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1. Metabolism of cholesterol

1.1. Biosynthesis of cholesterol

Cholesterol is an extremely important biological molecule as it  
is a precursor for the synthesis of steroid hormones, bile acids, 
and vitamin D [1].  The human body manufactures around 1 g  
of cholesterol each day and approximately 20-25% of total 
daily cholesterol production occurs in the liver [2].  Synthesis 
of cholesterol is a series process and starts with acetyl CoA and 
acetoacetyl-CoA, which are hydrated to form 3-hydroxy-3-
methylglutaryl CoA (HMG-CoA).  This molecule is subsequently 
reduced to mevalonate by the enzyme HMG-CoA reductase [3].  
This is the regulated, rate-limiting, and irreversible step in choles-
terol biosynthesis and is the target of action for statin drugs (HMG- 
CoA reductase competitive inhibitors) [4].

1.2. Association of abnormal cholesterol levels with diseases

Both dietary cholesterol and synthesized de novo are transported 

*  Corresponding author. Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
** Corresponding author, Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.
*** School of Medicine, China Medical University, Taichung 404, Taiwan.
**** Corresponding author, Department of Otolaryngology-Head and Neck Surgery, China Medical University and Hospital, Taichung 

404, Taiwan.
† Equal contribution to this work.
 E-mail addresses: hlin@dragon.nchu.edu.tw (H. Lin), JT.Hsieh@UTSouthwestern.edu (J.-T. Hsieh), chl@mail.cmu.edu.tw (C.-H. Lai), 

d6355@mail.cmuh.org.tw (C.-D. Lin).

Keywords:
Cancer development; 
Cholesterol; 
HMG-CoA reductase; 
Infectious disease; 
Lipid rafts

ABSTRACT

Cholesterol-rich microdomains (also called lipid rafts), where platforms for signaling are provided and 
thought to be associated with microbe-induced pathogenesis and lead to cancer progression.  After treatment 
of cells with cholesterol disrupting or usurping agents, raft-associated proteins and lipids can be dissoci-
ated, and this renders the cell structure nonfunctional and therefore mitigates disease severity.  This review  
focuses on the role of cholesterol in disease progression including cancer development and infectious dis-
eases.  Understanding the molecular mechanisms of cholesterol in these diseases may provide insight into 
the development of novel strategies for controlling these diseases in clinical scenarios.

by lipoprotein particles through the circulatory system.  The four 
major types of lipoproteins are chylomicron, very low-density 
lipoprotein (VLDL), low-density lipoprotein (LDL), and high-
density lipoprotein (HDL).  Chylomicrons and VLDL deliver 
triacylglycerol to cells in the body, whereas LDL delivers choles-
terol to cells in the body.  Meanwhile, HDL is involved in reverse 
cholesterol transport.  The synthesis and utilization of cholesterol 
must be tightly regulated in order to prevent over-accumulation  
and abnormal depositing within the body.  There are two mani-
festations of cholesterol disorders, hyperlipidemia and hypolipi-
demia.  The reasons for cholesterol disorders  include dietary 
issues, genetic disorders, and other diseases [5-7].  For example, 
due to a genetic disorder caused by a defect on chromosome 19, 
cholesterol continues to be produced despite there already be-
ing an excess of cholesterol in the blood (lack of uptake by LDL 
receptor), and this may cause familial hypercholesterolemia [8].  
In contrast, hypo-cholesterol level may result from liver disease, 
hypothyroidism, and genetic disorders such as familial hypobeta-
lipoproteinemia and Smith-Lemli-Opitz syndrome (7-dehydroc-
holesterol reductase deficiency) [9].
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The level of cholesterol in the body being too high or too low 
may cause varies symptoms, syndromes, or diseases.  Excessive 
cholesterol is associated with several cardiovascular diseases 
and such levels are easily attained with an unhealthy diet.  In 
fact, it should be noted that it is not essential for cholesterol to be 
obtained from one’s diet as it is easily synthesized in the body. 
Whereas, low cholesterol is associated with mental disorders, 
neuropsychiatric diseases, and mortality in elderly [10].  Some 
critical diseases related to cholesterol levels are listed in Table 1.

