferred here as “baseline”) and visit 3 (referred here as
“follow-up”). Microbiome samples were only collected at
visit 3. The median age at visit 2 was 51, range 41-79.
To be included in the analysis, phenotyping measure-
ments were required to be collected within 90 days of
the metabolome draw for each visit, or within 6 months
for microbiome. For the validation of metabolome and
microbiome correlations, we used only one of the twins
to avoid bias from relatedness, totaling 538 individuals.
For the cardiometabolic module analysis, we imputed
liver fat, gamma-glutamyl transferase (GGT), IGT, IR,
and glucose using regularized linear regression with L1
penalty.

Data pre-processing and assignment for validation cohort
The data was pre-processed using the same correction
for age, sex, and ancestry that was used for the main co-
hort. Specifically, we used the regression coefficients
learned during the pre-processing of the study cohort
dataset to correct the data in the validation cohort. The
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corrected data from the validation cohort was then
mapped to the individual subsets as follows. For each
subset, the median for each of the key biomarkers within
the subset was computed, giving rise to a “representative
signature” for that subset. For each individual in the val-
idation cohort, correlation distances to each of the rep-
resentative signatures were computed, and the individual
was assigned to the closest one. Note that correlation
distances were used since the hierarchical clustering of
the study cohort was conducted using correlation
distance.

Results

We carried out multimodal tests on 1253 self-assessed
healthy adults (median age 53; 63% male; 71% European
ancestry) using our genomic and deep phenotyping plat-
form [4]. The modalities included whole genome sequen-
cing, metabolome, microbiome, advanced imaging, and
clinical tests. We derived 1385 features from the collected
data (Additional file 1: Table S1; Additional file 3: Supple-
mentary Notes). To extract patterns indicative of biological
mechanisms, we applied machine learning methods to this
heterogeneous dataset. Specifically, we performed (1) cor-
relation analysis to identify significant associations between
cross-modal features, (2) network analysis to identify
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modules and their biomarker signatures representative of
the underlying biological systems, and (3) cluster analysis to
stratify individuals into distinct subsets using the identified
signatures that are consistent with different health status
(Fig. 1; Additional file 3: Supplemental Notes). We further
characterized the subsets and examined disease risk using
individuals’ personal history. We used an independent co-
hort of 1083 females (TwinsUK) to validate our findings
and to assess associations with longitudinal disease diagno-
sis data.

Multimodal correlations and network analysis

We calculated correlations for each cross-modality pair
of normalized features and selected a list of 11,537 sta-
tistically significant associations out of 427,415 total
cross-modality comparisons (FDR<0.05; see the
“Methods” section). The largest number of significant
associations (# =5570) was observed between metabo-
lome and clinical lab features. Of all the possible correla-
tions between features from the two modalities, these
significant associations accounted for 5% (Fig. 2a). The
second largest number of significant associations was be-
tween the metabolome and microbiome features (n =
2031; 3%), followed by metabolome and body compos-
ition features (n = 1858; 17%). We discuss some of these
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Fig. 1 a In the study, we collected multimodal data (n = 1385 features) from 1253 individuals. b We analyzed the data by performing cross-
modality associations between features after correcting for age, sex, and ancestry. ¢ Using the associations, we performed community detection
analysis and found modules of densely connected features. d To reduce the number of indirect associations and identify key biomarker features,
we performed conditional independence network analysis (also referred to as a Markov network). e Using the identified key biomarkers, we
clustered individuals into distinct groups with similar signatures that are consistent with different health statuses. We characterize the clusters and
perform disease risk enrichment analysis
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associations below. Additionally, some of the important
findings from metabolome and body composition have
been discussed in Cirulli et al.

The most significant associations, apart from those be-
tween metabolome and lab features, were expected cor-
relations supporting well-established prior clinical
research (see Additional file 3: Supplementary Notes).
Additionally, we observed novel associations between
the metabolite p-cresol sulfate (pCS) and the micro-
biome genus Intestinimonas as well as an unclassified
genus in the Erysipelotrichaceae family (p=2.92E-24
and p=2.98E-20, respectively; Fig. 2b). Other known
microbiome features associated with pCS were also ob-
served [29-31]. This included associations with species
diversity (p = 6.54E-19) and several genera (Pseudoflavo-
nifractor, Anaerotruncus, Subdoligranulum, and Rumini-
clostridium) in the Ruminococcaceae family (p=9.52E
-32, p=1.39E-23, p=9.48E-19, and p=3.26E-11, re-
spectively). These associations were validated in the in-
dependent TwinsUK cohort (see the “Methods” section;
Additional file 1: Table S2).

The significant associations were used to construct a net-
work with features as nodes and feature associations as
edges. Using a community detection method, sets of highly
connected features (referred to as modules) were then identi-
fied (see the “Methods” section). Intuitively, the modules
should group together features that are biologically related,
indicative of biologically functional subnetworks. The result
was numerous small modules and two modules that had far
larger numbers of features (1 > 100 each). The largest was a
cardiometabolic module containing many markers associated
with cardiac disease and metabolic syndrome, similar to a
module previously observed by Price et al. [8]. The second
largest module was predominantly composed of microbiome
taxa abundance and several metabolites that are known to
be biomarkers for gut microbiome diversity. We refer to this
module as the microbiome richness module. The modules
were tested for their robustness. The average modularity
score was 0.37 (Additional file 1: Figure S1), and the
consistency score was > 0.80 (Additional file 3: Supplemental
Notes; Additional file 1: Figure S2). Next, we present further
detailed analysis on these two largest modules.
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Cardiometabolic module

The largest module in the association network contained
355 nodes from clinical labs, metabolome, quantose, CT,
microbiome, vitals, genetics, MRI-body, and body com-
position data modalities. The most central features in the
module were identified using an eigenvector centrality
score (see the “Methods” section). These features included
visceral adipose tissue mass, BMI, liver fat percentage, lean
mass percentile, glucose levels, blood pressure (BP), tri-
glycerides levels, IR score, several lipid metabolites, and
several microbiome genera, including butyrate-producing
bacterial genera such as Pseudoflavonifractor, Butyrivibrio,
Intestinimonas, and Faecalibacterium. Some of these fea-
tures are known to be associated with obesity, heart dis-
ease, and metabolic syndrome.

Network analysis for key biomarker selection

To remove redundancy and transitive associations from
the module, we created a Markov network containing
only the associations that were significant after condi-
tioning on all other features (see Additional file 3:
Supplemental Notes and the “Methods” section). This
process thus captured a more meaningful network of in-
teractions between the features of the module. The
resulting cardiometabolic network is shown in Fig. 3a. In
the Markov network, features that had a connection with
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at least one feature from a different modality were se-
lected as key biomarkers for downstream analysis. This
procedure of selecting key biomarkers ensures that the
inherently stronger associations within each modality do
not overpower associations that are cross modal, thus
avoiding biased representation. For example, the micro-
biome genera Butyrivibrio and Pseudoflavonifractor are
the only microbiome features that are connected to fea-
tures from other modalities (the lipid metabolite 1-(1-
enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) and serum
triglyceride) and are thus selected as key biomarkers
(Fig. 3a). On the other hand, liver iron and gamma-
tocopherol/beta-tocopherol are only associated features
from their respective modalities and are hence not se-
lected as key biomarkers. A total of 22 key cardiometa-
bolic biomarkers were identified. An exception to this
rule was that we replaced diastolic BP with systolic BP.
These two features were heavily correlated and essen-
tially interchangeable, but based on an expert opinion,
we chose the systolic BP as a better marker for cardio-
metabolic conditions.

These key biomarkers included established features for
cardiac and metabolic conditions (e.g., BMI, BP, glucose
levels, and HDL) and also novel biomarkers from metabo-
lome and microbiome (Fig. 3a). High abundance of the
microbiome genera Butyrivibrio and Pseudoflavonifractor
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significant associations showed consistent directions of effect in the TwinsUK cohort (Additional file 2: Table S3); however, the microbiome
features and 5 of the glycerophosphocholines were not measured in the TwinsUK cohort and thus could not be assessed for replication.
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was well correlated with features that are generally consid-
ered to be correlated with “good” cardiometabolic health
(defined using traditional markers such as BMI, BP, and
lipid levels). Several metabolites with unknown clinical
relevance were correlated with signatures consisting of
clinical biomarkers indicative of good health, such as 1-(1-
enyl-palmitoyl)-2-oleoyl-glycero-3-phosphocholine (GPC)
and 1-eicosenoyl-GPC, and that of disease risk, such as
glutamate, butyrylcarnitine, lactate, 1-stearoyl-2-dihomo-
linolenoyl-GPC, and 1-palmitoleoyl-2-oleoyl-glycerol.