1.3. The cholesterol lowering agents

The most important drugs for the treatment of dyslipidemia are 
statins which have been shown in multiple clinical trials to re-
duce cardiovascular events and mortality [25].  Statins can inhibit 
HMG-CoA reductase and design to subsequently inhibit enzyme 
activity in the liver [26].  Inhibition of cholesterol synthesis further  
decreases circulating LDL, which reduces levels of cholesterol in 
the hepatocyte and therefore lead to up-regulated expressions of 
LDL receptors.  Some other drugs have been developed to treat 
dyslipidemia in specific subsets of patients. For instance, fibrates, 
which bind to the nuclear receptor PPAR-alpha, can increase 
HDL levels and decrease triglyceride levels [27].  Fibrates were 
originally used to address the primary problem of high levels of 
triglycerides.  Another example is niacin (nicotinic acid), which 
increases HDL levels and decreases triglyceride and LDL levels  

at high doses (much higher than required for its role as a vitamin) 
[28, 29].  And there is ezetimibe, which inhibits cholesterol ab-
sorption in the small intestine and effectively lowers LDL choles-
terol [30].

2. Role of cholesterol in cancer progression

2.1. Cholesterol and cancer development

Cholesterol is known as a main component of lipid rafts and has  
been documented to regulate cell membrane proteins, receptor  
trafficking, signal transduction, as well as influence cell membrane  
fluidity [31].  Moreover, cholesterol and other lipid-components 
participate in the production of hormones [32] and energy [33].  
However, when large concentrations of cholesterol accumulate in 
the human body, especially in the organs and blood stream, the 
risk of various diseases increases (Table 2).  Notably, studies have 
revealed that an increased cholesterol level participates in cancer 
cell malignancy, and the dysfunction of cholesterol metabolism 
may also influence cancer progression [34-36].  For example, me-
valonate, a cholesterol synthesis precursor, promotes breast cancer  
cell proliferation in vivo and in vitro [37, 38].  Additionally, 27-
hydroxycholesterol, which is a metabolite from cholesterol, is 
expressed much higher in the estrogen receptor-positive breast 
cancer patient site, when compared with both normal breast tissue 

Table 1 – Diseases associated with abnormal cholesterol levels.
Diseases associated with high cholesterol level References
Atherosclerosis [11]
Stroke [12]
Cardiovascular disease (i.e. coronary heart disease and heart attacks) [13]
Xanthomas (familial hypercholesterolemia) [14, 15]
Tangier disease (familial HDL deficiency) [16]
Diseases associated with low cholesterol level
Huntington disease [17, 8]
Increase in deaths from trauma and hemorrhagic stroke [19, 20]
Increase risk of neuropsychiatric disorders (i.e. depression , suicide, anxiety, impulsivity, and aggression) [21-24]

Table 2 – The relationship between cancers and cholesterol.
Cancer Positive related Negative related 
Bladder cancer [47] [48]
Breast cancer [37-40, 49] [48, 50, 51] 
Colon cancer [44, 45, 52, 53] –
Female reproductive organ cancer [46] [54]
Kidney cancer [47] –
Liver cancer [55] [53]
Lung cancer [46, 47] [53]
Melanoma [46] [56, 57] 
Non-Hodgkin's lymphomas [47] –
Oral cancer [41] [58-60]
Pancreas cancer [47] –
Prostate cancer [61-63] [47, 48]
Stomach cancer [47] [53]
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and a patient’s cancer-free region control [39, 40].  In oral cancer, 
cholesterol was found to be significantly increased in tumor tissue 
compared to normal tissue [41].  Moreover, previous studies have 
reported that elevated cholesterol in the circulatory system pro-
motes Akt signaling, decreases apoptosis activity in LNCap pros-
tate cell line, and enhances tumor aggressiveness in a xenograft 
animal model [42, 43].  Further, it has been reported that serum 
cholesterol is a positive factor in colon cancer development [44, 
45].  Other cancers, including female reproductive organ cancers, 
lung cancer, and melanoma are also documented to correlate with 
high levels of cholesterol [46].

2.2. Reducing cholesterol inhibits cancer progression

In addition to the correlation between cholesterol and cancer pro-
gression, disruption of cell membrane lipid rafts or cholesterol  
components and interference of cholesterol synthesis are considered  
as treating prospects toward cancer treatment [64, 65].  There-
fore, clinical use of cholesterol-controlling medicines has  
been implied to possess chemoprotective effects [66].  Statins, 
HMG-CoA reductase inhibitors, are cholesterol-lowering agents 
[67], and the total consumption of statins has been increasing in 
recent years [46].  Statins are documented to decrease the pro-
liferation of cancer cells [49, 63], reduce the risk of cancer inci-
dence rate [61], and even influence the mortality rate in cancer 
patients [68].  However, the findings of statins use in the treat-
ment of cancer have revealed inconsistencies. Some reports have 
even claimed that the use of statin may increase the risk of cancer 
[51, 57], or have no correlation in the treatment of cancer [50, 
69].  Therefore, the benefits of the cholesterol-controlling aspect 
in the treatments of lipid rafts-related cancers, animal models, 
and the details of their underlying mechanisms may need further 
investigations. 

Despite arising number of reports that support the claim that 
the use of statin significantly reduces the incidence of cancer, not 
all of the statistical results are consistent with such a claim [48, 
70].  Research into cholesterol-related cancer progression and 
the use of cholesterol-lowering drugs are mostly of the database 
analysis variety.  However, the results may differ according to 
participant sample selection, sample size, and related confound-
ing factors.  Therefore, additional studies with cellular or animal 
models, long-term vs. short-term statin users follow-up, and even 
studies consisting of large sample sizes with multiple confounders 
would help further elucidate this issue. 

3. Association of cholesterol with pathogen  
infections

Cholesterol is the most important component of lipid rafts in 
eukaryotic cells.  Lipid rafts are also considered a critical factor 
in host-pathogen interaction and colonization of hosts by several 
pathogens including bacteria, viruses, as well as prions.  Most of 
the studies we refer to here describe a few examples of the role of 
cholesterol in promoting pathogenic infections (Table 3). 

3.1. Lipid rafts serve as platforms for bacterial pathogens

In order to promote their internalization into host, bacterial patho-
gens may utilize host cells to enhance their own adherence and 
survival abilities [83, 84].  Adhesion to host cells by pathogens 
is the first step in their invasion process and may be associated 
with lipid rafts.  The most commonly described cellular target of 
intestinal pathogens is Campylobacter jejuni, which attach to host 
epithelial cells via membrane cholesterol [85-87].  In addition, 
the major virulence factor expressed by C. jejuni is cytolethal 
distending toxin (CDT) [74], which also can be produced by vari-
ous common Gram-negative bacteria, including Aggregatibacter 
actinomycetemcomitans [88], Escherichia coli [89], Haemophilus 
ducreyi [76], Helicobacter hepaticus [90], and Shigella dysen-
teriae [91].  It has been reported that C. jejuni CDT-induced 
pathogenesis of host cells is dependent on membrane cholesterol 
levels.  By using cholesterol-depleting agents such as methylh- -
cyclodextrin (M CD) which markedly decreased the intoxication 
of cells [74, 92].  Further evidence of the role of lipid rafts in both 
C. jejuni and A. actinomycetemcomitans CDT-induced genotoxic-
ity of host cells have been demonstrated through the cholesterol 
recognition/interaction amino acid consensus (CRAC) region of 
the CdtC subunit [71, 75].  These findings indicate that membrane 
cholesterol provides an essential component for CDT binding to 
the cell membrane and also serves as a portal for CdtB delivery 
into host cells for the induction of cell intoxication.  Moreover, in 
this case, the virulence protein cytotoxin-associated gene A (CagA) 
of Helicobacter pylori, is delivered into the target cells by the 
type IV secretion system [93] and utilizes membrane cholesterol 
to lead to the activation of pro-inflammatory signaling pathways 
within gastric cells [75, 78, 94, 95].  Furthermore, a dramatic 
demonstration of the dissociation of infectivity and pathology  
is H. pylori within encoding glucosyltransferase, which is  
indispensable for cholesterol glucosylation and promotes H. 
pylori-induced phagocytosis escape and subsequent immune 
responses [77, 96].  Similar to C. jejuni and H. pylori, the recent 
description of the combination of apoE-deficiency and a high 
cholesterol diet in mice facilitated Anaplasma phagocytophilum 
infection in vivo and induced proinflammatory responses [73].  
However, not all pathogens require lipid rafts to gain entry into 
host cells.  Recently, it has been shown that cholesterol-mediated 