Stratification of individuals and characterization

To assess the relationship between the health status of
individuals and these 22 key biomarkers, we stratified in-
dividuals using hierarchical clustering. This clustering
resulted in seven subsets of individuals, each with a
unique biomarker signature (threshold of 1.65 correl-
ation distance; Fig. 3b, Additional file 1: Figure S3). The
membership of the clusters was further examined by
studying its distance relative to other clusters (see the
“Methods” section; Additional file 1: Figure S4). We ob-
served that the majority of individuals were closest to
their own subset. Cluster analysis solves the practical
problem of stratifying individuals to subgroups based on
shared signatures of these biomarkers. While the indi-
vidual profiles with unique signatures in general lie on a
continuum and the resulting subsets are not fully iso-
lated from each other, this stratification procedure al-
lows for further investigation such as disease prevalence
enrichment in these subsets of individuals.

In order to improve the characterization and our under-
standing of these subsets, we compared each subset using
the full set of 1385 features (Additional file 1: Figure S5).
We identified 106 features beyond the 22 used to derive the
cardiometabolic subsets that were significantly (p <5.1E
-06) enriched in at least one subset compared to the others
(Fig. 3b, Additional file 1: Figure S5 and Additional file 2:
Table S3). Of the 78 features that were also measured in
our validation cohort (TwinsUK baseline), 97.8% of the as-
sociations discovered between features and subsets had
consistent directions of effect in our validation cohort, and
77.8% were statistically significant (replication p < 3.9E-04;
Additional file 2: Table S3).

Based on the clinically interpretable biomarkers, such as
BM], liver fat, and insulin resistance, associated with each
of the subsets (Additional file 3: Supplemental Notes), we
consider subsets 1-4 to be the ones with markers consist-
ent with good health (subset 1 being the “healthiest”) and
5-7 as the subsets with markers consistent with disease
risk (subset 7 being the most “at-risk”).

Disease prevalence in cohort subsets
In addition to associations with features, we also com-
pared rates of previously diagnosed cardiometabolic
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conditions between the subsets. We found significant
differences between subsets in their rates of diabetes and
hypertension diagnoses that were confirmed in the valid-
ation cohort (Additional file 3: Supplemental Notes;
Fig. 4; Additional file 1: Figure S6). Specifically, subset 7
had significantly higher rates of diabetes, while subset 1
had significantly lower rates of diabetes and hyperten-
sion. Interestingly, subset membership was a better pre-
dictor of diabetes diagnoses than were the traditional
clinical features used to determine diabetes status: glu-
cose, IGT score, IR score, and BMI (Additional file 3:
Supplemental Notes). The cardiometabolic key bio-
markers that were the largest drivers of this association
between diabetes and subset 7 were the IR score, the
percent lean body mass, and the metabolites 1-stearoyl-
2-dihomo-linolenoyl-GPC (18:0/20:3n3 or 6) and 1-(1-
enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1).

We additionally investigated enrichment of rare patho-
genic variants in any of the subsets and found only three
individuals with such variants (Additional file 3: Supple-
mental Notes).

Longitudinal disease outcome

Our validation cohort was followed for a median of 5.6
(range 1.2-10.1) years, providing us with the opportunity
to examine the longitudinal health trends in each subset.
During this follow-up, we observed 2 new diagnoses of
diabetes, 2 cardiovascular events (angina and myocardial
infarction), 7 strokes or transient ischemic attack (TIA),
24 new cases of hypertension, and 37 new cases of hyper-
cholesterolemia. We found a significant difference be-
tween subsets in the number of new hypertension cases
(Fisher’s exact p =0.009). Specifically, those in subset 6
were at higher risk for developing hypertension, and this
association remained significant after controlling for base-
line BP, BMI, and age (logistic regression p = 0.002).