Table 3 – Functions of cholesterol-rich microdomains in pathogen infection.
Pathogen Function References
Aggregatibacter actinomycetemcomitan CDT holotoxin entry into host cells [71,72]
Anaplasma phagocytophilum A. phagocytophilum infection [73]

Campylobacter jejuni CDT holotoxin entry into host cells [74, 75]

Haemophilus ducreyi CDT holotoxin entry into host cells [76]
Helicobacter pylori CagA translocation and VacA function [77-80]
HIV Facilitate HIV infection [81]
Prion Promote the conversion of PrPc into the isoform PrPSc [82]
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invasions and intracellular replication are not required for Chla-
mydia trachomatis and Salmonella enterica serovar Typhimurium 
infection of mice embryonic fibroblasts (MEFs) [97].  Together,  
these examples illustrate that lipid rafts provide several advantages  
for bacteria, including virulence factors in modulating internaliza-
tion and transport of extracellular proteins as well as signaling 
platforms.

3.2. Conversion of prions is associated with lipid rafts

Neurodegenerative disorders caused by prions have been linked 
to the variant Creutzfeldt-Jakob Disease (vCJD) in humans [98].  
The cellular prion protein (PrPC) is called a normal cell surface 
glycoprotein by means of a glycosylphosphatidylinositol (GPI)-
anchor.  GPI-anchored PrPC is presented in lipid rafts where are 
microdomains enriched in cholesterol [99].  It is widely known 
that PrPC is found in membrane cholesterol and plays a crucial 
role in the development of prion-related diseases by changing its 
conformation to a pathological isoform (PrPSc) [82].  PrPSc is an 
essential part of the prion, causing fatal and transmissible neuro-
degenerative prion diseases [82].  Several lines of evidence sug-
gest that lipid rafts are highly essential for the transport of PrPC 
and the toxicity of PrPSc in neuronal cells [100, 101].  Altogether, 
these studies indicate the critical role of lipid rafts, which main-
tain the cell surface localization of GPI-anchor attachment of PrPC 
and are involved in prion conversion and neurotoxicity.

3.3. Lipid rafts facilitate virus infection

Human immunodeficiency virus (HIV) is the retrovirus that 
is well known to cause acquired immunodeficiency syndrome 
(AIDS) [102].  Previous clinical evidence indicated that the level 
of cholesterol may be a potential factor for controlling the spread 
or fusion of many viruses [103, 104]  which are involved in HIV 
production and infectivity [81].  It has been reported that the 
negative effector (Nef) protein from HIV can enhance cholesterol 
uptake and biosynthesis by activating the transcription of the  
sterol-responsive element binding factor 2 (SREBF-2) and SREBF- 
2-regulated genes [105].  In addition, the Nef inhibits the activity  
of the cellular cholesterol transporter ATP-binding cassette A1 
(ABCA1) [106], which in response binds to cholesterol and  
delivers it to the lipid rafts. Conversely, reduction of cellular cho-
lesterol by ABCA1 activation has been shown to potently inhibit 
HIV replication [107, 108].  Taken together, these results reveal 
that HIV requires cholesterol for its egress from and entry into 
cells. 

4. Conclusions and perspectives

Cholesterol-enriched microdomains, which provide platforms for 
signaling, are thought to be associated with the development of 
various types of cancers.  It has also been clear that the role of 
cholesterol in pathogen-host interactions contributes to further 
ensure the pathogens’ survival and virulence delivery into host.  
These findings indicate that an adequate regulation of cholesterol 
may prevent cancer progression as well as mitigate microbe-
induced the pathogenesis of hosts.  Fully unveiling the role of 
cholesterol in diseases’ manifestations may shed light on the pos-
sibility to develop a novel approach to the retardation or possible 
prevention of cancer development and the treatment of infectious 
diseases. 
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