We also examined subset membership at the follow-up
(Fig. 4). We found that subset membership was fairly
stable longitudinally, with 51.1% of individuals staying in
the same subset at the follow-up visit. For each subset ex-
cept subset 6, the most common outcome at the follow-
up visit was to remain in the same subset. Subset 6 had a
very different pattern, with 84.3% of its members transi-
tioning to other subsets, of which 55.8% moved to subset
7. As subset 7 is the one most consistent with poor health
in terms of obesity, hypertension, and diabetes, this pro-
pensity of subset 6 individuals to transition into subset 7
individuals overtime supports the idea of subset 6 mem-
bership as an early precursor to a poor health outcome.
Indeed, rates of hypertension were not significantly
enriched in subset 6 in the TwinsUK cohort at baseline
but were after follow-up. Our analysis therefore supports
the classification of subset 6 individuals as being at-risk
and prioritized for intervention before they progress to
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the disease state. However, this classification requires fur-
ther assessment, especially as our analysis also showed
that individuals in subset 6 and 7 should be thought of
more as part of a continuous distribution than as two di-
chotomous groups (Additional file 1: Figure S3).

Microbiome richness module

The microbiome richness module in the association net-
work contained 167 features, the majority of which were
from the metabolome (# =98) and microbiome (# = 49)
modalities. Similar to the in-depth analysis for the cardio-
metabolic module, we performed a network analysis to
identify key biomarkers of this module and stratified indi-
viduals into subsets to assess their health status. Since
microbiome was only measured for the last visit in our
longitudinal validation cohort, we were unable to perform
longitudinal disease outcome analysis for this module.

Network analysis for key biomarker selection

We construct a Markov network that identified the inter-
face between the microbiome taxa and the metabolites in
this module (Fig. 5a). In particular, we observed that most
of the associations between the microbiome and the me-
tabolome were mediated by species richness (i.e., the
number of species present at a relative abundance greater
than 107*). Specifically, species richness is associated to
the mutually connected metabolites cinnamoylglycine,
hippurate, and 3-phenylpropionate. This relationship is in
agreement with a previous study [32] that showed cinna-
moylglycine and hippuric acid were not found in germ-
free mice, and that 3-phenylpropionic acid is a metabolic
product of anaerobic bacteria. Furthermore, a recent study
[29] identified hippurate and 3-phenylpropionate as meta-
bolic markers for microbiome diversity, with hippurate be-
ing the strongest of the three. These studies indicate that
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cinnamoylglycine, hippurate, and 3-phenylpropionate are
produced by the microbiome. Our model shows a connec-
tion between the levels of these metabolites, species rich-
ness, and other markers of a healthy metabolome as well
as markers of good health, such as low levels of liver fat
and visceral adipose tissue. Our findings suggest that spe-
cies richness is more directly associated with these meta-
bolic markers than species diversity. In addition,
cinnamoylglycine may be a metabolic marker for gut
microbiome health and the overall health.

As in the case of the cardiometabolic module, we se-
lected our key biomarkers by excluding features that
were only connected to their own modality in the Mar-
kov network. This resulted in 24 key biomarkers.

Stratification of individuals and characterization
Using the 24 key biomarkers, we stratified individuals into
7 subsets (Fig. 5b). The lipid signature that characterized
this module had the lowest levels in subset 1 and the high-
est levels in subset 7, while the microbiome genera abun-
dances and species diversity were the highest in subset 1
and the lowest in 7. The exception was Bacteroides, which
showed the opposite trend. Associations with the full set
of 1345 features showed that subset 7 could be character-
ized as having markers consistent with being the least
healthy, with the highest levels of body fat, BMI, triglycer-
ides, and total cholesterol and the lowest lean mass. Sub-
set 1 had values at the opposite extreme for each of these
traits and can be characterized as having markers consist-
ent with the best health. In addition, the subsets were
largely distinguished by differences in various lipids and
microbiome genera (Additional file 3: Supplemental
Notes; Fig. 5b; Additional file 1: Figure S7).

While the subsets could potentially reflect different
states of gut microbiome health, which may be

associated with overall cardiometabolic health, we found
no enrichment of cardiometabolic or other diseases in
any of the subsets.

Comparing membership across the modules

We proceeded to compare the membership of individ-
uals in the subsets from the cardiometabolic and the
microbiome richness modules. There was significantly
(p <0.001) more overlap of individuals between subsets
7 in the two modules and also between subsets 1 than
expected by chance: 66% of those in the microbiome
richness subset 7 were in the cardiometabolic subset 7,
and 45% of those in the microbiome richness subset 1
were also in the cardiometabolic subset 1. In contrast,
only 1% of those in microbiome richness subset 7 were
in cardiovascular subset 1 (Additional file 1: Figure S8).

Discussion

We analyzed 1385 multimodal features collected from
1253 individuals using a combination of unsupervised
machine learning and statistical approaches. We identi-
fied novel associations and novel biomarker signatures
that stratified individuals into distinct health states. The
main findings were replicated in an independent valid-
ation cohort of 1083 females (TwinsUK). In addition, we
showed that such an approach can be used on longitu-
dinal data to identify individuals who may be in the early
disease transition state.

Specifically, we performed association analysis of fea-
tures across modalities and found novel significant asso-
ciations between p-cresol sulfate (pCS) and the
microbiome genera Intestinimonas and an unclassified
genus in the Erysipelotrichaceae family. pCS is a known
microbial metabolite and is considered to be an uremic
toxin [31, 33-35]. It is produced by bacteria fermenting
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undigested dietary proteins that escape absorption in the
small bowel [36-38]. It appears to be elevated in the sera
of chronic kidney disease (CKD) patients, and it is asso-
ciated with increased mortality in patients with CKD
[39] and an increased risk of cardiovascular events [39].
The Intestinimonas genus is known for being a butyrate-
producing species that digests lysine and fructoselysine
in the human gut [40], but it is otherwise not well de-
scribed. Members of the Erysipelotrichaceae family
might be immunogenic and can potentially flourish after
treatment with broad spectrum antibiotics [41]. An in-
creased abundance of Erysipelotrichaceae has been ob-
served in obese individuals, and several other lines of
evidence suggest a role in lipid metabolism [41]. Our
novel associations were validated in the TwinsUK cohort
and could further be studied as potential therapeutic tar-
gets to decrease pCS levels and its toxicity.

Community detection analysis of the 11,537 statisti-
cally significant feature associations identified 2 primary
modules of densely connected features: the cardiometa-
bolic module and the microbiome richness module. Both
of these modules identified individuals with markers
consistent with better health, according to clinical fea-
tures such as BMI and BP, and individuals with markers
consistent with disease risk. Interestingly, when stratify-
ing individuals with distinct signatures in each module
together into subsets, the subset of the cardiometabolic
module with the markers most consistent with “good”
health largely overlapped the microbiome richness sub-
set with the markers that were most consistent with
“good” health. The same was observed for the subset
with the markers most consistent with disease risk. Such
co-enrichment of individuals in the subsets with markers
that were most consistent with disease risk derived from
both modules suggests patterns of comorbidity and
highlights the interaction between cardiometabolic
health and gut microbiome health.

The key biomarkers identified in the cardiometabolic
module consisted of potentially novel features in
addition to the traditional clinical features from several
modalities. The potentially novel biomarkers included
the abundance of the microbiome genera Butyrivibrio
and Pseudoflavonifractor and several metabolites, such
as 1-(1-enyl-palmitoyl)-2-oleoyl-GPC, 1-eicosenoyl-GPC,
glutamate, and 1-stearoyl-2-dihomo-linolenoyl-GPC.
The higher abundance of the two microbiome genera
has been associated with decreased adiposity and im-
proved insulin sensitivity. The Butyrivibrio genus is
known for its butyrate-producing species and plays a
major role in fiber and other complex polysaccharide
degradation [42, 43]. An increased abundance of Butyri-
vibrio increases the rate of butyrate production, which is
suggested to decrease risk of type 2 diabetes and de-
creased adiposity [44—-46]. In addition, the oral
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administration of a Butyrivibrio species was shown to re-
duce putative preneoplastic lesions in mice, suggesting a
role for the microbiome species as a probiotic in the pre-
vention or suppression of colorectal cancer [44]. A
weight-loss study showed enrichment of Pseudoflavoni-
fractor at baseline in individuals who succeeded in losing
their weight consistently for 2 years [47]. In our study,
we observed a higher abundance of Butyrivibrio and
Pseudoflavonifractor in individuals in subset 1, which is
consistent with our observation of a very low prevalence
of diabetes, hypertension, and obesity in that subset.

We identified another potential biomarker for
health from the analysis of the microbiome richness
module—the metabolite cinnamoylglycine was associ-
ated with microbiome species richness and lean mass
percentage. It was observed to be abundant in indi-
viduals in subset 1, representing individuals with
markers consistent with good health. Cinnamoylgly-
cine is related to gut bacterial metabolism, and it was
identified as being present only in the serum or co-
lonic lumen from conventional but not germ-free
mice [32]. Additional study is needed to confirm the
role of cinnamoylglycine on health and to understand
its biological mechanism.

We found that the subset membership for individuals
was a better predictor of diabetes than the traditional clin-
ical biomarkers such as glucose, BMI, and insulin resist-
ance. The novel biomarkers in the diabetes signature
included 1-stearoyl-2-dihomo-linolenoyl-GPC and 1-(1-
enyl-palmitoyl)-2-oleoyl-GPC. These lipid metabolites are
not well studied but are likely present in cell membranes
and fat-carrying vehicles such as HDL. A study on a re-
lated metabolite 1-palmitoyl-2-oleoyl-sn-GPC (POPC)
suggested a role in insulin resistance [48]; glucose uptake
in skeletal muscle showed that a synthetic reconstituted
discoidal HDL made with POPC produced insulin-like ef-
fects. Future work on these metabolites may prove them
to be novel biomarkers for insulin resistance and diabetes.

A longitudinal disease outcome analysis in the
follow-up TwinsUK data found a potential early dis-
ease signature for hypertension: membership in the
cardiometabolic module subset 6. We also observed
that more than half of the individuals from subset 6
transitioned to subset 7, the subset with markers
most consistent with disease risk, in the follow-up
visit, suggesting that subset 6 membership is an early
indication of a poor health outcome. However, we add the
caveat that we found subsets 6 and 7 to represent more of
a more continuous distribution than two dichotomous
groups, which casts some uncertainty onto the utility of
separating out subset 6 as their own predisposition group
(Additional file 2: Figure S3). Further validation of these
signatures is needed to show their utility in prioritizing in-
dividuals for intervention.
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We did not observe a substantial number of significant
findings for the genetic features, which included poly-
genic risk scores (PRS), HLA types, and known rare
disease-causing variants (Additional file 2: Table S3;
Additional file 3: Supplementary Notes). This result is
not unexpected given the relatively small sample size
considered here compared to the large sample sizes re-
quired for finding statistically significant association in
genetic studies. Additionally, the analyses focus on the
main/strongest findings from unsupervised pattern de-
tection, and an overwhelming signal from other func-
tional measurements dampens signals from genetics.
The types of associations with the largest effect sizes
would be for rare variants and diseases, for which any
population-based cohort like the one studied here would
be underpowered. Finally, the PRS derived using com-
mon variants for certain traits could only explain a small
fraction of the variance; therefore, we are underpowered
to detect significant associations.

In recent years, several organizations have begun gath-
ering cohorts with high throughput data from multiple
modalities. The collection of such datasets from large
cohorts is a necessary step in systems medicine to gain
comprehensive insights into an individual’s health status
and to understand complex disease mechanisms. A sys-
tematic and supervised approach to analyze an individ-
ual’s genome and deep phenotype data, as shown in our
previous publication [4], is important for precision medi-
cine screening. However, it is also crucial to perform un-
supervised multimodal data analyses, as described here,
to sift through this wealth of information for novel find-
ings of signatures of health and disease. These novel dis-
coveries and the characterization of complex
interactions allow us to transition towards personalized,
preventative health risk assessments.

Conclusion

In summary, the approach described in this study dem-
onstrates the power of utilizing a combination of un-
supervised machine learning methods on integrated
multimodal data to derive novel biomarker signatures
for different health states. Additionally, we show applica-
tion of this approach on longitudinal data to identify
potentialearly disease signatures that can stratify individ-
uals for a personalized, preventative health risk
assessment.
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